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This textbook comprehensively covers all of the material in the syllabus 
for the two-year Mathematics Standard Level course in the International 
Baccalaureate (IB) Diploma Programme. A new syllabus for each of the 
IB mathematics courses was issued in early 2012 for which students will 
first take exams in May 2014. This second edition is specifically designed 
for the 2014 Standard Level syllabus. Students will first be taught the 
course with this syllabus in the autumn of 2012.

Content
As you will see when you look at the table of contents, the six syllabus 
topics (see margin) are fully covered, though some are split over different 
chapters in order to group the information as logically as possible. The 
textbook has been designed so that the chapters proceed in a manner that 
supports effective learning of the necessary concepts and skills. Thus 2 
although not absolutely necessary 2 it is recommended that you read and 
study the chapters in numerical order. It is particularly important that all 
of the content in the first chapter, Fundamentals, is thoroughly reviewed 
and understood before studying any of the other chapters. It covers most 
of the presumed knowledge for the course including the terminology, 
notation and techniques that are essential for successful completion of the 
Mathematics Standard Level course.

The previous syllabus for Mathematics Standard Level contained a topic 
on matrices. This topic is not in the 2014 syllabus, resulting in most of the 
content on matrices being removed. Matrices is an interesting and practical 
area of mathematics 2 so we decided to keep the chapter Matrix Algebra 
(Chapter 5) from the first edition. However, you could skip Chapter 5 and 
still cover the entire syllabus.

Other than the final three chapters, each chapter has a set of exercises at the 
end of each section. Also, at the end of each of these chapters (except for 
Chapter 1) there is a set of practice questions, which are designed to give 
students practice with exam-like questions. Many of these end-of-chapter 
practice questions are taken from past IB exam papers. Near the end of the 
book, just before the index, you will find answers to all of the exercises and 
practice questions that appear in this textbook.

There are numerous worked examples throughout the textbook, showing 
you how to apply the concepts and skills you are studying.

vii

Introduction

IB Mathematics Standard 
Level
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1 Algebra

2	 Functions	and	equations

3	 Circular	functions	and	
trigonometry

4	 Vectors

5	 Statistics	and	probability

6	 Calculus
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Example 9 

Find the sine, cosine and tangent of the obtuse angle that measures 150°.

Solution
The terminal side of the angle forms a 30° angle with the x-axis. The sine 
values for 150° and 30° will be exactly the same, and the cosine and tangent 
values will be the same but of opposite sign. We know that 

sin 30° 5   1 __ 
2

  , cos 30° 5   
 √

__
 3  
 ___ 

2
   and tan 30° 5   

 √
__

 3  
 ___ 

3
   .

Therefore, sin 150° 5   1 __ 
2

  , cos 150° 5 2   √
__

 3   ___ 
2

   and tan 150° 5 2   √
__

 3   ___ 
3

  .

Chapter 17 contains two full-length Paper 1 and Paper 2 sample exams. 
Solution keys for these exams are available from the authors’ website.

Finally, you will find a Theory of Knowledge chapter, which should 
stimulate you to think more deeply and critically about the nature of 
knowledge in mathematics and the relationship between mathematics and 
other subject areas. 

Website support
At www.pearsonbacconline.com you will find a selection of free 
online learning resources supporting the material in this book. More 
comprehensive support for teachers who adopt the textbook will be 
available at the authors’ website: www.wazir-garry-math.org, which will be 
regularly updated. You will be required to register before gaining access to 
materials on the authors’ website.

The following will be available from the authors’ website:

1 Further practice/mock exams and mark schemes

2 Additional exercises with solutions

3 Internal Assessment (‘Mathematical Exploration’) notes and guidance

4 Graphing calculators and other technology

5 Instructional activities for students

6 Chapter tests and quizzes.

Worked solutions
Worked solutions for all exercises and practice questions can be accessed 
from the online e-book for this textbook (more on the e-book on the next 
page).

xx�x

y

y

O
30° 30°150°

(�x, y) (x, y)

This	example	appears	in	
Section	2	of	Chapter	7	Triangle	
Trigonometry.
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Online e-book
Included with this textbook is an e-book that contains a digital copy of the 
textbook. To access the e-book, please follow the instructions on the inside 
front cover of this book. The textbook on the e-book offers far more than 
just another copy of the textbook. There are many interactive features on 
the e-book that can be accessed by clicking on active links embedded in the 
digital version of the textbook. These features include:

1 Additional explanations and examples

2 Practice quizzes for each chapter

3 Dynamic demonstrations of key concepts

4 Audio-video graphing calculator support with activities and tips

5 Worked solutions for all exercises and practice questions

6 Software illustrations and simulations.

These interactive resources are designed to support and enhance students’ 
understanding of essential concepts and skills throughout the course. We 
are profoundly indebted to Peter Ashbourne, Paul Barclay, Peter Flynn, 
Kevin Frederick and Mike Wakeford 2 the team of highly experienced 
and gifted mathematics teachers who created these supplementary student 
resources on the e-book.

Overview of syllabus changes
As a result of the IB’s cyclical curriculum review process, the IB 
Mathematics SL syllabus for first exams in May 2014 differs from the 
previous syllabus in some ways. The following is an overview of the most 
important changes.

Topic 1 Algebra remains Topic 1 and has a minor change: calculation of 
binomial coefficient   (   n     r   )  by using calculator (GDC) and by using formula (in 
formula booklet).

Topic 2 Functions and equations remains Topic 2 and now also includes: 
calculation of correlation coefficient for linear correlation of bivariate data 
(see statistics and probability topic).

Topic 3 Circular functions and trigonometry remains Topic 3 and is 
unchanged.

Topic 4 Matrices has been removed. 

Topic 5 Vectors is now Topic 4 and is unchanged.

Topic 6 Statistics and probability is now Topic 5 and has the following 
additions: statistical outliers are explicitly defined; and a new section on 
linear correlation of bivariate data (including Pearson’s product-moment 
correlation coefficient r, scatter diagrams and lines of best fit, equation for 
regression line of y on x and use of this equation for prediction purposes).

Topic 7 Calculus is now Topic 6 and has the following addition: integration 
by substitution.
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Introduction

Certainly, there is a great deal of useful mathematics that cannot ‘fit’ into 
the syllabus. We have decided to include a few non-syllabus items in the 
textbook and have clearly identified any such items as optional. 

Internal assessment
This textbook, the online e-book, and the two supporting websites (from 
Pearson and the authors) provide comprehensive support for the new Internal 
Assessment component (Mathematical Exploration). There is a brief chapter 
near the end of the textbook on Mathematical Exploration in the context 
of the IA programme for Mathematics SL. Further in-depth information 
and guidance for teachers adopting the textbook will be provided on the 
authors’ website. We will be updating teacher support and advice for Internal 
Assessment on our website regularly to address the latest developments, so 
teachers are encouraged to check from time to time for updates. 

Information boxes
Throughout the book you will see a number of coloured boxes interspersed 
through each chapter. Each of these boxes provides different information 
and stimulus as follows.

You will find a box like the one above at the start of each section in each 
chapter. The assessment statements outline the components of the SL 
syllabus (including syllabus section and sub-section numbers) that will be 
covered in that chapter. 

Beige boxes, like the one below, contain interesting information which will 
add to your wider knowledge but which does not fit within the main body 
of the text.

Radioactive	carbon	(carbon-14	or	C-14),	produced	when	nitrogen-14	is	bombarded	by	
cosmic	rays	in	the	atmosphere,	drifts	down	to	Earth	and	is	absorbed	from	the	air	by	plants.	
Animals	eat	the	plants	and	take	C-14	into	their	bodies.	Humans	in	turn	take	C-14	into	their	
bodies	by	eating	both	plants	and	animals.	When	a	living	organism	dies,	it	stops	absorbing	
C-14,	and	the	C-14	that	is	already	in	the	object	begins	to	decay	at	a	slow	but	steady	rate,	
reverting	to	nitrogen-14.	The	half-life	of	C-14	is	5730	years.	Half	of	the	original	amount	of	
C-14	in	the	organic	matter	will	have	disintegrated	after	5730	years;	half	of	the	remaining	
C-14	will	have	been	lost	after	another	5730	years,	and	so	forth.	By	measuring	the	ratio	of	
C-14	to	N-14,	archaeologists	are	able	to	date	organic	materials.	However,	after	about	50		000	
years,	the	amount	of	C-14	remaining	will	be	so	small	that	the	organic	material	cannot	be	
dated	reliably.

Assessment statements
3.6	 Solution	of	triangles.
	 The	cosine	rule:	c2	5	a2	1	b2	22ab	cos	C.

	 The	sine	rule:	5			 a _____	
sin	A

 		5			 b ____	
sin	B

 		5			 c ____	
sin	C

 	.

	 Area	of	a	triangle	as			1	_	2			ab	sin	C.
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Green boxes (like this from Chapter 8) contain facts that are drawn out 
of the main text and are highlighted. This makes them useful for quick 
reference and they also enable you to identify the core learning points 
within a section.

Margin hints (like the one on the right) can be found alongside questions, 
exercises and worked examples and they provide insight into how to 
analyse and/or answer a question. They also identify common errors and 
pitfalls when answering such questions and suggest approaches that IB 
examiners like to see.

Blue boxes (like the one below) in the main body of the text have key facts, 
definitions, rules and theorems.

Approach
This textbook is designed to be read by you – the student. It is important 
that you read this textbook carefully. Developing your ability to read and 
understand mathematical explanations will prove to be valuable in your 
long-term intellectual development, while also helping you to understand 
the mathematics necessary to be successful in your Mathematics 
Standard Level course. You should always read a section thoroughly before 
attempting any of the exercises at the end of the section. In preparing this 
textbook, we have endeavoured to write clear and thorough explanations 
supported by suitable worked examples. Our primary goal was to present 
sound mathematics with sufficient rigour and detail at a level appropriate 
for a student of Standard Level Mathematics.

The positive feedback and constructive comments on the 1st edition, 
which we received from numerous teachers and students, was very much 
appreciated. Your comments assisted us greatly in being able to make 
many improvements and corrections in this 2nd edition. Thank you. We 
welcome your feedback with regard to any aspects of the textbook and the 
e-book. We encourage teachers who adopt the textbook to register at our 
authors’ website and make use of the materials available on it.

Email: info@wazir-garry-math.org
Website: www.wazir-garry-math.org

Ibrahim Wazir and Tim Garry

 Hint:	 Notice	here	that	P(B	or	C )
is	not	the	sum	of	P(B )	and	P(C )	
because	B	and	C	are	not	disjoint.

The	process	of	‘breaking-up’	the	
vector	into	its	components,	as	
we	did	in	the	example,	is	called	
resolving	the	vector	into	its	
components.	Notice	that	the	
process	of	resolving	a	vector	
is	not	unique.	That	is,	you	can	
resolve	a	vector	into	several	
pairs	of	directions.

Vertical translations of a function
Given	k	.	0,	then:
I.	 The	graph	of	y	5	f	(x)	1	k	is	obtained	by	translating	up k	units	the	graph	of	y	5	f	(x).
II.	The	graph	of	y	5	f	(x)	2	k	is	obtained	by	translating	down k	units	the	graph	of	y	5	f	(x).
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Mathematics is an exciting field of study, concerned with structure, 
patterns and ideas. To fully appreciate and understand these core aspects 
of mathematics, you need to be confident and skilled in the rules and 
language of algebra. Although you have encountered some, perhaps most 
or all, of the material in this chapter in a previous mathematics course, 
the aim of this chapter is to ensure that you are familiar with fundamental 
terminology, notation and algebraic techniques.

The most fundamental building blocks in mathematics are numbers 
and the operations that can be performed on them. Algebra, like 
arithmetic, involves performing operations such as addition, subtraction, 
multiplication and division on numbers. In arithmetic, we are performing 
operations on known, specific, numbers (e.g. 5 1 3 5 8). However, in 
algebra we often deal with operations on unknown numbers represented 

by variables – usually symbolized by a letter  ( e.g.   a 1 b _____ c    5   a __ c   1   b __ c   ) . The use 

of variables gives us the power to write general statements indicating 
relationships between numbers. But what types of numbers can variables 
represent? All of the mathematics in this course involves the real numbers 
and subsets of the real numbers.

A real number is any number that can be represented by a point on the real 
number line (Figure 1.1). Each point on the real number line corresponds 
to one and only one real number, and each real number corresponds to 
one and only one point on the real number line. This kind of relationship 
is called a one-to-one correspondence. The number associated with a 
point on the real number line is called the coordinate of the point. 

Subsets of the real numbers
The set of real numbers R contains some important subsets with which 
you should be familiar.

When we first learn to count, we use the numbers 1, 2, 3, … . These 
numbers form the set of counting numbers or positive integers Z1.

The real numbers1.1

Introduction

The word algebra comes from 
the 9th-century Arabic book 
Hisâb al-Jabr w’al-Muqabala, 
written by al-Khowarizmi. 
The title refers to transposing 
and combining terms, two 
processes used in solving 
equations. In Latin translations, 
the title was shortened to 
Aljabr, from which we get the 
word algebra. The author’s 
name made its way into the 
English language in the form of 
the word algorithm.

1 Fundamentals

Figure 1.1 The real number line.

�3 �2 �1 0 1 2 3

1
3�2.58 π�0.999�   3 2 10

3 19
7
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Fundamentals1

Adding zero to the positive integers (0, 1, 2, 3, …) forms the set referred to 
as the set N in IB notation.

The set of integers consists of the counting numbers with their 
corresponding negative values and zero (… 23, 22, 21, 0, 1, 2, 3, …) and 
is denoted by Z (from the German word Zahl for number).

We construct the rational numbers Q by taking ratios of integers. Thus, a 

real number is rational if it can be written as the ratio   
p

 __ q   of any two integers,

where q  0. The decimal representation of a rational number either 
repeats or terminates. For example,   5 _ 7   5 0.714  285  714  285… 5 0. 

_______
 714  285  

(the block of six digits repeats) or   3 _ 8   5 0.375 (the decimal terminates at 5, 
or, alternatively, has a repeating zero after the 5). 

A real number that cannot be written as the ratio of two integers, such as p 
and  √

__
 2  , is called irrational. Irrational numbers have infinite non-repeating 

decimal representations. For example,  √
__

 2    1.414  213  5623… and 
p  3.141  592  653  59…. There is no special symbol for the set of irrational 
numbers.

Positive integers Z1 5 {1, 2, 3, …}

Positive integers and zero N 5 {0, 1, 2, 3, …}

Integers Z 5 {…23, 22, 21, 0, 1, 2, 3, …}

Rational numbers Q 5 any number that can be written as the ratio   
p

 __ q   of 
any two integers, where q  0

Sets and intervals
If every element of a set C is also an element of a set D, then C is a subset 
of set D, and is written symbolically as C # D. If two sets are equal (i.e. they 
have identical elements), they satisfy the definition of a subset and each 
would be a subset of the other. For example, if C 5 {2, 4, 6} and D 5 {2, 4, 
6}, then C # D and D # C. What is more common is that a subset is a set 
that is contained in a larger set and does not contain at least one element 
of the larger set. Such a subset is called a proper subset and is denoted 
with the symbol ,. For example, if D 5 {2, 4, 6} and E 5 {2, 4}, then E 
is a proper subset of D and is written E , D. All of the subsets of the real 
numbers discussed earlier in this section are proper subsets of the real 
numbers, for example, N,R and Z,R.

 Hint: Do not be confused if you 
see other textbooks indicate that 
the set N (usually referred to as the 
natural numbers) does not include 
zero – and is defined as  
N 5 {1, 2, 3, …}. There is 
disagreement among 
mathematicians whether zero should 
be considered a natural number – i.e. 
reflecting how we naturally count. 
We normally do not start counting at 
zero. However, zero does represent 
a counting concept in that it is the 
absence of any objects in a set. 
Therefore, some mathematicians 
(and the IB mathematics curriculum) 
define the set N as the positive 
integers and zero.

Table 1.1 A summary of the 
subsets of the real numbers R and 
their symbols.

Figure 1.2 A Venn diagram 
representing the relationships 
between the different subsets 
of the real numbers. The rational 
numbers combined with the 
irrational numbers make up the 
entire set of real numbers.

0, 1, 2, 3, …

… �4, �3, �2, �1, …

�

integers

rational
numbers

real numbers

irrational
numbers

1
3

9
2

π

10

17
3

�
�

�

�

  3
2

1 �   5
2

263
548
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The symbol  indicates that a number, or a number assigned to a variable, 
belongs to (is an element of) a set. We can write 6    Z, which is read ‘6 
is an element of the set of integers’. Some sets can be described by listing 
their elements within brackets. For example, the set A that contains all of 
the integers between 22 and 2 inclusive can be written as A 5 {22, 21, 0, 
1, 2}. We can also use set-builder notation to indicate that the elements of 
set A are the values that can be assigned to a particular variable. For example, 
the notation A 5 {x | 22, 21, 0, 1, 2} or A 5 {x  Z | 22 < x < 2} indicates 
that ‘A is the set of all x such that x is an integer greater than or equal to 
22 and less than or equal to positive 2’. Set-builder notation is particularly 
useful for representing sets for which it would be difficult or impossible to 
list all of the elements. For example, to indicate the set of positive integers 
n greater than 5, we could write {n  Z | n . 5} or {n |n . 5, n  Z}.

The intersection of A and B (Figure 1.3), denoted by A  B and read ‘A 
intersection B’, is the set of all elements that are in both set A and set B. 
The union of two sets A and B (Figure 1.4), denoted by A  B and read ‘A 
union B’, is the set of all elements that are in set A or in set B (or in both). 
The set that contains no elements is called the empty set (or null set) and 
is denoted by . 

  

 
Figure 1.3 Intersection of sets A and B.

A  B  
Figure 1.4 Union of sets A and B.

A  B

Some subsets of the real numbers are a portion, or an interval, of the real 
number line and correspond geometrically to a line segment or a ray. They 
can be represented either by an inequality or by interval notation. For 
example, the set of all real numbers x between 2 and 5, including 2 and 5, 
can be expressed by the inequality 2 < x < 5 or by the interval notation 
x  [2, 5]. This is an example of a closed interval (i.e. both endpoints are 
included in the set) and corresponds to the line segment with endpoints of 
x 5 2 and x 5 5.

An example of an open interval is 23 , x , 1 or x  ]23, 1[, where 
both endpoints are not included in the set. This set corresponds to a line 
segment with ‘open dots’ on the endpoints indicating they are excluded.

If an interval, such as 24 < x , 2 or x [24, 2[, includes one endpoint 
but not the other, it is referred to as a half-open interval.

 Hint: Unless indicated otherwise, 
if interval notation is used,  we 
assume that it indicates a subset of 
the real numbers. For example, the 
expression x  [23, 3] is read ‘x is 
any real number between 23 and 3 
inclusive.’

A B A B

�1 0 1 2 3 4 5 6 7

�5 �4 �3 �2 �1 0 1 2 3

�5 �4 �3 �2 �1 0 1 2 3
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The three examples of intervals on the real number line given above are 
all considered bounded intervals in that they are line segments with two 
endpoints (regardless of whether included or excluded). The set of all real 
numbers greater than 2 is an open interval because the one endpoint is 
excluded and can be expressed by the inequality x . 2, or x  (2, ). This is 
also an example of an unbounded interval and corresponds to a portion of 
the real number line that is a ray.

Interval notation Inequality Interval type Graph

x  [a, b] a < x < b closed

bounded

x  ]a, b[ a , x , b open

bounded

x  [a, b[ a < x , b half-open

bounded

x  ]a, b] a , x < b half-open

bounded

x  [a, [ x > a half-open

unbounded

x  ]a, [ x . a open

unbounded

x  ]2, b] x < b half-open

unbounded

x  ]2, b[ x , b open

unbounded

x  ]2, [ real number line

Absolute value (modulus)
The absolute value (or modulus) of a number a, denoted by |a |, is the 
distance from a to 0 on the real number line. Since a distance must be 
positive or zero, the absolute value of a number is never negative. Note that 
if a is a negative number then 2a will be positive.

Definition of absolute value
If a is a real number, the absolute value of a is

  a if a > 0
 |a| 5 
  2a if a , 0

Here are four useful properties of absolute value:

Given that a and b are real numbers, then:

1. |a | > 0 2. |2a | 5 |a | 3. |ab | 5 |a ||b | 4.  |   a __ 
b

   |  5   
|a|
 ___ 

|b|
  , b  0

Table 1.2 The nine possible types 
of intervals – both bounded and 
unbounded. For all of the examples 
given, we assume that a , b.

 Hint: The symbols  (positive 
infinity) and 2 (negative infinity) 
do not represent real numbers. They 
are simply symbols used to indicate 
that an interval extends indefinitely 
in the positive or negative direction.

4 5�1 0 1 2 3

a b

a b

a b

a b

a

a

b

b
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Absolute value is used to define the distance between two numbers on the 
real number line.

Distance between two points on the real number line
Given that a and b are real numbers, the distance between the points with coordinates a 
and b on the real number line is |b2a |, which is equivalent to |a2b  |.

Absolute value expressions can appear in inequalities, as shown in the table 
below. 

Inequality Equivalent form Graph

|x| < a 2a < x < a

|x| , a 2a , x , a

|x| > a x < 2a or x > a

|x| . a x , 2a or x . a

Properties of real numbers
There are four arithmetic operations with real numbers: addition, 
multiplication, subtraction and division. Since subtraction can be written 
as addition (a 2 b 5 a 1 (2b)), and division can be written as 

multiplication  (   a __ 
b

   5 a (   1 __ 
b

   ) , b  0 ) , then the properties of the real numbers

are defined in terms of addition and multiplication only. In these definitions, 
2a is the additive inverse (or opposite) of a, and   1 __ a   is the multiplicative 
inverse (or reciprocal) of a.

Property Rule Example

commutative property of addition: a 1 b 5 b 1 a 2x3 1 y 5 y 1 2x3

commutative property of multiplication: ab 5 ba ( x 2 2)3x2 5 3x2( x 2 2)

associative property of addition: (a 1 b) 1 c 5 a 1 (b 1 c) (1 1 x ) 2 5x 5 1 1 (x 2 5x)

associative property of multiplication: (ab)c 5 a(bc) (3x    5y) (   1 __ y   )  5 (3x) ( 5y      1 __ y   ) 

distributive property: a(b 1 c) 5 ab 1 ac x2( x 2 2) 5 x2    x 1 x2 (22)

additive identity property: a 1 0 5 a 4y 1 0 5 4y

multiplicative identity property: 1 a 5 a   2 _ 3   5 1      2 _ 3   5   4 _ 4        2 _ 3   5   8 __ 12  

additive inverse property: a 1 (2a) 5 0 6y2 1 (26y2) 5 0

multiplicative inverse property: a      1 __  a   5 1, a  0 ( y 2 3)  (   1 _____ y 2 3    ) 5 1

Note: These properties can be applied in either direction as shown in the 
‘rules’ above.

Table 1.3 Properties of absolute 
value inequalities.

 Table 1.4 Properties of real 
numbers. 

0�a a

0�a a

0�a a

0�a a
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In questions 1– 6, plot the two real numbers on the real number line, and then find 
the distance between their coordinates.

 1 5;   3 _ 4   2 22; 211 3 13.4; 6

 4 7; 2   5 _ 3   5 23p ;   2p
 

__ 3   6 2   5 _ 6   ; 2   9 _ 4  

In questions 7–12, write an inequality to represent the given interval and state 
whether the interval is closed, open or half-open. Also, state whether the interval is 
bounded or unbounded.

 7 [25, 3] 8 ]210, 22] 9 [1, [

10 ]2, 4[ 11 [0, 2p [ 12 [a, b]

In questions 13–18, use interval notation to represent the subset of real numbers 
that is indicated by the inequality.

13 x . 6 14 x < 28 15 2 , x , 9

16 0 < x , 12 17 x . 25 18 23 < x < 3

In questions 19 –22, use inequality and interval notation to represent the given 
subset of real numbers.

19 x is at least 6.

20 x is greater than or equal to 4 and less than 10.

21 x is negative.

22 x is any positive number less than 25.

In questions 23–28, state the indicated set given that A 5 {1, 2, 3, 4, 5, 6, 7, 8}, 
B 5 {1, 3, 5, 7, 9} and C 5 {2, 4, 6}.

23 A  B 24 A  B 25 B  C

26 A  C 27 A  C 28 A  B  C

In questions 29–32, use the symbol , to write a correct statement involving the two 
sets.

29 Z and R 30 N and Q 31 Z and N 32 Q and Z

In questions 33–36, express the inequality, or inequalities, using absolute value.

33 26 , x , 6 34 x < 24 or x > 4

35 2p < x < p 36 x , 21 or x . 1

In questions 37–42, evaluate each absolute value expression.

37 |213| 38 |7211| 39 25|25|

40 |23| 2 |28| 41 | √
__

 3   2 3| 42   21 ____ 
|21|

  

In questions 43–46, find all values of x that make the equation true.

43 |x| 5 5 44 |x 2 3| 5 4

45 |6 2 x| 5 10 46 |3x 1 5| 5 1

Exercise 1.1
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Roots
If a number can be expressed as the product of two equal factors, that 
factor is called the square root of the number. For example, 7 is the square 
root of 49 because 7 3 7 5 49. Now, 49 is also equal to 27 3 27, so 27 
is also a square root of 49. Every positive real number will have two real 
number square roots – one positive and one negative. However, there 
are many instances where we want only the positive square root. The 
symbol   √

__
 0   (sometimes called the root or radical symbol) indicates only 

the positive square root – often referred to as the principal square root. In 
words, the square roots of 16 are 4 and 24; but, symbolically,  √

___
 16   5 4. The 

negative square root of 16 is written as 2 √
___

 16  , and when both square roots 
are wanted we write  √

___
 16  .

When a number can be expressed as the product of three equal factors, 
then that factor is called the cube root of the number. For example, 24 
is the cube root of 264 because (24)(24)(24) 5 264. This is written 
symbolically as  

3
 √
____

 264   5 24.

In general, if a number a can be expressed as the product of n equal factors 
then that factor is called the nth root of a and is written as  n √

__
 a  . n is called 

the index and if no index is written it is assumed to be a 2, thereby 
indicating a square root. If n is an even number (e.g. square root, fourth 
root, etc.) then the principal nth root is positive. For example, since (22)
(22)(22)(22) 5 16, then 22 is a fourth root of 16. However, the 
principal fourth root of 16, written  

4
 √

___
 16  , is equal to 12.

Radicals (surds)
Some roots are rational and some are irrational. Consider 
the two right triangles in Figure 1.5. By applying Pythagoras’ 
theorem, we find the length of the hypotenuse for triangle 
A to be exactly 5 (an integer and rational number) and the 
hypotenuse for triangle B to be exactly  √

___
 80   (an irrational 

number). An irrational root – e.g.  √
___

 80  ,  √
__

 3  ,  √
___

 10  ,  
3
 √

__
 4   – is 

called a radical or surd. The only way to express irrational 
roots exactly is in radical, or surd, form. 

It is not immediately obvious that the following expressions are 
all equivalent.

 √
___

 80  , 2 √
___

 20  ,   
16 √

__
 5  
 _____ 

 √
___

 16  
  , 2 √

__
 2   √

___
 10  ,   

10 √
__

 8  
 _____ 

 √
___

 10  
  , 4 √

__
 5  , 5 √

___

   16 ___ 5    

Square roots occur frequently in several of the topics in this course, 
so it will be useful for us to be able to simplify radicals and recognise 
equivalent radicals. Two useful rules for manipulating expressions 
with radicals are given below.

 Hint: The solution for the hypotenuse of 
triangle A in Figure 1.5 involves the equation 
x2 5 25. Because x represents a length that 
must be positive, we want only the positive 
square root when taking the square root 
of both sides of the equation – i.e.  √

___
 25  . 

However, if there were no constraints on the 
value of x, we must remember that a positive 
number will have two square roots and we 
would write  √

__

 x2   5  √
___

 25   ⇒ x 5 5.

Roots and radicals (surds)1.2

 x 2 5 32 1 42

 x 2 5 9 1 16
 x 2 5 25
  √

___

 x 2   5  √
___

 25  
 x 5  √

___
 25  

 x 5 5

x3

4

A

 y 2 5 42 1 82

 y 2 5 16 1 64
 y 2 5 80
  √

___

 y 2   5  √
___

 80  
 y 5  √

___
 80  

B
y 4

8

Figure 1.5
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Simplifying radicals
For a > 0, b > 0 and n    Z1, the following rules can be applied:

1  n √
__

 a   3  
n
 √

__

 b   5  
n
 √

___

 ab   2    
n
 √

__
 a   ___ 

 
n
 √

__

 b  
   5  n √

__

   a __ 
b

    

Note: Each rule can be applied in either direction.

Example 1 

Simplify each of the radicals.

a)  √
__

 5   3  √
__

 5   b)  √
__

 2   3  
 
 √

___
 18   c)   

 √
___

 48  
 ____ 

 √
__

 3  
   d)  

3
 √

__
 6   3  

3
 √

___
 36  

Solution

a)  √
__

 5   3  √
__

 5   5  √
___

 5·5   5  √
___

 25   5 5

Note: A special case of the rule  n √
__

 a   3  
n
 √

__

 b   5  
n
 √

___

 ab   when n 5 2 is  √
__

 a   3  √
__

 a   5 a.

b)  √
__

 2   3  √
___

 18   5  √
____

 2·18   5  √
___

 36   5 6

c)   
 √

___
 48  
 ____ 

 √
__

 3  
   5  √

___

   48 ___ 
3

     5  √
___

 16   5 4

d)  
3
 √

__
 6   3  

3
 √

___
 36   5  

3
 √
____

 6·36   5  
3
 √

____
 216   5 6

The radical  √
___

 24   can be simplified because one of the factors of 24 is 4, and 
the square root of 4 is rational (i.e. 4 is a perfect square). 

 √
___

 24   5  √
___

 4·6   5  √
__

 4   √
__

 6   5 2 √
__

 6  

Rewriting 24 as the product of 3 and 8 (rather than 4 and 6) would not 
help simplify  √

___
 24   because neither 3 nor 8 are perfect squares.

Example 2 

Express each in terms of the simplest possible radical.

a)  √
___

 18   b)  √
___

 80   c)  √
___

   3 ___ 
25

     d)  √
____

 1000  

Solution

a)  √
___

 18   5  √
___

 9·2   5  √
__

 9   √
__

 2   5 3 √
__

 2  

b)  √
___

 80   5  √
____

 16·5   5  √
___

 16   √
__

 5   5 4 √
__

 5  

Note: 4 is a factor of 80 and is a perfect square, but 16 is the largest factor that is a 
perfect square.

c)  √
___

   3 ___ 
25

     5   
 √

__
 3  
 ____ 

 √
___

 25  
   5   

 √
__

 3  
 ___ 5  

d)  √
____

 1000   5  √
______

 100·10   5  √
____

 100   √
___

 10   5 10 √
___

 10  

We prefer not to have radicals in the denominator of a fraction. Recall, 
from Example 1a), the special case of the rule  n √

__
 a   3  

n
 √

__

 b   5  
n
 √

___

 ab   when
n 5 2 is  √

__
 a   3  √

__
 a   5 a. The process of eliminating irrational numbers from 

the denominator is called rationalising the denominator.
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Example 3 

Rationalise the denominator of each expression. a)   2 ___ 
 √

__
 3  
     b)   

 √
__

 7  
 _____ 

4 √
___

 10  
  

Solution

a)   2 ___ 
 √

__
 3  
   5   2 ___ 

 √
__

 3  
      

 √
__

 3  
 ___ 

 √
__

 3  
   5   

2 √
__

 3  
 ____ 

3
  

b)   
 √

__
 7  
 _____ 

4 √
___

 10  
   5   

 √
__

 7  
 _____ 

4 √
___

 10  
      

 √
___

 10  
 ____ 

 √
___

 10  
   5   

 √
___

 70  
 ____ 

4.10
   5   

 √
___

 70  
 ____ 

40
  

Repeated multiplication of identical numbers can be written more 
efficiently by using exponential notation.

Exponential notation
If a is any real number (a    R) and n is a positive integer (n    Z1), then 

an 5 a    a    a    …    a
 
 n factors

where n is the exponent, a is the base and an is called the nth power of a.
Note: n is also called the power or index (plural: indices).

Integer exponents
We now state seven laws of integer exponents (or indices) that you will 
have learned in a previous mathematics course. Familiarity with these rules 
is essential for work throughout this course.

Let a and b be real numbers (a, b    R) and let m and n be positive integers 
(m, n    Z1). Assume that all denominators and bases are not equal to zero. 
All of the laws can be applied in either direction.

Exponents (indices)1.3

In questions 1–9, express each in terms of the simplest possible radical.

 1  √
__

 8   2    
√

___
 28   ____ 

 √
__

 7  
   3  √

__
 3   3  √

___
 12  

 4  
3
 √

__
 9   3  

3
 √

__
 3   5    

4
 √

___
 64   ____ 

 
4
 √

__
 4  
   6  √

___

   15 ___ 20    

 7  √
___

 50   8  √
___

 63   9  √
____

 288  

In questions 10–13, completely simplify the expression.

10 7 √
__

 2   2 3 √
__

 2   11  √
___

 12   1 8 √
__

 3  

12  √
____

 300   1 5 √
__

 2   2  √
___

 72   13  √
___

 75   1 2 √
___

 24   2  √
___

 48  

In questions 14–19, rationalise the denominator, simplifying if possible.

14   1 ___ 
 √

__
 2  
   15   3 ___ 

 √
__

 5  
   16   2 √

__
 3   ____ 

 √
__

 7  
  

17   1 ____ 
 √

___
 27  
   18   8 ____ 

3 √
__

 2  
   19    

√
___

 12   ____ 
 √

___
 18  
  

Exercise 1.2
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Property Example Description

1. bmbn 5 bm 1 n x2x5 5 x7 multiplying like bases

2.   b
m

 ___ 
bn   5 bm 2 n   2w7

 ____ 
3w2   5   2w5

 ____ 3  dividing like bases

3. (bm)n 5 bmn (3x)2 5 32x 5 (32)x 5 9x a power raised to a power

4. (ab)n 5 anbn (4k)3 5 43k3 5 64k3 the power of a product

5.  (   a 
__

 b   ) 
n
 5   a

n
 __ 

bn   (   y __
 3   ) 

2
 5   

y2

 __ 
32   5   

y2

 __ 
9

  the power of a quotient

6. a0 5 1 (t2 1 5)0 5 1 definition of a zero exponent

7. a2n 5   1 __ 
an  223 5   1 __ 

23   5   1 __ 8  definition of a negative exponent

The last two laws of exponents listed above – the definition of a zero 
exponent and the definition of a negative exponent – are often assumed 
without proper explanation. The definition of an as repeated multiplication, 
i.e. n factors of a, is easily understood when n is a positive integer. So how 
do we formulate appropriate definitions for an when n is negative or zero? 
These definitions will have to be compatible with the laws for positive integer 
exponents. If the law stating bmbn 5 bm 1 n is to hold for a zero exponent, 
then b nb 0 5 b n 1 0 5 b n. Since the number 1 is the identity element for 
multiplication (multiplicative identity property) then b n    1 5 b n. Therefore, 
we must define b 0 as the number 1. If the law b mb n 5 b m 1 n is to also hold 
for negative integer exponents, then b nb2n 5 b n 2 n 5 b 0 5 1. Since the 
product of bn and b2n is 1, they must be reciprocals (multiplicative inverse 

property). Therefore, we must define b2n as   1 __ 
bn  .

Rational exponents
We know that 43 5 4 3 4 3 4 and 40 5 1 and 422 5   1 __ 

42   5   1 _____ 4 3 4  , but what 

meaning are we to give to  4   
1
 _ 2   ? In order to carry out algebraic operations 

with expressions having exponents that are rational numbers, it will be 
very helpful if they follow the laws established for integer exponents. From 

the law b mb n 5 b m 1 n, it must follow that  4   
1
 _ 2    3  4   

1
 _ 2    5  4   

1
 _ 2   1   1 _ 2    5 41. Likewise, 

from the law (bm)n 5 bmn, it follows that ( 4   
1
 _ 2   )2 5  4   

1
 _ 2      2 5 41. Therefore, we 

need to define  4   
1
 _ 2    as the square root of 4 or, more precisely, as the principal 

(positive) square root of 4, that is,  √
__

 4  . We are now ready to use radicals to 

define a rational exponent of the form   1 __ n   , where n is a positive integer. If the

rule (bm)n 5 bmn is to apply when m 5   1 __ n  , it must follow that ( b   
1
 _ n   )n 5  b   

n
 _ n    5 b1.

This means that the nth power of  b   
1
 _ n    is b and, from the discussion of nth 

roots in Section 1.2, we define  b   
1
 _ n    as the principal nth root of b. 

Definition of  b   
1 __ n    

If n    Z1, then  b   
1 __ n    is the principal nth root of b. Using a radical, this means

 b   
1 __ n    5  

n
 √

__

 b  

 Hint: It is important to recognise 
the difference between exponential 
expressions such as (23)2 and 
232. In the expression (23)2, the 
parentheses make it clear that 23 is 
the base being raised to the power 
of 2. However, in 232 the negative 
sign is not considered to be a part of 
the base with the expression being 
the same as 2(3)2 so that 3 is the 
base being raised to the power of 2. 
Hence, (23)2 5 9 and 232 5 29.

Table 1.5 Laws of exponents 
(indices) for integer exponents.
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This definition allows us to evaluate exponential expressions such as the 
following:

 36   
1
 _ 2    5  √

___
 36   5 6; (227 )   

1
 _ 3    5  

3
 √
____

 227   5 23;   (   1 ___ 
81

   )  
  1 _ 4  
  5  4 √

___

   1 ___ 
81

     5   1 __ 
3

  

Now we can apply the definition of  b   
1
 _ n    and the rule (bm)n 5 bmn to develop 

a rule for expressions with exponents not just of the form   1 __ n   but of the 

more general form   m __ n  .

 b   
m

 __ n    5 b m    
1
 _ n    5 (bm )   

1
 _ n    5  

n
 √

___

 bm  ; or, equivalently,  b   
m

 __ n    5  b   
1
 _ n   m 5 ( b   

1
 _ n   )m 5 ( 

n
 √

__

 b  )m

This will allow us to evaluate exponential expressions such as  9   
3
 _ 2   , (28 )   

5
 _ 3    and  

64   
5
 _ 6   .

Definition of rational exponents
If m and n are positive integers with no common factors, then

 b   
m __ n    5  

n
 √

___

 bm   or  (  
n
 √

__

 b   ) m

If n is an even number, we must have b > 0.

The numerator of a rational exponent indicates the power to which the 
base of the exponential expression is raised, and the denominator indicates 
the root to be taken. With this definition for rational exponents, we can 
conclude that the laws of exponents, stated for integer exponents in Section 
1.3, also hold true for rational exponents.

Example 4 

Evaluate and/or simplify each of the following exponential expressions.
a) (2xy 2)3 b) 2(xy 2)3 c) (22)23

d) (a 2 2)0 e) (33 )   
1
 _ 2        9   

3
 _ 4    f)   a

22b4
 _____ 

a25b5  

g) (232) 2    
4
 _ 5    h)  8   

2
 _ 3    i)  (   1 _ 2  x 2y ) 

3
(x 3y22)21

j)   
 √

_____

 a 1 b  
 ______ 

a 1 b
    k)   

(x 1 y)2

 ________ 
(x 1 y)22   

Solution

a) (2xy 2)3 5 23x 3(y 2)3 5 8x 3y 6

b) 2(xy 2)3 5 2x 3(y 2)3 5 2x 3y 6

c) (22)23 5   1 _____ 
(22)3   5 2  1 __ 

8
  

d) (a 22)0 5 1

e) (33 )   
1
 _ 2        9   

3
 _ 4    5  3   

3
 _ 2   (32 )   

3
 _ 4    5  3   

3
 _ 2          3   

3
 _ 2    5  3   

6
 _ 2    5 33 5 27

f)   a
22b4

 _____ 
a25b5   5   a

222(25)
 _______ 

b5 2 4   5   a
3
 __ 

b
  

g) (232)2
   4 _ 5   5 [225]2

   4 _ 5   5 (22)24 5   1 _____ 
(22)4   5   1 ___ 

16
  

h)  8   
2
 _ 3    5  

3
 √
__

 82   5  
3
 √

___
 64   5 4 or  8   

2
 _ 3    5 ( 

3
 √

__
 8  )2 5 (2)2 5 4 or  8   

2
 _ 3    5 (23 )   

2
 _ 3    5 22 5 4

i)  (   1 __ 
2

  x 2y ) 
3
(x 3y22)21 5  (   x 6y 3

 ____ 
8

   ) (x23y 2) 5   
x 6 2 3y 3 1 2

 _________ 
8

   5   
x 3y 5

 ____ 
8
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j)   
 √

_____

 a 1 b  
 ______ 

a 1 b
    5   

(a 1 b )   
1
 _ 2   
 _______ 

(a 1 b)1   5   1 __________ 
(a 1 b ) 1 2   1 _ 2   

   5   1 _______ 
(a 1 b )   

1
 _ 2   
   5   1 ______ 

 √
_____

 a 1 b  
  

Note: Avoid an error here.  
n
 √
_____

 a 1 b     n √
__

 a   1  
n
 √

__

 b  . Also,  √
_____

 a 1 b     √
__

 a   1  √
__

 b   
and  √

______

 a2 1 b2    a 1 b.

k)   
(x 1 y)2

 ________ 
(x 1 y)22   5 (x 1 y)2 2 (22) 5 (x 1 y)4 

Note: Avoid an error here. (x 1 y)n  x n 1 y n.

Although (x 1 y)4 5 x 4 1 4x 3y 1 6x 2y 2 1 4xy 3 1 y 4, expanding is not 
generally ‘simplifying’.

Exponents provide an efficient way of writing and calculating with very 
large or very small numbers. The need for this is especially great in science. 
For example, a light year (the distance that light travels in one year) is  
9 460 730 472 581 kilometres, and the mass of a single water molecule is 
0.000 000 000 000 000 000 000 0056 grams. It is far more convenient and 
useful to write such numbers in scientific notation (also called standard 
form).

Scientific notation (standard form)1.4

In questions 1–6, simplify (without your GDC) each expression to a single integer.

 1 1 6   
1 _ 4    2  9   

3 _ 2    3 6 4   
2 _ 3   

 4  8   
4 _ 3    5 3 2   

3 _ 5    6 ( √
__

 2  )6

In questions 7–9, simplify each expression (without your GDC) to a quotient of two 
integers.

 7   (   8 ___ 27   )  
  2 _ 3  
  8   (   9 ___ 16   )  

  1 _ 2  
  9   (   25 ___ 4   )  

  3 _ 2  
 

In questions 10–13, evaluate (without your GDC) each expression.

10 (23)22 11 (13)0 12   4    322
 ________ 

222    321   13  ( 2   3 __ 4   ) 
23

In questions 14–28, simplify each exponential expression (leave only positive 
exponents).

14 3(2ab2)2 15 3(2ab2)3 16 (23ab2)2

17 5x3y22    2x2y5 18   32w2
 _____ 

24w3   19   6m3n22
 _______ 

8m23n2  

20  (   1 _ 2  m2n22 ) 3 21 32m    3n 22   
x21y5

 _____ xy3  

23   4a3b5
 ______ 

(2a2b)4   24   
 (  3 √

__
 x   )  (  3 √

__

 x4   ) 
 __________ 

 
3
 √
__

 x2  
   25   

12(a 1 b)3
 _________ 

9(a 1 b)
  

26   
(x 1 4y )   

1 _ 2   
 __________ 

2(x 1 4y)21   27   
p2 1 q2

 ________ 
 √

_______

 p2 1 q2  
   28 43n    22m

Exercise 1.3
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Definition of scientific notation
A positive number N is written in scientific notation if it is expressed in the form:

N 5 a 3 10k, where 1 < a , 10 and k is an integer

In scientific notation, a light year is about 9.46 3 1012 kilometres. This 
expression is determined by observing that when a number is multiplied 
by 10k and k is positive, the decimal point will move k places to the right. 
Therefore, 9.46 3 1012 5 9  460  000  000  000. Knowing that when a number is
  12 decimal places

multiplied by 10k and k is negative the decimal point will move k places 
to the left helps us to express the mass of a water molecule as 5.6 3 10224 
grams. This expression is equivalent to 0.000  000  000  000  000  000  000  0056.
 
 24 decimal places

Scientific notation is also a very convenient way of indicating the number 
of significant figures (digits) to which a number has been approximated. 
A light year expressed to an accuracy of 13 significant figures is 9 460 730 
472 581 kilometres. However, many calculations will not require such a high 
degree of accuracy. For a certain calculation it may be more appropriate to 
have a light year approximated to 4 significant figures, which could be written 
as 9  461  000  000  000 kilometres, or more efficiently and clearly in scientific 
notation as 9.461 3 1012 kilometres. 

Not only is scientific notation conveniently compact, it also allows a quick 
comparison of the magnitude of two numbers without the need to count 
zeros. Moreover, it enables us to use the laws of exponents to simplify 
otherwise unwieldy calculations.

Example 5 

Use scientific notation to calculate each of the following.
a) 64  000 3 2  500  000  000

b)   0.000  000  78  ____________  
0.000  000  0012

  

c)  
3
 √
____________

  27  000  000  000  

Solution
a) 64  000 3 2  5000  000  000 5 (6.4 3 104)(2.5 3 109) 

5 6.4 3 2.5 3 104 3 109 
5 16 3 104 1 9

 5 1.6 3 101 3 1013 5 1.6 3 1014

b)   0.000  000  78  ____________  
0.000  000  0012

   5   7.8 3 1027
 _________ 

1.2 3 1029   5   7.8 ___ 
1.2

   3   1027
 ____ 

1029   5 6.5 3 10272(29) 

 5 6.5 3 102 or 650

c)  
3
 √
____________

  27  000  000  000   5 (2.7 3 1010 )   
1
 _ 3    5 (27 3 109 )   

1
 _ 3    5 (27 )   

1
 _ 3   (109 )   

1
 _ 3    

 5 3 3 103 or 3000

Your GDC will automatically express numbers in scientific notation when 
a large or small number exceeds its display range. For example, if you use 
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your GDC to compute 2 raised to the 64th power, the display (depending 
on the GDC model) will show the approximation 

1.844674407E19 or 1.844674407 19

The final digits indicate the power of 10, and we interpret the result as 
1.844  674  408 3 1019. (264 is exactly 18  446  744  073  709  551  616.)

Examples of algebraic expressions are:

5a3b2   2x 2 1 7x 2 8     
y 3 2 1

 ______ 
y 1 1

       
(bx 1 c)3

 ________ 
2 2  √

__
 a  
  

Algebraic expressions are formed by combining variables and constants 
using addition, subtraction, multiplication, division, exponents and radicals. 

Polynomials
An algebraic expression that has only non-negative powers of one or more 
variable and contains no variable in a denominator is called a polynomial.

Definition of a polynomial in the variable x
Given a0, a1, a2, …, an  R an  0 and n  Z1, a polynomial in x is a sum of distinct 
terms in the form

anxn 1 an 2 1xn 2 1 1 … 1 a1x 1 a0

where a1, a2, …, an are the coefficients, a0 is the constant term and n (the highest 
exponent) is the degree of the polynomial.

Polynomials are added or subtracted using the properties of real numbers 
that were discussed in Section 1.1. We do this by combining like terms 
– terms containing the same variable(s) raised to the same power(s) – and 
applying the distributive property.

In questions 1–8, write each number in scientific notation, rounding to 3 significant 
figures.

 1 253.8 2 0.007  81 3 7  405  239

 4 0.000  001  0448 5 4.9812 6 0.001  991

 7 Land area of Earth: 148  940  000 square kilometres 

 8 Relative density of hydrogen: 0.000  0899 grams per cm3

In questions 9–12, write each number in ordinary decimal notation.

 9 2.7 3 1023 10 5 3 107 11 9.035 3 1028 12 4.18 3 1012

In questions 13–16, use scientific notation and the laws of exponents to perform the 
indicated operations. Give the result in scientific notation rounded to 2 significant 
figures.

13 (2.5 3 1023)(10 3 105) 14   3.2 3 106
 ________ 

1.6 3 102  

15   
(1 3 1023)(3.28 3 106)

  ___________________  
4 3 107   16 (2 3 103)4(3.5 3 105)

Exercise 1.4

Algebraic expressions1.5

 Hint: Polynomials with one, 
two and three terms are called 
monomials, binomials and 
trinomials, respectively. A 
polynomial of degree one is 
called linear; degree two is called 
quadratic; degree three is cubic; and 
degree four is quartic. Quadratic 
equations and functions are covered 
in Chapter 2.
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For example, 

 2x 2y 1 6x 2 2 7x 2y 5 2x 2y 2 7x 2y 1 6x 2 rearranging terms so the like 
   terms are together

   5 (2 2 7)x 2y 1 6x 2 applying distributive property:
   ab 1 ac 5 (b 1 c)a

  5 25x 2y 1 6x 2 no like terms remain, so 
   polynomial is simplified

Expanding and factorizing polynomials
We apply the distributive property in the other direction, i.e. a(b 1 c) 
5 ab 1 ac, in order to multiply polynomials. For example,

 (2x 2 3)(x 1 5) 5 2x(x 1 5)23(x 1 5)

  5 2x 2 1 10x 2 3x 2 15 collecting like terms 10x and 
   23x

  5 2x 2 1 7x 2 15 terms written in descending 
   order of the exponents

The process of multiplying polynomials is often referred to as expanding. 
Especially in the case of a polynomial being raised to a power, the number 
of terms in the resulting polynomial, after applying the distributive 
property and combining like terms, has increased (expanded) compared to 
the original number of terms. For example,

 (x 1 3)2 5 (x 1 3)(x 1 3) squaring a first degree (linear) binomial

  5 x(x 1 3) 1 3(x 1 3)

  5 x 2 1 3x 1 3x 1 9

  5 x 2 1 6x 1 9 the result is a second degree (quadratic) 
   trinomial
and,
 (x 1 1)3 5 (x 1 1)(x 1 1)(x 1 1) cubing a first degree binomial

  5 (x 1 1)(x 2 1 x 1 x 1 1)

  5 x(x 2 1 2x 1 1) 1 1(x 2 1 2x 1 1)

  5 x 3 1 2x 2 1 x  1 x 2 1 2x 1 1

  5 x 3 1 3x 2 1 3x 1 1 the result is a third degree 
    (cubic) polynomial with four 
    terms

A pair of binomials of the form a 1 b and a 2 b are called conjugates. 
In most instances, the product of two binomials produces a trinomial. 
However, the product of a pair of conjugates produces a binomial such that 
both terms are squares and the second term is negative – referred to as a 
difference of two squares. For example,

 (x 1 5)(x 2 5) 5 x(x 2 5) 1 5(x 2 5) multiplying two conjugates

  5 x 2 2 5x 1 5x 2 25

  5 x 2 2 25  x 2 2 25 is a difference of two squares



16

Fundamentals1

The inverse (or undoing) of multiplication (expansion) is factorization. 
If it is helpful for us to rewrite a polynomial as a product, then we need 
to factorize it – i.e. apply the distributive property in the reverse direction. 
The previous four examples can be used to illustrate equivalent pairs of 
factorized and expanded polynomials.

 Factorized  Expanded

 (2x 2 3)(x 1 5) 5 2x 2 1 7x 2 15

 (x 1 3)2 5 x 2 1 6x 1 9

 (x 1 1)3 5 x 3 1 3x 2 1 3x 1 1

 (x 1 5)(x 2 5) 5 x 2 2 25

Certain polynomial expansions (products) and factorizations occur so 
frequently you should be able to quickly recognize and apply them. Here is 
a list of some of the more common ones. You can verify these identities by 
performing the multiplication.

Common polynomial expansion and factorization patterns

 
 (x 1 a)(x 1 b) 5 x 2 1 (a 1 b)x 1 ab

 (ax 1 b)(cx 1 d) 5 acx 2 1 (ad 1 bc)x 1 bd

 (a 1 b)(a 2 b) 5 a 2 2 b 2

 (a 1 b)2 5 a 2 1 2ab 1 b 2

 (a 2 b)2 5 a 2 2 2ab 1 b 2

 (a 1 b)3 5 a 3 1 3a2b 1 3ab 2 1 b 3

 (a 2 b)3 5 a 3 2 3a2b 1 3ab 2 2 b 3

 

These identities are useful patterns into which we can substitute any 
number or algebraic expression for a, b or x. This allows us to efficiently 
find products and powers of polynomials and also to factorize many 
polynomials.

Example 6 

Find each product.
a) (x 1 2)(x 2 7) b) (3x 2 4)(4x 1 1) c) (6x 1 y)(6x 2 y)

d) (4h 2 5)2 e) (x 2 1 2)3 f) (3 1 2 √
__

 5  )(3 2 2 √
__

 5  )

Solution
a) This product fits the pattern (x 1 a)(x 1 b) 5 x 2 1 (a 1 b)x 1 ab.

(x 1 2)(x 2 7) 5 x 2 1 (2 2 7)x 1 (2)(27) 5 x 2 2 5x 2 14

b) This product fits the pattern (ax 1 b)(cx 1 d) 5 acx 2 1 (ad 1 bc)x 1 bd.

 (3x 2 4)(4x 1 1) 5 12x 2 1 (3 2 16)x 2 4 5 12x 2 2 13x 2 4

 Hint: You should be able to 
perform the middle step ‘mentally’ 
without writing it.

Expanding

Factorizing
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c) This fits the pattern (a 1 b)(a 2 b) 5 a 2 2 b 2 where the result is a 
difference of two squares.

 (5x 3 1 3y)(5x 3 2 3y) 5 (5x 3)2 2 (3y)2 5 25x 6 2 9y 2

d) This fits the pattern (a 2 b)2 5 a 2 2 2ab 1 b 2.

 (4h 2 5)2 5 (4h)2 2 2(4h)(5) 1 (5)2 5 16h 2 2 40h 1 25

e) This fits the pattern (a 1 b)3 5 a 3 1 3a 2b 1 3ab 2 1 b 3.

 (x 2 1 2)3 5 (x 2)3 1 3(x 2)2(2) 1 3(x 2)(2)2 1 (2)3 5 x 6 1 6x 4 1 12x 2 1 8

f) The pair of expressions being multiplied do not have a variable but  
they are conjugates, so they fit the pattern (a 1 b)(a 2 b) 5 a 2 2 b 2.

 (3 1 2 √
__

 5  )(3 2 2 √
__

 5  ) 5 (3)2 2 (2 √
__

 5  )2 5 9 2(4    5) 5 9 2 20 5 211

Note: The result of multiplying two irrational conjugates is a single rational 
number. We will make use of this result to simplify certain fractions.

Example 7 

Completely factorize the following expressions.
a) 2x 2 2 14x 1 24

b) 2x 2 1 x 2 15

c) 4x 6 2 9

d) 3y 3 1 24y 2 1 48y

e) (x 1 3)2 2 y 2

f) 5x 3y 1 20xy 3

Solution
a) 2x 2 2 14x 1 24 

 5 2(x 2 2 7x 1 12) factor out the greatest common 
  factor

  5 2[x  2 1 (23 2 4)x 1 (23)(24)] fits the pattern
  (x 1 a)(x 1 b) 5 x 2 1 (a 1 b)x 1 ab

  5 2(x 2 3)(x 24) ‘trial and error’ to find
   23 2 4 5 2 7 and (2 3)(24) 5 12

b) The terms have no common factor and the leading coefficient is not  
equal to one. This factorization requires a logical ‘trial and error’  
approach. There are eight possible factorizations.

 (2x 2 1)(x 1 15) (2x 2 3)(x 1 5) (2x 2 5)(x 1 3) (2x 2 15)(x 1 1)
 (2x 1 1)(x 2 15) (2x 1 3)(x 2 5) (2x 1 5)(x 2 3) (2x 1 15)(x 2 1)

 Testing the middle term in each, you find that the correct factorization  
is 2x 2 1 x 2 15 5 (2x 2 5)(x 1 3).

c) This binomial can be written as the difference of two squares,  
4x 6 2 9 5 (2x3)2 2 (3)2, fitting the pattern a2 2 b 2 5 (a 1 b)(a 2 b). 
Therefore, 4x 6 2 9 5 (2x 3 1 3)(2x 3 2 3).
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d) 3y 3 1 24y 2 1 48y 5 3y(y 2 1 8y 1 16) factor out the greatest 
   common factor

   5 3y(y 2 1 2    4y 1 42) fits the pattern 
   a2 1 2ab 1 b2 5 (a 1 b)2

   5 3y(y 1 4)2

e) Fits the difference of two squares pattern: a 2 2 b2 5 (a 1 b)(a 2 b) with 
a 5 x 1 3 and b 5 y.

 Therefore, (x 1 3)2 2 y 2 5 [(x 1 3) 1 y][(x 1 3) 2 y]

  5 (x 1 y 1 3)(x 2 y 1 3)

(f ) 5x 3y 1 20xy 3 5 5xy (x 2 1 4y 2): although both of the terms x 2 and 
4y 2 are perfect squares, the expression x 2 1 4y 2 is not a difference of 
squares and, hence, it cannot be factorized. The sum of two squares, a 2 
1 b 2, cannot be factorized.

Guidelines for factoring polynomials
1 Factor out the greatest common factor, if one exists.
2 Determine if the polynomial, or any factors, fit any of the special polynomial patterns 

– and factor accordingly.
3 Any quadratic trinomial of the form ax 2 1 bx 1 c will require a logical trial and error 

approach, if it factorizes.

Most polynomials cannot be factored into a product of polynomials with 
integer coefficients. In fact, factoring is often difficult, even when possible, 
for polynomials with degree 3 or higher. Nevertheless, factorizing is a 
powerful algebraic technique that can be applied in many situations.

Algebraic fractions
An algebraic fraction (or rational expression) is a quotient of two 
algebraic expressions or two polynomials. Given a certain algebraic 
fraction, we must assume that the variable can only have values such that 

the denominator is not zero. For example, for the algebraic fraction   x 1 3 ______ 
x 2 2 4

  , 

x cannot be 2 or 22. Most of the algebraic fractions that we will encounter 
will have numerators and denominators that are polynomials. 

Simplifying algebraic fractions

When trying to simplify algebraic fractions, we need to completely factor 
the numerator and denominator and cancel any common factors.

Example 8 

Simplify each algebraic fraction.

a)   2a 2 2 2ab _________ 
6ab 2 6b2   b)   1 2 x 2 __________ 

x 2 1 x 2 2
   c)   

(x 1 h)2 2 x 2
  ____________ 

h
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Solution

a)   2a 2 2 2ab _________ 
6ab 2 6b2   5   

2a  /(a 2 b)
 _________ 

6b  /(a 2 b)
   5   

12/a ___ 
36/ b

   5   a ___ 
3b

  

b)   1 2 x 2 __________ 
x 2 1 x 2 2

    5    
(1 2 x)(1 1 x)

  _____________  
(x 2 1)(x 1 2)

    5    2(21 1 x)(1 1 x)  ________________  
(x 2 1)(x 1 2)

    5     
2  /(x 2 1)(x 1 1)

  ______________  
  /(x 2 1)(x 1 2)

   

  5 2  x 1 1 _____ 
x 1 2

    or    2x 2 1 _______ 
x 1 2

  

c)   
(x 1 h)2 2 x 2

  ____________ 
h

    5   x 2 1 2hx 1 h 2 2 x 2  _________________ 
h

    5   2hx 1 h 2 ________ 
h

    5   
h/ (2x 1 h)

 _________ 
h/
   5 2x 1 h

Adding and subtracting algebraic fractions

Before any fractions – numerical or algebraic – can be added or subtracted 
they must be expressed with the same denominator, preferably the least 
common denominator. Then the numerators can be added or subtracted 

according to the rule:   a __ 
b

   1   c __ 
d

   5   ad ___ 
bd

   1   bc ___ 
bd

   5   ad 1 bc _______ 
bd

   .

Example 9 

Perform the indicated operation and simplify.

a) x 2   1 __ x   b)   2 _____ 
a 1 b

   1   3 _____ 
a 2 b

   c)   2 _____ 
x 1 2

   2   x 2 4 __________ 
2x 2 1 x 2 6

  

Solution

a) x 2   1 __ x   5   x __ 
1

   2   1 __ x   5   x 2 __ x   2   1 __ x   5   x 2 2 1 ______ x     or    
(x 1 1)(x 2 1)

  _____________ x   

b)   2 _____ 
a 1 b

   1   3 _____ 
a 2 b

   5   2 _____ 
a 1 b

        a 2 b _____ 
a 2 b

   1   3 ______ 
 a 2 b

        a 1 b _____ 
a 1 b

    5   
2(a 2 b) 1 3(a 1 b)

  _________________  
(a 1 b)(a 2 b)

   

  5   2a 2 2b 1 3a 1 3b  ________________  
a 2 2 b 2

   5   5a 1 b _______ 
a 2 2 b 2

  

c)   2 _____ 
x 1 2

   2   x 2 4 __________ 
2x 2 1 x 2 6

   5   2 _____ 
x 1 2

   2   x 2 4 _____________  
(2x 2 3)(x 1 2)

  

  5   2 _____ 
x 1 2

        2x 2 3 ______ 
2x 2 3

   2   x 2 4 _____________  
(2x 2 3)(x 1 2)

  

  5   
2(2x 2 3) 2 (x 2 4)

  _________________  
(2x 2 3)(x 1 2)

  

  5   4x 2 6 2 x 1 4  _____________  
(2x 2 3)(x 1 2)

  

  5   3x 2 2 _____________  
(2x 2 3)(x 1 2)

    or    3x 2 2 __________ 
2x 2 1 x 2 6

  

Simplifying a compound fraction

Fractional expressions with fractions in the numerator or denominator, or 
both, are usually referred to as compound fractions. A compound fraction 
is best simplified by first simplifying both its numerator and denominator 
into single fractions, and then multiplying the numerator and denominator

by the reciprocal of the denominator, i.e.   
   a _ 
b
   
 __ 

   c _ 
d
   
   5   

   a _ 
b
        d _ c   

 _____ 
   c _ 
d
        d _ c   

   5   
   ad

 __ 
bc

   
 ___ 

 1 
   5   ad ___ 

bc
  ; thereby 

expressing the compound fraction as a single fraction.

 Hint: Although it is true that

  a 1 b _____ c   5   a __ c   1   b __ c  , be careful to avoid 

an error here:   a _____ 
b 1 c

      a __ 
b

   1   a __ c  . Also, 

be sure to only cancel common 
factors between numerator and 

denominator. It is true that   ac __ 
bc

   5   a __ 
b

   

(with the common factor of c 
cancelling) because

  ac __ 
bc

   5   a __ 
b

        c _ c   5   a __ 
b

      1 5   a __ 
b

  ; but, in 

general, it is not true that    a 1 c _____ 
b 1 c

   5   a __ 
b

  .

c is not a common factor of the 
numerator and denominator.
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Example 10 

Simplify each compound fraction.

a)   
   1

 ____ 
x 1 h

   2   1 _ x   
 ________ 

 h 
   b)   

  a _ 
b
   1 1

 _____ 
1 2   a _ 

b
  
   c)   

x(1 2 2x) 2    
3 __ 
2
  
  1 (1 2 2x) 2    

1 __ 
2
  
 
  _____________________  

1 2 x
   

Solution

a)   
   1

 ____ 
x 1 h

   2   1 _ x   
 ________ 

 h 
   5   

  x
 _____ 

x(x 1 h)
   2   x 1 h

 _____ 
x(x 1 h)

  
  _____________ 

  h _ 1  
   5   

  
x 2(x 1 h)

 _______ 
x(x 1 h)

  
 _______ 

  h _ 1  
    5   x 2 x 2 h _________ 

x(x 1 h)
        1 __ 

h
   

  5   2h/ ________ 
x(x 1 h)

        1 __ 
h/ 

   5 2   1 ________ 
x(x 1 h)

   

b)   
  a _ 
b
   1 1

 _____ 
1 2   a _ 

b
  
   5   

  a _ 
b
   1   b _ 

b
  
 _____ 

  b _ 
b
   2   a _ 

b
  
   5   

   a 1 b
 ____ 

b
    
 _____ 

   b 2 a
 ____ 

b
    

   5   a 1 b _____ 
b/  
        b/ _____ 

b 2 a
   5   a 1 b _____ 

b 2 a
  

c)   
x(1 2 2x) 2    

3 __ 
2
  
  1 (1 2 2x) 2    

1 __ 
2
  
 
  _____________________  

1 2 x
   5   

(1 2 2x) 2    
3 __ 
2
  
  [x 1 (1 2 2x)1]

   ______________________  
1 2 x

   

   5   
(1 2 2x) 2    

3 __ 
2
  
  [x 1 1 2 2x]

  ____________________  
1 2 x

   

   5   
(1 2 2x) 2    

3 __ 
2
  
  /(1 2 x)

  ________________ /1 2 x
   

   5   1 ________ 
(1 2 2x )   

3
 _ 2   
  

With rules for rational exponents and radicals we can do the following, but 
it’s not any simpler…

  1 ________ 
(1 2 2x )   

3
 _ 2   
   5   1 _________ 

 √
_______

 3x 2 2)3  
   5   1 _________________  

 √
________

 (3x 2 2)  2  √
______

 3x 2 2  
   5   1 ______________  

|3x 2 2| √
______

 3x 2 2  
  

Rationalizing the denominator
Recall Example 3 from Section 1.2 where we rationalized the denominator 

of the numerical fractions   2 ___ 
 √

__
 3  
   and   

 √
__

 7  
 _____ 

4 √
___

 10  
  . Also recall from earlier in this 

section that expressions of the form a 1 b and a 2 b are called conjugates 
and their product is a 2 2 b 2 (difference of two squares). If a fraction has an 
irrational denominator of the form a 1 b √

_
 c  , we can change it to a rational 

expression (‘rationalize’) by multiplying numerator and denominator by its 
conjugate a 2 b √

_
 c  , given that (a 1 b √

_
 c  )(a 2 b √

_
 c  ) 5 a 2 2 (b √

_
 c  )2 5 a 2 2 b 2c.

Example 11 

Rationalize the denominator of each fractional expression.

a)   2 _______ 
1 1  √

__
 5  
   b)   1 ______ 

 √
__

 x   1 1
  

Solution

a)   2 _______ 
1 1  √

__
 5  
   5   2 _______ 

1 1  √
__

 5  
       

1 2  √
__

 5  
 _______ 

1 2  √
__

 5  
   5   

2(1 2  √
__

 5  )
 _________ 

1 2 ( √
__

 5  )2   5   
2(1 2  √

__
 5  )
 _________ 

1 2 5
   5    

2/  (1 2  √
__

 5  )
 _________ 

224/ 
   

  5   
2(1 2  √

__
 5  )
 __________ 

2
   5   

21 1  √
__

 5  
 ________ 

2
  

b)   1 ______ 
 √

__
 x   1 1

   5   1 ______ 
 √

__
 x   1 1

       
  √

__
 x   2 1
 _______ 

 √
__

 x   2 1
   5   

 √
__

 x   2 1
 ________ 

( √
__

 x  )2212   5   
 √

__
 x   2 1

 ______ 
x 2 1

  

 Hint: Factor out the power of 
1 2 2x with the smallest exponent.



21

In questions 1–12, expand and simplify.

 1 (n 1 4)(n 2 5)  2 (2y 2 3)(5y 1 3)

 3 (x 1 7)(x 2 7)  4 (5m 1 2)2

 5 (x 2 1)3  6 (1 1  √
__

 a  )(1 2  √
__

 a  )

 7 (a 1 b)(a 2 b 1 1)  8 [(2x 1 3) 1 y][(2x 1 3) 2 y]

 9 (a 1 b)3 10 (ax 1 b)2

11 (1 1  √
__

 5  )(1 2  √
__

 5  ) 12 (2x 2 1)(2x2 2 3x 1 5)

In questions 13–30, completely factorize the expression.

13 12x2 2 48 14 x3 2 6x 2

15 x2 1 x 2 12 16 7 2 6m 2 m2

17 x2 2 10x 1 16 18 y2 1 7y 1 6

19 3n2 2 21n 1 30 20 2x3 1 20x2 1 18x
21 a2 2 16 22 3y2 2 14y 2 5

23 25n4 2 4 24 ax2 1 6ax 1 9a

25 2n(m 1 1)2 2 (m 1 1)2 26 x4 2 1

27 9 2 (y 2 3)2 28 4y4 2 10y3 2 96y2

29 4x2 2 20x 1 25 30 (2x 1 3)22 1 2x(2x 1 3)23

In questions 31–36, simplify the algebraic fraction.

31   x 1 4 __________ x2 1 5x 1 4
   32   3n 2 3 ________ 

6n2 2 6n
  

33   a
2 2 b2

 _______ 
5a 2 5b

   34   x
2 1 4x 1 4 __________ x 1 2

  

35   2a 2 5 ______ 5 2 2a
   36   

(2x 1 h)2 2 4x2
  _____________ 

h
  

In questions 37–46, perform the indicated operation and simplify.

37   x __ 
5

   2   x 2 1 _____ 
3

   38   1 __ a   2   1 __ 
b

  

39   2 ______ 2x 2 1   2 4 40   x _____ x 1 3
   1   1 __ x  

41   1 _____ x 1 y   1   1 _____ x 2 y   42   3 _____ x 2 2   1   5 _____ 2 2 x  

43   2x 2 6 ______ x       3x _____ x 2 3   44   3 _____ y 1 2   1   5 ___________ y2 2 3y 2 10
  

45   a 1 b _____ 
b

      1 _______ 
a2 2 b2   46   3x2 2 3 _______ 6x       5x2

 _____ 1 2 x  

In questions 47–50, rationalize the denominator of each fractional expression.

47   1 _______ 
3 2  √

__
 2  
   48   5 _______ 

2 1  √
__

 3  
  

49   2 √
__

 2   1  √
__

 3   _________ 
2 √

__
 2   2  √

__
 3  
   50   1 _______ 

 √
__

 5   1 7
  

Exercise 1.5
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Equations and formulae1.6

Equations, identities and formulae
We will encounter a wide variety of equations in this course. Essentially 
an equation is a statement equating two algebraic expressions that may 
be true or false depending upon what value(s) is/are substituted for the 
variable(s). The value(s) of the variable(s) that make the equation true 
are called the solutions or roots of the equation. All of the solutions to 
an equation comprise the solution set of the equation. An equation that 
is true for all possible values of the variable is called an identity. All of 
the common polynomial expansion and factorization patterns shown in 
Section 1.5 are identities. For example, (a 1 b)2 5 a2 1 2ab 1 b2 is true for 
all values of a and b. The following are also examples of identities.

3(x 2 5) 5 2(x 1 3) 1 x 2 21  (x 1 y)2 2 2xy 5 x 2 1 y2

Many equations are often referred to as a formula (plural: formulae) and 
typically contain more than one variable and, often, other symbols that 
represent specific constants or parameters (constants that may change in 
value but do not alter the properties of the expression). Formulae with 
which you are familiar include:  
A 5 pr 2, d 5 rt, d 5  √

___________________

  (x1 2 x2)2 1 (y1 2 y2)2   and V 5   4 _ 3  pr 3

Whereas most equations that we will encounter will have numerical 
solutions, we can solve a formula for a certain variable in terms of other 
variables – sometimes referred to as changing the subject of a formula.

Example 12 

Solve for the indicated variable in each formula.
a) a 2 1 b 2 5 c 2 solve for b

b) T 5 2p √
__

   l _ g     solve for l

Solution

a) a 2 1 b 2 5 c 2 ⇒ b 2 5 c 2 2 a 2 ⇒ b 5  √
______

 c 2 2 a2   
If b is a length then b 5  √

______

 c 2 2 a2  .

b) T 5 2p √
__

   l _ g     ⇒  √
__

   l _ g     5   T ___ 
2p

   ⇒   l _ g   5   T 2 ____ 
4p 2

   ⇒ l 5   
T 2g

 ____ 
4p 2

  

The graph of an equation 
Two important characteristics of any equation are the number of variables 
(unknowns) and the type of algebraic expressions it contains (e.g. 
polynomials, rational expressions, trigonometric, exponential, etc.). Nearly 
all of the equations in this course will have either one or two variables, and 
in this introductory chapter we will discuss only equations with algebraic 
expressions that are polynomials. Solutions for equations with a single 
variable will consist of individual numbers that can be graphed as points on 
a number line. The graph of an equation is a visual representation of the 

One of the most famous 
equations in the history of 
mathematics, xn 1 yn 5 zn,
is associated with Pierre Fermat 
(1601–1665), a French lawyer 
and amateur mathematician. 
Writing in the margin of a 
French translation of 
Arithmetica, Fermat conjectured 
that the equation xn 1 yn 5 zn 
(x, y, z, n    Z) has no non-zero 
solutions for the variables x, y 
and z when the parameter n is 
greater than two. When n 5 2, 
the equation is equivalent to 
Pythagoras’ theorem for which 
there are an infinite number of 
integer solutions – Pythagorean 
triples, such as 32 1 42 5 52 and 
52 1 122 5 132, and their 
multiples. Fermat claimed to 
have a proof for his conjecture 
but that he could not fit it in the 
margin. All the other margin 
conjectures in Fermat’s copy of 
Arithmetica were proven by the 
start of the 19th century, but 
this one remained unproven for 
over 350 years, until the English 
mathematician Andrew Wiles 
proved it in 1994.
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equation’s solution set. For example, the solution set of the one-variable 
equation containing quadratic and linear polynomials x 2 5 2x 1 8 is 
x  {22, 4}. The graph of this one-variable equation is depicted (Figure 1.6) 
on a one-dimensional coordinate system, i.e. the real number line. 

6543210�1�2�3�4

The solution set of a two-variable equation will be an ordered pair of 
numbers. An ordered pair corresponds to a location indicated by a point on 
a two-dimensional coordinate system, i.e. a coordinate plane. For example, 
the solution set of the two-variable quadratic equation y 5 x 2 will be 
an infinite set of ordered pairs (x, y) that satisfy the equation. (Quadratic 
equations will be covered in detail in Chapter 2.)

Equations of lines
A one-variable linear equation in x can always be written in the form

 ax 1 b 5 0, a  0, and it will have exactly one solution, x 5 2   b __ a  . An 

example of a two-variable linear equation in x and y is x 2 2y 5 2. The 
graph of this equation’s solution set (an infinite set of ordered pairs) is a 
line. (See Figure 1.8.)

The slope m, or gradient, of a non-vertical line is defined by the formula 

m 5   
y 2 2 y 1 _______ x 2 2 x 1

   5   
vertical change

  _______________  
horizontal change

  . Because division by zero is undefined, 

the slope of a vertical line is undefined. Using the two points (1, 2   1 _ 2  ) and 
(4, 1), we compute the slope of the line with equation x 2 2y 5 2 to be 

m 5   
1 2 (2   1 _ 2  )

 ________ 
4 2 1

   5   
   3 _ 2   

 __ 
   3 _ 1   

   5   1 __ 
2

  .

If we solve for y, we can rewrite the equation in the form y 5   1 _ 2  x 2 1. Note 
that the coefficient of x is the slope of the line and the constant term is 
the y-coordinate of the point at which the line intersects the y-axis, i.e. 
the y-intercept. There are several forms in which to write linear equations 
whose graphs are lines.

Form Equation Characteristics

general form ax 1 by 1 c 5 0 every line has an equation in this form 
if both a and b  0

slope-intercept form y 5 mx 1 c m is the slope; (0, c) is the y-intercept

point-slope form y 2 y1 5 m(x 2 x1) m is the slope; (x1, y1) is a known point 
on the line

horizontal line y 5 c slope is zero; (0, c) is the y-intercept

vertical line x 5 c slope is undefined; unless line is y-axis, 
no y-intercept

x

y

y � x2

(�2, 4)

(�   ,     )

(0, 0)

(   2, 2)

�1

1

0

2

3

4

5

6

�1�2 1 2

4
5

16
25

Figure 1.6 The solution set.

Figure 1.7 Four ordered pairs 
in the solution set of y 5 x2 are 
graphed in red. The graph of all the 
ordered pairs in the solution set 
form a curve, as shown in blue.

x � 2y � 2

(4, 1)

(0, �1)

(�   ,�     )7
2

11
4

(1,�   )1
2

x

y

�4

�2

2

0

4

�4 �2 2 4

Figure 1.8 The graph of 
x 2 2y 5 2.

Table 1.6 Forms for equations of 
lines.
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Most problems involving equations and graphs fall into two categories: 
(1) given an equation, determine its graph; and (2) given a graph, or some 
information about it, find its equation. For lines, the first type of problem 
is often best solved by using the slope-intercept form. However, for the 
second type of problem, the point-slope form is usually most useful.

Example 13 

Without using a GDC, sketch the line that is the graph of each of 
the following linear equations, written here in general form.
a) 5x 1 3y 2 6 5 0
b) y 2 4 5 0
c) x 1 3 5 0

Solution
a) Solve for y to write the equation in slope-intercept form. 

5x 1 3y 2 6 5 0 ⇒ 3y 5 25x 1 6 ⇒ y 5 2   5 _ 3  x 1 2. The line has 
a y-intercept of (0, 2) and a slope of 2   5 _ 3  .

b) The equation y 2 4 5 0 is equivalent to y 5 4, whose graph is a 
horizontal line with a y-intercept of (0, 4).

c) The equation x 1 3 5 0 is equivalent to x 5 23, whose graph 
is a vertical line with no y-intercept; but, it has an x-intercept of 
(23, 0).

Example 14 

a) Find the equation of the line that passes through the point (3, 31) and 
has a slope of 12. Write the equation in slope-intercept form.

b) Find the linear equation in C and F knowing that when C 5 10 then 
F 5 50, and when C 5 100 then F 5 212. Solve for F in terms of C.

Solution
a) Substitute into the point-slope form y 2 y1 5 m(x 2 x1); x1 5 3, 

y1 5 31 and m 5 12
y 2 y1 5 m(x 2 x1) ⇒ y 2 31 5 12(x 2 3) ⇒ y 5 12x 2 36 1 31 ⇒ y 5 12x 2 5

b) The two points, ordered pairs (C, F), that are known to be on the line 
are (10, 50) and (100, 212). The variable C corresponds to the variable x 
and F corresponds to y in the definitions and forms stated above. The 

 slope of the line is m 5   
F2 2 F1 _______ 
C2 2 C1

   5   212 2 50 ________ 
100 2 10

   5   162 ___ 
90

   5   9 __ 5  . Choose one 

 of the points on the line, say (10, 50), and substitute it and the slope 
into the point-slope form. 

F 2 F1 5 m(C 2 C1) ⇒ F 2 50 5   9 _ 5  (C 2 10) ⇒ F 5   9 _ 5  C 2 18 1 50 ⇒ F 5   9 _ 5  C 1 32

x

y

�4

�5

�3

�2

�1

1

0

2

3

4

5

�4�5 �3 �2 �1 1 2 3 4 5

y � 4

y � �   x � 2

x � �3

5
3
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The slope of a line is a convenient tool for determining whether 
two lines are parallel or perpendicular. 

The two lines graphed in Figure 1.9 suggest the following property: 
Two distinct non-vertical lines are parallel if, and only if, their 
slopes are equal, m1 5 m2.

The two lines graphed in Figure 1.10 suggest another property: Two non-
vertical lines are perpendicular if, and only if, their slopes are negative 

reciprocals – that is, m1 5 2   1 ___ m2
  , which is equivalent to m1    m2 5 21.

Distances and midpoints
Recall from Section 1.1 that absolute value (modulus) is used to define the 
distance (always positive) between two points on the real number line. 

The distance between the points A and B on the real number line is 
|B 2 A|, which is equivalent to |A 2 B|.

The points A and B are the endpoints of a line segment that is denoted with 
the notation [AB] and the length of the line segment is denoted AB. In 
Figure 1.11, the distance between A and B is AB 5 |4 2(22)| 5 |22 2 4| 5 6.

The distance between two general points (x1, y1) and (x2, y2) on a 
coordinate plane can be found using the definition for distance on a 
number line and Pythagoras’ theorem. For the points (x1, y1) and (x2, y2), 
the horizontal distance between them is |x1 2 x2| and the vertical distance 
is |y1 2 y2|. As illustrated in Figure 1.12, these distances are the lengths 
of two legs of a right-angled triangle whose hypotenuse is the distance 
between the points. If d represents the distance between (x1, y1) and 
(x2, y2), then by Pythagoras’ theorem d 2 5 |x1 2 x2|2 1 |y1 2 y2|2. Because 
the square of any number is positive, the absolute value is not necessary, 
giving us the distance formula for two-dimensional coordinates.

x

y

�4

�2

0

2

4

�4 �2 2 4

y2 �    x � 23
2

y1 �    x � 33
2

m1 �
3
2

m2 �
3
2

Figure 1.9

x

y

0

y1

y2

x1

(x1, y1)

x1 � x2

y1 � y2

(x2, y1)

(x2, y2)

x2

Figure 1.12

Figure 1.10

x

y

�4

�2

0

2

4

�4 �2 2 4

y2 � �    x � 22
3

y1 �    x � 33
2

m1 �
3
2

m2 � �2
3

Figure 1.11

6543210�1�2

BA

�3�4
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The distance formula
The distance d between the two points (x1, y1) and (x2, y2) in the coordinate plane is 

d 5  √
___________________

  (x1 2 x2)2 1 (y1 2 y2)2  

The coordinates of the midpoint of a line segment are the average values 
of the corresponding coordinates of the two endpoints.

The midpoint formula
The midpoint of the line segment joining the points (x1, y1) and (x2, y2) in the coordinate 
plane is

 (   x1 1 x2 _______ 
2

  ,   
y1 1 y2

 ______ 
2

   ) 

Example 15 

a) Show that the points P(1, 2), Q(3, 1) and R(4, 8) are the vertices of a 
right-angled triangle.

b) Find the midpoint of the hypotenuse.

Solution
a) The three points are plotted and the line segments joining them are 

drawn in Figure 1.13. Applying the distance formula, we can find the 
exact lengths of the three sides of the triangle.

PQ 5  √
_________________

  (1 2 3)2 1 (2 2 1)2   5  √
_____

 4 1 1   5  √
__

 5  

QR 5  √
_________________

  (3 2 4)2 1 (1 2 8)2   5  √
______

 1 1 49   5  √
___

 50  

PR 5  √
_________________

  (1 2 4)2 1 (2 2 8)2   5  √
______

 9 1 36   5  √
___

 45  

PQ 2 1 PR 2 5 QR 2 because ( √
__

 5  )2 1 ( √
___

 45  )2 5 5 1 45 5 50 5 ( √
___

 50  )2. 
The lengths of the three sides of the triangle satisfy Pythagoras’ 
theorem, confirming that the triangle is a right-angled triangle.

b) QR is the hypotenuse. Let the midpoint of QR be point M. Using the 

 midpoint formula, M 5  (   3 1 4 _____ 
2

   ) ,  (   1 1 8 _____ 
2

   )  5  (   7 __ 
2

  ,   9 __ 
2

   ) . This point is 

 plotted in Figure 1.13.

Example 16 

Find x so that the distance between the points (1, 2) and (x, 210) is 13.

Solution

d 5 13 5  √
___________________

  (x 2 1)2 1 (210 2 2)2   ⇒ 132 5 (x 2 1)2 1 (212)2

⇒ 169 5 x 2 2 2x 1 1 1 144 ⇒ x 2 2 2x 2 24 5 0

⇒ (x 2 6)(x 1 4) 5 0 ⇒ x 2 6 5 0  or x 1 4 5 0

⇒ x 5 6  or  x 5 24

x

y

0

Q (3, 1)

M (   ,    )

R (4, 8)

  P
(1, 2)

2

4

6

8

�1 1 2 3 4 5

7
2

9
2

50
45

5

Figure 1.13

(1, 2)

x

y

�8

�10

�6

�4

�2
0

2

�2�4�6 2 4 6

(6, �10)(�4, �10)

d � 13 d � 13

Figure 1.14 The graph shows the 
two different points that are both a 
distance of 13 from (1, 2).
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Simultaneous equations
Many problems that we solve with algebraic techniques involve sets of 
equations with several variables, rather than just a single equation with 
one or two variables. Such a set of equations is called a set of simultaneous 
equations because we find the values for the variables that solve all of the 
equations simultaneously. In this section, we consider only the simplest 
set of simultaneous equations – a pair of linear equations in two variables. 
We will take a brief look at three methods for solving simultaneous linear 
equations. They are:

1. Graphical method
2. Elimination method
3. Substitution method

Although we will only look at pairs of linear equations in this section, it is 
worthwhile mentioning that the graphical and substitution methods are 
effective for solving sets of equations where not all of the equations are 
linear, e.g. one linear and one quadratic equation.

Graphical method
The graph of each equation in a system of two linear equations in two 
unknowns is a line. The graphical interpretation of the solution of a pair 
of simultaneous linear equations corresponds to determining what point, 
or points, lies on both lines. Two lines in a coordinate plane can only 
relate to one another in one of three ways: (1) intersect at exactly one 
point, (2) intersect at all points on each line (i.e. the lines are identical), 
or (3) the two lines do not intersect (i.e. the lines are parallel). These three 
possibilities are illustrated in Figure 1.15.

Although a graphical approach to solving simultaneous linear equations 
provides a helpful visual picture of the number and location of solutions, 
it can be tedious and inaccurate if done by hand. The graphical method 
is far more efficient and accurate when performed on a graphical display 
calculator (GDC).

Example 17 

Use the graphical features of a GDC to solve each pair of simultaneous 
equations.
a) 2x 1 3y 5 6 b) 7x 2 5y 5 20
 2x 2 y 5 210  3x 1 y 5 2

Figure 1.15 

x

y

x

y

Intersect at exactly one point;
exactly one solution

Identical – coincident lines;
in�nite solutions

Never intersect – parallel lines;
no solution

x

y

0 0 0
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Solution
a) First, we will rewrite each equation in slope-intercept form, i.e.  

y 5 mx 1 c. This is a necessity if we use our GDC, and is also very 
useful for graphing by hand (manual).

2x 1 3y 5 6 ⇒ 3y 5 22x 1 6 ⇒ y 5 2  2 _ 
3

  x 1 2  and  2x 2 y 5 210 ⇒ y 5 2x 1 10

The intersection point and solution to the simultaneous equations is  
x 5 23 and y 5 4, or (23, 4). If we manually graphed the two linear 
equations in a) very carefully using graph paper, we may have been able to 
determine the exact coordinates of the intersection point. However, using 
a graphical method without a GDC to solve the simultaneous equations in 
b) would only allow us to crudely approximate the solution.

b) 7x 2 5y 5 20 ⇒ 5y 5 7x 2 20 ⇒ y 5   7 __ 5  x 2 4  and
3x 1 y 5 2 ⇒ y 5 23x 1 2

The solution to the simultaneous equations is x 5   15 ___ 
11

   and y 5 2   23 ___ 
11

  , 

or  (   15 ___ 
11

  , 2   23 ___ 
11

   ) .

The full power and efficiency of the GDC is used in this example to find 
the exact solution.

Elimination method
To solve a system using the elimination method, we try to combine the 
two linear equations using sums or differences in order to eliminate one 
of the variables. Before combining the equations, we need to multiply one 
or both of the equations by a suitable constant to produce coefficients for 
one of the variables that are equal (then subtract the equations), or that 
differ only in sign (then add the equations).

Example 18 

Use the elimination method to solve each pair of simultaneous equations.
a) 5x 1 3y 5 9 b) x 2 2y 5 3
 2x 2 4y 5 14  2x 2 4y 5 5

Plot1

Y1=(-2/3)X+2
Plot2

Intersection
X=-3 Y=4

Plot3

Y2= 2X+10
Y3=
Y4=
Y5=
Y6=
Y7=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

Plot1

Y1=(7/5)X-4
Plot2

Intersection
X=1.3636364 Y=-2.090909

Plot3

Y2= -3X+2
Y3=
Y4=

X
1.363636364

Ans Frac

Y5=
Y6=
Y7=

15/11

Y
-2.090909091

Ans Frac
-23/11
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Solution
a) We can obtain coefficients for y that differ only in sign by multiplying 

the first equation by 4 and the second equation by 3. Then we add the 
equations to eliminate the variable y.

 5x 1 3y 5  9 → 20x 1 12y 5 36
 2x 2 4y 5 14 →  6x 2 12y 5 42

   26x  5 78

    x 5   78 ___ 
26

  

    x 5  3

By substituting the value of 3 for x in either of the original equations 
we can solve for y.

5x 1 3y 5 9 ⇒ 5(3) 1 3y 5 9 ⇒ 3y 5 26 ⇒ y 5 22 

The solution is (3, 22).

b) To obtain coefficients for x that are equal, we multiply the first equation 
by 2 and then subtract the equations to eliminate the variable x.

  x 2 2y 5 7 → 2x 2 4y 5 14
 2x 2 4y 5 5 → 2x 2 4y 5  5

    0 5  9

Because it is not possible for 0 to equal 9, there is no solution. The lines 
that are the graphs of the two equations are parallel. To confirm this we 
can rewrite each of the equations in the form y 5 mx 1 c. 

x 2 2y 5 7 ⇒ 2y 5 x 2 7 ⇒ y 5   1 _ 2  x 2   7 _ 2    and

2x 2 4y 5 5 ⇒ 4y 5 2x 2 5 ⇒ y 5   1 _ 2  x 2   5 _ 2  

Both equations have a slope of   1 _ 2  , but different y-intercepts. Therefore, 
the lines are parallel. This confirms that this pair of simultaneous 
equations has no solution.

Substitution method

The algebraic method that can be applied effectively to the widest variety 
of simultaneous equations, including non-linear equations, is the 
substitution method. Using this method, we choose one of the equations 
and solve for one of the variables in terms of the other variable. We then 
substitute this expression into the other equation to produce an equation 
with only one variable, which we can solve directly.

Example 19 

Use the substitution method to solve each pair of simultaneous equations.
a) 3x 2 y 5 29
 6x 1 2y 5 2

b) 22x 1 6y 5 4
 3x 2 9y 5 26
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Solution
a) Solve for y in the top equation, 3x 2 y 5 29 ⇒ y 5 3x 1 9, and 

substitute 3x 1 9 in for y in the bottom equation: 
6x 1 2(3x 1 9) 5 2 ⇒ 6x 1 6x 1 18 5 2 ⇒ 12x  5 216 ⇒ x 5 2   16

 __ 12   5 2   4 _ 3  .
Now substitute 2  4 _ 

3
   for x in either equation to solve for y.

3 ( 2   4 _ 3   )  2 y 5 29 ⇒ y 5 24 1 9 ⇒ y 5 5.

The solution is x 5 2  4 _ 
3
  , y 5 5, or  ( 2   4 _ 3  , 5 ) .

b) Solve for x in the top equation, 
22x 1 6y 5 4 ⇒ 2x 5 6y 2 4 ⇒ x 5 3y 2 2, and substitute 3y 2 2 in 
for x in the bottom equation: 
3(3y 2 2) 2 9y 5 26  ⇒ 9y 2 6 2 9y 5 26 ⇒ 0 5 0. 
The resulting equation 0 5 0 is true for any values of x and y. The 
two equations are equivalent, and their graphs will produce identical 
lines – i.e. coincident lines. Therefore, the solution set consists of all 
points (x, y) lying on the line 22x 1 6y 5 4  ( or y 5   1 _ 3  x 1   2 _ 3   ) .

 

In questions 1–8, solve for the indicated variable in each formula. 
 1 m(h 2 x) 5 n solve for x 2 v 5 √

______

 ab 2 t   solve for a

 3 A 5   h __ 2  (b1 1 b2) solve for b1 4 A 5   1 _ 2  r 2u solve for r

 5   f __ g   5   h __ 
k

   solve for k 6 at 5 x 2 bt solve for t

 7 V 5   1 _ 3   p r 3h solve for r 8 F 5   
g
 _________ 

m1k 1 m2k
   solve for k

In questions 9–12, find the equation of the line that passes through the two given 
points. Write the line in slope-intercept form (y 5 mx 1 c), if possible.

 9 (29, 1) and (3, 27) 10 (3, 24) and (10, 24)

11 (212, 29) and (4, 11) 12  (   7 _ 3  , 2   1 _ 2   )  and  (   7 _ 3  ,   5 _ 2   ) 

13 Find the equation of the line that passes through the point (7, 217) and is 
parallel to the line with equation 4x 1 y 2 3 5 0. Write the line in slope-
intercept form (y 5 mx 1 c).

14 Find the equation of the line that passes through the point  ( 25,   11
 __ 2   )  and is 

perpendicular to the line with equation 2x 2 5y 2 35 5 0. Write the line in 
slope-intercept form (y 5 mx 1 c).

In questions 15–18, a) find the exact distance between the points, and b) find the 
midpoint of the line segment joining the two points.
15 (24, 10) and (4, 25) 16 (21, 2) and (5, 4)

17  (   1 _ 2  , 1 )  and  ( 2   5 _ 2  ,   4 _ 3   )  18 (12, 2) and (210, 9)

In questions 19 and 20, find the value(s) of k so that the distance between the points is 5.
19 (5, 21) and (k, 2) 20 (22, 27) and (1, k)

In questions 21–23, show that the given points form the vertices of the indicated 
polygon.

21 Right-angled triangle: (4, 0), (2, 1) and (21, 25)

22 Isosceles triangle: (1, 23), (3, 2) and (22, 4)

23 Parallelogram: (0, 1), (3, 7), (4, 4) and (1, 22)

Exercise 1.6
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In questions 24–29, use the elimination method to solve each pair of simultaneous 
equations.

24 x 1 3y 5 8 25 x 2 6y 5 1
 x 2 2y 5 3  3x 1 2y 5 13

26 6x 1 3y 5 6 27 x 1 3y 5 21
 5x 1 4y 5 21  x 2 2y 5 7

28 8x 2 12y 5 4 29 5x 1 7y 5 9
 22x 1 3y 5 2  211x 2 5y 5 1

In questions 30–35, use the substitution method to solve each pair of simultaneous 
equations.

30 2x 1 y 5 1 31 3x 2 2y 5 7
 3x 1 2y 5 3  5x 2 y 5 27

32 2x 1 8y 5 26 33   x __ 
5

   1   
y
 __ 

2
   5 8

 25x 2 20y 5 15  x 1 y 5 20

34 2x 2 y 5 22 35 0.4x 1 0.3y 5 1
 4x 1 y 5 5  0.25x 1 0.1y 5 20.25

In questions 36–38, solve the pair of simultaneous equations using any method 
– elimination, substitution or the graphical features of your GDC.

36 3x 1 2y 5 9 37 3.62x 2 5.88y 5 210.11
 7x 1 11y 5 2  0.08x 2 0.02y 5 0.92

38 2x 2 3y 5 4
 5x 1 2y 5 1
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This chapter looks at functions and considers how they can be used 
in describing physical phenomena. We also investigate composite and 
inverse functions, and transformations such as translations, stretches and 
reflections. Quadratic functions are treated graphically and algebraically.

Relations
There are different scales for measuring temperature. Two of the 
more commonly used are the Celsius scale and the Fahrenheit scale. A 
temperature recorded in one scale can be converted to a value in the other 

Relations and functions2.1

Introduction

Assessment statements
2.1	 Concept	of	function	f		:		x	↦	f	(x);	domain,	range,	image	(value).	

Composite	functions	(f				g);	identity	function.	Inverse	function	f 21.	

2.2	 The	graph	of	a	function;	its	equation	y 5 f (x).
Function	graphing	skills:	use	of	a	GDC	to	graph	a	variety	of	functions.	
Investigation	of	key	features	of	graphs	such	as	intercepts,	horizontal	and	
vertical	asymptotes,	symmetry	and	consideration	of	domain	and	range.
Use	of	technology	to	graph	a	variety	of	functions.	
The	graph	of	y	5	f –1(x)	as	the	reflection	in	the	line	y	5	x	of	the	graph	of	
y	5	f (x).

2.3	 Transformations	of	graphs:	translations;	stretches;	reflections	in	the	axes;	
vertical	stretch/shrink;	horizontal	stretch/shrink.

	 Composite	transformations.

2.4	 The	quadratic	function	x ↦	ax2 1 bx 1 c: its	graph,	y-intercept	(0, c), 
axis	of	symmetry	x	5	2​​b ___	

2a
 		.

	 The	form	x	↦	a(x 2 h)2	1	k:	vertex	(h,k).
	 The	form	x	↦	a(x 2 p)(x	2	q):	x-intercepts	(p,	0)	and	(q,	0).	

2.5	 The	reciprocal	function	x	↦			1	__	x 	,	x		0:	its	graph;	its	self-inverse	nature.

	 The	rational	function	x	=			ax	+	b ______	
cx	+	d

 		and	its	graph.

2.7	 Solving	equations,	both	graphically	and	analytically.	
The	solution	of ax2 1 bx 1 c 5 0, a  0.
The	quadratic	formula.	Use	of	the	discriminant	 5 b2 2 4ac.

2 Functions and 
Equations

Most countries, except the 
United States, use the Celsius 
scale, invented by the Swedish 
scientist Anders Celsius  
(1701–1744). The United States 
uses the earlier Fahrenheit 
scale, invented by the Dutch 
scientist Gabriel Daniel 
Fahrenheit (1686–1736). A 
citizen of the USA travelling to 
other parts of the world will 
need to convert from degrees 
Celsius to degrees Fahrenheit.
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scale, based on the fact that there is a constant relationship between the 
two sets of numbers in each scale. If the variable C represents degrees 
Celsius and the variable F represents degrees Fahrenheit, this relationship 
can be expressed by the following equation that converts Celsius to 
Fahrenheit: F 5   9 _ 5   C 1 32. 

Many mathematical relationships concern how two sets of numbers relate 
to one another – and often the best way to express this is with an algebraic 
equation in two variables. If it’s not too difficult, we find it useful to express 
one variable in terms of the other. For example, in the previous equation, 
F is written in terms of C – making C the independent variable and F 
the dependent variable. Since F is written in terms of C, it is easiest for 
you to first substitute in a value for C, and then evaluate the expression to 
determine the value of F. In other words, the value of F is dependent upon 
the value of C, which is chosen independently of F.

A relation is a rule that determines how a value of the independent 
variable corresponds – or is mapped – to a value of the dependent variable. 
A temperature of 30 degrees Celsius corresponds to 86 degrees Fahrenheit. 

F 5   9 _ 5  (30) 1 32 5 54 1 32 5 86

Along with equations, other useful ways of representing a relation include 
a graph of the equation on a Cartesian coordinate system (also called 
a rectangular coordinate system), a table, a set of ordered pairs, or a 
mapping. These are illustrated below for the equation F 5   9 _ 5   C 1 32.

Graph Table

Celsius (C) Fahrenheit (F)

240 240

230 222

220 24

210 14

0 32

10 50

20 68

30 86

40 104

Ordered pairs Mapping

The graph of the equation F 5   9 _ 5   C 1 32 
is a line consisting of an infinite set of 
ordered pairs (C, F) – each is a solution 
of the equation. The following set 
includes some of the ordered pairs on 
the line: 
{(230, 222), (0, 32), (20, 68), (40, 104)}.

C

F

�20

�40

�60

20

40

60

�20�40�60 200 40 60

F � (   )C � 329
5

The Cartesian coordinate 
system is named in honour of 
the French mathematician and 
philosopher René Descartes 
(1596-1650). Descartes 
stimulated a revolution in 
the study of mathematics by 
merging its two major fields 
– algebra and geometry. With 
his coordinate system utilizing 
ordered pairs (Cartesian 
coordinates) of real numbers, 
geometric concepts could 
be formulated analytically 
and algebraic concepts (e.g. 
relationships between two 
variables) could be viewed 
graphically. Descartes initiated 
something that is very helpful 
to all students of mathematics 
– that is, considering 
mathematical concepts 
from multiple perspectives: 
graphical (visual) and analytical 
(algebraic).

René Descartes

�30

0

20

40

C

Domain (input)

Rule:  F �    C � 32

Range (output)

�22

32

68

104

F

9
5

 Hint: The coordinate system 
for the graph of an equation has 
the independent variable on the 
horizontal axis and the dependent 
variable on the vertical axis.
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The largest possible set of values for the independent variable (the input 
set) is called the domain – and the set of resulting values for the dependent 
variable (the output set) is called the range. In the context of a mapping, 
each value in the domain is mapped to its image in the range. 

Functions
If the relation is such that each number (or element) in the domain 
produces one and only one number in the range, the relation is called 
a function. Common sense tells us that each numerical temperature in 
degrees Celsius (C) will convert (or correspond) to only one temperature 
in degrees Fahrenheit (F). Therefore, the relation given by the equation 

F 5   9 _ 5   C 1 32 is a function – any chosen value of C corresponds to exactly 
one value of F. The idea that a function is a rule that assigns to each number 
in the domain a unique number in the range is formally defined below.

Definition of a function
A function is a correspondence (mapping) between two sets X and Y in which each 
element of set X corresponds to (maps to) exactly one element of set Y. The domain is 
set X (independent variable) and the range is set Y (dependent variable).

Not only are functions important in the study of mathematics and 
science, we encounter and use them routinely – often in the form of 
tables. Examples include height and weight charts, income tax tables, loan 
payment schedules, and time and temperature charts. The importance 
of functions in mathematics is evident from the many functions that are 
installed on your GDC. 

For example, the keys labelled x21SIN LN  √
_

  

each represent a function, because for each  
input (entry) there is only one output (answer). 
The calculator screen image shows that for the  
function y 5 1n  x, the input of x 5 10 has only 
one output of y  2.302  585  093. 

For many physical phenomena, we observe that one quantity depends on 
another. For example, the boiling point of water depends on elevation 
above sea level; the time for a pendulum to swing through one cycle 
(its period) depends on the length of the pendulum; and the area of 
a circle depends on its radius. The word function is used to describe 
this dependence of one quantity on another – i.e. how the value of an 
independent variable determines the value of a dependent variable. 
• Boiling point is a function of elevation (elevation determines boiling 

point). 
• The period of a pendulum is a function of its length (length determines 

period).
• The area of a circle is a function of its radius (radius determines area).

ln(10)
2.302585093
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Example 1 

a) Express the volume V of a cube as a function of the length e of each edge.

b) Express the volume V of a cube as a function of its surface area S.

Solution
a) V as a function of e is V 5 e 3.

b) The surface area of the cube consists of six squares each with an area of e 2. 
Hence, the surface area is 6e 2; that is, S 5 6e 2. We need to write V in terms 
of S. We can do this by first expressing e in terms of S, and then 
substituting this expression in for e in the equation V 5 e 3. 

 S 5 6e 2 ⇒ e 2 5   S __ 
6

   ⇒ e 5  √
__

   S __ 
6

    . 

Substituting, 

 V 5​​( ​√
__

   S __ 
6

     ) 
3
 5   

( S    
1
 _ 2   )3

 _____ 
( 6   

1
 _ 2   )3

   5    S    
3
 _ 2    __ 

 6   
3
 _ 2   
   5   S

1     S    
1
 _ 2    _____ 

61     6   
1
 _ 2   
   5   S __ 

6
     √

__

   S __ 
6

    

 V as a function of S is V 5   S __ 
6

    √
__

    S __ 
6

    .

Domain and range of a function
The domain of a function may be stated explicitly, or it may be implied by 
the expression that defines the function. If not explicitly stated, the domain 
of a function is the set of all real numbers for which the expression is 
defined as a real number. For example, if a certain value of x is substituted 
into the algebraic expression defining a function and it causes division 
by zero or the square root of a negative number (both undefined in the 
real numbers) to occur, that value of x cannot be in the domain. The 
domain of a function may also be implied by the physical context or 
limitations that exist. Usually the range of a function is not given explicitly 
and is determined by analyzing the output of the function for all values 
of the input. The range of a function is often more difficult to find than 
the domain, and analyzing the graph of a function is very helpful in 
determining it. A combination of algebraic and graphical analysis is very 
useful in determining the domain and range of a function.

Example 2 

Find the domain of each of the following functions.
a) {(26, 23), (21, 0), (2, 3), (3, 0), (5, 4)}

b) Area of a circle: A 5 pr 2

c) y 5   1 __ x  

d) y 5  √
__

 x  

Solution
a) The function consists of a set of ordered pairs. The domain of the 

function consists of all first coordinates of the ordered pairs. Therefore, 
the domain is the set {26, 21, 2, 3, 5}.

e

e
e
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b) The physical context tells you that a circle cannot have a negative radius. 
You can only choose values for the radius (r) that are greater than zero. 
Therefore, the domain is the set of all real numbers such that r . 0.

c) The value of x 5 0 cannot be included in the domain because division 
by zero is not defined for real numbers. Therefore, the domain is the set 
of all real numbers except zero (x  0).

d) Any negative values of x cannot be in the domain because the square 
root of a negative number is not a real number. Therefore, the domain 
is all real numbers such that x > 0.

Determining if a relation is a function
Some relations are not functions – and because of the mathematical 
significance of functions it is important for us to be able to determine 
when a relation is, or is not, a function. It follows from the definition of a 
function that a relation for which a value of the domain (x) corresponds 
to (or determines) more than one value in the range (y) is not a function. 
Any two points (ordered pairs (x, y)) on a vertical line have the same 
x-coordinate. Although a trivial case, it is useful to recognize that the 
equation for a vertical line, x 5 2 for example (see Figure 2.1), is a relation 
but not a function. The points with coordinates (2, 23), (2, 0) and (2, 4) 
are all solutions to the equation x 5 2. The number two is the only element 
in the domain of x 5 2 but it is mapped to more than one value in the 
range (23, 0 and 4, for example). It follows that if a vertical line intersects 
the graph of a relation at more than one point, then a value in the domain 
(x) corresponds to more than one value in the range (y) and, hence, the 
relation is not a function. This argument provides an alternative definition 
of a function and also a convenient visual test to determine whether or not 
the graph of a relation represents a function.

Alternative definition of a function
A function is a relation in which no two different ordered pairs have the same first 
coordinate.

Vertical line test for functions
A vertical line intersects the graph of a function at no more than one point.

x

y

�3

�2

�1

1

0

2

3

�1 1 3 42

Figure 2.1

�5�10 5 10

y

�10

�5

5

0

10

x

Rule:  y � x2

Each element of the domain (x) is mapped
to exactly one element of the range (y).

Domain (input)

�3

�2

2

3

0

x y

Range (output)

4

9

0

Figure 2.2
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As the graph in Figure 2.2 clearly shows, a vertical line will intersect the 
graph of y 5 x 2 at no more than one point – therefore, the relation y 5 x 2 
is a function.
In contrast, the graph of the equation y 2 5 x is a ‘sideways’ parabola that 
can clearly be intersected more than once by a vertical line (see Figure 
2.3). There are at least two ordered pairs having the same x-coordinate 
but different y-coordinates (for example, (9, 3) and (9, 23)). Therefore, 
the relation y 2 5 x fails the vertical line test indicating that it does not 
represent a function.

 Hint: To graph the equation y 2 5 x on your GDC, you need to solve for y in terms of x. 
The result is two separate equations: y 5 ​√_​x   and y 5 2​√

_
​x ​ (or y 5 ​√_​x   ). Each is one-

half of the ‘sideways’ parabola. Although each represents a function (vertical line test), the 
combination of the two is a complete graph of y 2 5 x that clearly does not satisfy either 
definition of a function.

Example 3 

What is the domain and range for the function y 5 x 2?

Solution
• Algebraic analysis: Squaring any real number produces another real 

number. Therefore, the domain of y 5 x 2 is the set of all real numbers 
(R). What about the range? Since the square of any positive or negative 
number will be positive and the square of zero is zero, the range is the 
set of all real numbers greater than or equal to zero.

• Graphical analysis: For the domain, focus on the x-axis and horizontally 
scan the graph from 2 to 1. There are no ‘gaps’ or blank regions 
in the graph and the parabola will continue to get ‘wider’ as x goes to 
either 2​or 1. Therefore, the domain is all real numbers. For the 
range, focus on the y-axis and vertically scan from 2 or 1. The 
parabola will continue ‘higher’ as y goes to 1, but the graph does not 
go below the x-axis. The parabola has no points with negative 

x

y

2

domain

range

�2

4

6

8

10

�1�2�3 1 2 30

Figure 2.4

Figure 2.3

Y1= √( X)

Y=3X=9

Y2=- √( X)

Y=-3X=9

Plot1

Y1= √(X)
Plot2 Plot3

Y2= -√(X)
Y3=
Y4=
Y5=
Y6=
Y7=

�5�10 5 10

y

�10

�5

5

0

10

x

Rule:  y2 � x or y ��   x

At least one element of the domain (x) is mapped
to more than one element of the range (y).

Domain (input)

x y

�3

�2

2

3

Range (output)

4

9

0
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y-coordinates. Therefore, the range is the set of real numbers greater 
than or equal to zero. See Figure 2.4.

Description in words Interval notation (both formats)

domain is any real number domain is  
{x  :  x    R} or domain is x    ]2, [ 

range is any real number greater than or 
equal to zero

range is  
{y  :  y > 0} or range is y    [0, [

Function notation
It is common practice to assign a name to a function – usually a single 
letter with f, g and h being the most common. Given that the domain 
(independent) variable is x and the range (dependent) variable is y, the 
symbol f (x), read ‘f of x’, denotes the unique value of y that is generated 
by the value of x. This function notation was devised by the famous 
Swiss mathematician Leonhard Euler (1707–1783). Another notation – 
sometimes referred to as mapping notation – is based on the idea that 
the function f is the rule that maps x to f (x) and is written f  :  x ↦ f (x). 
For each value of x in the domain, the corresponding unique value of y in 
the range is called the function value at x, or the image of x under f. The 
image of x may be written as f (x) or as y. For example, for the function 
f (x) 5 x 2: ‘f (3) 5 9’; or ‘if x 5 3 then y 5 9’. 

Notation Description in words

f (x) 5 x 2 ‘the function f, in terms of x, is x 2’; or, simply, ‘f of x is x 2’

f  :  x ↦ x 2 ‘the function f maps x to x 2’

f  (3) 5 9 ‘the value of the function f when x 5 3 is 9’; or, simply, ‘f of 3 equals 9’

f  :  3 ↦ 9 ‘the image of 3 under the function f is 9’

Example 4 

Find the domain and range of the function h  :  x ↦   1 _____ 
x 2 2

  . 

Solution
• Algebraic analysis: The function produces a real number for all x, except 

for x 5 2 when division by zero occurs. Hence, x 5 2 is the only real 

 number not in the domain. Since the numerator of   1 _____ 
x 2 2

   can never be 

 zero, the value of y cannot be zero. Hence, y 5 0 is the only real number 
not in the range.

• Graphical analysis: A horizontal scan shows a ‘gap’ at x 5 2 dividing the 
graph of the equation into two branches that both continue indefinitely, 
with no other ‘gaps’ as x →  . Both branches are asymptotic 
(approach but do not intersect) to the vertical line x 5 2. This line is a 
vertical asymptote and is drawn as a dashed line (it is not part of the 
graph of the equation). A vertical scan reveals a ‘gap’ at y 5 0 (x-axis) 

 Hint: The infinity symbol  does 
not represent a number. When  
or 2 is used in interval notation, 
it is being used as a convenient 
notational device to indicate that an 
interval has no endpoint in a certain 
direction.

 Hint: When asked to determine 
the domain and range of a function, 
it is wise for you to conduct both 
algebraic and graphical analysis 
– and not rely too much on 
either approach. For graphical 
analysis of a function, producing a 
comprehensive graph on your GDC is 
essential – and an essential skill for 
this course.

x

y

2

4
h(x) �

�2

�4

�2 2 4

1
x � 2

0

Table 2.1 Different ways of 
expressing the domain and range 
of y 5 x 2.

Table 2.2 Function notation.
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with both branches of the graph continuing indefinitely, with no other 
‘gaps’ as y →  . Both branches are also asymptotic to the x-axis. The 
x-axis is a horizontal asymptote. 

Both approaches confirm the following for h  :  x ↦   1 _____ 
x 2 2

  :

The domain is {x  :  x    R, x  2} or x   ]2, 2[  ]2, [

The range is {y  :  y     R, y  0} or y   ]2, 0[  ]0, [

Example 5 

Consider the function g (x) 5  √
_____

 x 1 4  .
a) Find: (i) g (7)
  (ii) g (32)
  (iii) g (24)

b) Find the values of x for which g is 
undefined.

c) State the domain and range of g.

Solution
a) (i) g (7) 5  √

_____
 7 1 4   5  √

___
 11    3.32 (3 significant figures)

 (ii) g (32) 5  √
______

 32 1 4   5  √
___

 36   5 6
 (iii) g (24) 5  √

_______
 24 1 4   5  √

__
 0   5 0

b) g (x) will be undefined (square root of a negative) when x 1 4 , 0.
 x 1 4 , 0 ⇒ x ,​24. Therefore, g (x) is undefined when x ,​24.

c) It follows from the result in b) that the domain of g is {x  :  x > 24}.
 The symbol  √

__
  stands for the principal square root that, by definition, 

can only give a result that is positive or zero. Therefore, the range of g is 
{y  :  y > 0}. The domain and range are confirmed by analyzing the graph 
of the function.

Example 6 

Find the domain and range of the function 
f (x) 5   1 _______ 

 √
______

 9 2 x 2  
  .

Solution
The graph of y 5   1 _______ 

 √
______

 9 2 x 2  
   on a GDC, shown

right, agrees with algebraic analysis indicating that the expression

  1 _______ 
 √

______

 9 2 x 2  
   will be positive for all x, and is defined only for 23 , x , 3. 

Further analysis and tracing the graph reveals that f (x) has a minimum at  
( 0,   1 _ 3   ) . The graph on the GDC is misleading in that it appears to show that 
the function has a maximum value (y) of approximately 2.803  7849 (see 
screen image next page). Can this be correct? A lack of algebraic thinking 
and over-reliance on your GDC could easily lead to a mistake. The graph 
abruptly stops its curve upwards because of low screen resolution. 

x

y

�1

1

2

3

g(x) �    x � 4

�2�4 2 40

Y1=1/ √( 9-X2)

Y=.33333333X=0

 Hint: As Example 6 illustrates, 
it is dangerous to completely 
trust graphs produced on a GDC 
without also doing some algebraic 
thinking. It is important to mentally 
check that the graph shown is 
comprehensive (shows all important 
features of the graph), and that the 
graph agrees with algebraic analysis 
of the function – e.g. where should 
the function be zero, positive, 
negative, undefined, increasing/
decreasing without bound, etc.

x

y

�1

1

2

3

�2�4 2 4

y �   1
    9 � x2

0
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Function values should get quite large for values of x a

little less than 3, because the value of  √
______

 9 2 x 2   will be 

small, making the fraction    1 _______ 
 √

______

 9 2 x 2  
   large. Using your 

GDC to make a table for f (x), or evaluating the function 
for values of x very close to 23 or 3, confirms that as x 
approaches 23 or 3, y increases without bound, i.e. y goes 
to 1. Hence, f (x) has vertical asymptotes of x 5 23 and 
x 5 3. This combination of graphical and algebraic 
analysis leads to the conclusion that the domain of f (x) is 
{x  :  23 , x , 3}, and the range of f (x) is {y  :  y >   1 _ 3  }.

For each equation 1–9, a) match it with its graph (choices are labelled A to L), and 
b) state whether or not the equation represents a function – with a justification. 
Assume that x is the independent variable and y is the dependent variable.
 1 y 5 2x  2 y 5 23  3 x 2 y 5​2

 4 x 2 1 y 2 5​4  5 y 5 2 2​x  6 y 5 x 2 1​2

 7 y 3 5 x  8 y 5   2 __ x    9 x 2 1 y 5​2

 A  B C

 D E F

 G H I

 J K L

Exercise 2.1
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10 Express the area, A, of a circle as a function of its circumference, C.

11 Express the area, A, of an equilateral triangle as a function of the length, ,, of 
each of its sides.

In questions 12–17, find the domain of the function.

12 f (x) 5   2 _ 5  x 2 7 13 h(x) 5 x 2 2 4

14 g (t) 5  √
_____

 3 2 t   15 h(t) 5  3 √
_
 t  

16 Volume of a sphere: V 5   4 _ 3   pr 3 17 g (k) 5   6 ______ 
k 2 2 9

  

18 Do all linear equations represent a function? Explain.

19 Find the domain and range of the function f defined as f  :  x ↦   1 _____ x 2 5  .

20 Consider the function h(x) 5  √
_____

 x 2 4  .
a) Find: (i) h(21)   (ii) h(53)   (iii) h(4)
b) Find the values of x for which h is undefined.
c) State the domain and range of h.
d) Sketch a comprehensive graph of the function.

21 Find the domain and range of the function f defined as f (x) 5   1 ________ 
 √

______

 x 2 2 9  
  , and sketch

 a comprehensive graph of the function clearly indicating any intercepts or 
asymptotes.

Composite functions
Consider the function in Example 5 in the previous section, f (x) 5  √

_____
 x 1 4  

. When you evaluate f (x) for a certain value of x in the domain (for 
example, x 5 5) it is necessary for you to perform computations in two 
separate steps in a certain order. 

f (5) 5  √
_____

 5 1 4   ⇒ f (5) 5  √
__

 9   Step 1: compute the sum of 5 1 4
 ⇒ f (5) 5 3 Step 2: compute the square root of 9

Given that the function has two separate evaluation ‘steps’, f (x) can be 
seen as a combination of two ‘simpler’ functions that are performed in a 
specified order. According to how f (x) is evaluated (as shown above), the 
simpler function to be performed first is the rule of ‘adding 4’ and the 
second is the rule of ‘taking the square root’. If h(x) 5 x 1 4 and g (x) 5  √

__
 x  , 

we can create (compose) the function f (x) from a combination of h(x) and 
g (x) as follows:

f (x) 5 g(h(x)) 
 5 g(x 1 4) Step 1: substitute x 1 4 for h(x), making x 1 4 the 
  argument of g(x)
 5  √

_____
 x 1 4   Step 2: apply the function g(x) on the argument x 1 4

We obtain the rule  √
_____

 x 1 4   by first applying the rule x 1 4 and then 
applying the rule  √

__
 x  . A function that is obtained from ‘simpler’ functions 

by applying one after another in this way is called a composite function. 
In the example above, f (x) 5  √

_____
 x 1 4   is the composition of h(x) 5 x 1 4 

Composition of functions2.2

From the explanation on 
how f is the composition (or 
composite) of g and h, you 
can see why a composite 
function is sometimes referred 
to as a ‘function of a function’. 
Also, note that in the notation 
g(h(x)) the function h that is 
applied first is written ‘inside’, 
and the function g that is 
applied second is written 
‘outside’.
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followed by g(x) 5  √
__

 x  . In other words, f is obtained by substituting h into 
g, and can be denoted in function notation by g(h(x)) – read ‘g of h of x’. 

We start with a number x in the domain of h and find its image h(x). If this 
number h(x) is in the domain of g, we then compute the value of g  (h(x)). 
The resulting composite function is denoted as (g  h)(x). See mapping 
illustration in Figure 2.5.

Definition of the composition of two functions
The composition of two functions, g and h, such that h is applied first and g second is 
given by

(g  h)(x) 5 g (h(x))

The domain of the composite function g  h is the set of all x in the domain of h such 
that h(x) is in the domain of g.

Example 7 

If f (x) 5 3x and g (x) 5 2x 2 6, find: 

a) (f   g )(5) b) Express (f   g )(x) as a single function rule (expression).

c) (g   f  )(5)  d) Express (g   f  )(x) as a single function rule (expression).

e) (g   g )(5) f) Express (g   g )(x) as a single function rule (expression).

Solution

a) (f   g)(5) 5 f (g (5)) 5 f (2·5 2 6) 5 f (4) 5 3·4 5 12

b) (f   g)(x) 5 f (g (x)) 5 f (2x 2 6) 5 3(2x 2 6) 5 6x 2 18
 Therefore, (f   g)(x) 5 6x 2 18.
 Check with result from a): (f   g)(5) 5 6·5 2 18 5 30 2 18 5 12

c) (g   f  )(5) 5 g (f (5)) 5 g (3·5) 5 g (15) 5 2·15 2 6 5 24

d) (g   f  )(x) 5 g (f (x)) 5 g (3x) 5  2(3x) 2 6 5 6x 2 6
 Therefore, (g   f  )(x) 5 6x 2 6.
 Check with result from c): (g   f  )(5) 5​6·5 2 6 5 30 2 6 5 24

e) (g   g)(5) 5 g (g (5)) 5 g (2·5 2 6) 5 g (4) 5 2·4 2 6 5 2

f) (g   g)(x) 5 g (g (x)) 5 g (2x 2 6) 5 2(2x 2 6) 2 6 5 4x 2 18
 Therefore, (g   g)(x) 5 4x 2 18.
 Check with result from e): (g   g)(5) 5 4·5 2 18 5 20 2 18 5 2

 Hint: The notations (g  h)(x) and 
g (h(x)) are both commonly used to 
denote a composite function where 
h is applied first and then followed 
by applying g. Since we are reading 
this from left to right, it is easy to 
apply the functions in the incorrect 
order. It may be helpful to read g  h 
as ‘g following h’, or as ‘g composed 
with h’ to emphasize the order in 
which the functions are applied. 
Also, in either notation, (g  h)(x) or 
g (h(x)), the function applied first is 
closest to the variable x.

Figure 2.5

x

h

g° h

g

h(x) g(h(x))

domain of h range of h
domain of g

range of g
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It is important to notice that in parts b) and d) in Example 7, f    g is not 
equal to g  f  . At the start of this section, it was shown how the two functions 
h(x) 5 x 1 4 and g (x) 5  √

__
 x   could be combined into the composite 

function (g  h)(x) to create the single function f (x) 5  √
_____

 x 1 4  . However, 
the composite function (h  g)(x) – the functions applied in reverse order 
– creates a different function: (h  g)(x) 5 h (g (x)) 5 h( √

__
 x  ) 5  √

__
 x   1 4. 

Since   √
__

 x   1 4   √
_____

 x 1 4  , then again f   g is not equal to g   f. Is it always 
true that f   g  g  f  ? The next example will answer that question.

Example 8 

Given f  :  x ↦ 3x 2 6 and g  :  x ↦   1 _ 3  x 1 2, find the following:
a) (f   g)(x) b) (g   f  )(x)

Solution
a) (f   g)(x) 5 f (g (x)) 5 f  (   1 _ 3  x 1 2 )  5 3 (   1 _ 3  x 1 2 )  2 6 5 x 1 6 2 6 5 x

b) (g   f  )(x) 5 g (f (x)) 5 g (3x 2 6) 5   1 _ 3  (3x 2 6) 1 2 5 x 2 2 1 2 5 x

Example 8 shows that it is possible for f   g to be equal to g   f. We will 
learn in the next section that this occurs in some cases where there is a 
‘special’ relationship between the pair of functions. However, in general,   
f   g  g  f.

Decomposing composite functions
In Examples 7 and 8, we created a single function by forming the 
composition of two functions. As we did with the function f (x) 5  √

_____
 x 1 4   

at the start of this section, it is also important for you to be able to identify 
two functions that make up a composite function, in other words, for you to 
decompose a function into two simpler functions. When you are doing this 
it is very useful to think of the function which is applied first as the ‘inside’ 
function, and the function that is applied second as the ‘outside’ function. 
In the function f (x) 5  √

_____
 x 1 4  , the ‘inside’ function is h(x) 5 x 1 4 and the 

‘outside’ function is g(x) 5  √
__

 x  .

Example 9 

Each of the following functions is a composite function of the form 
(f    g)(x). For each, find the two component functions f and g.

a) h : x ↦   1 _____ 
x 1 3

    b) k : x ↦ 24x 1 1  c) p(x) 5  
3
 √
______

 x 2 2 4  

Solution
a) If you were to evaluate the function h(x) for a certain x in the domain, 

you would first evaluate the expression x 1 3, and then evaluate the 
expression   1 __ x  . Hence, the ‘inside’ function (applied first) is y 5 x 1 3, 

 and the ‘outside’ function (applied second) is y 5   1 __ x  . Then, with 

 g (x) 5 x 1 3 and f (x) 5   1 __ x  , it follows that h : x ↦ (f   g)(x).

 Hint: Decomposing composite 
functions – identifying the 
component functions that form 
a composite function – is an 
important skill when working with 
certain functions in the topic of 
calculus. For the composite function 
f (x) 5 (g  h)(x), g and h are the 
component functions.
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b) Evaluating k (x) requires you to first evaluate the expression 4x 1 1, and 
then evaluate the expression 2x. Hence, the ‘inside’ function is y 5 4x 1 1, 
and the ‘outside’ function is y 5 2x. Then, with g (x) 5 4x 1 1 and 
f (x) 5 2x, it follows that k : x ↦ (f   g)(x).

c) Evaluating p(x) requires you to perform three separate evaluation 
‘steps’: (1) squaring a number, (2) subtracting four, and then (3) taking 
the cube root. Hence, it is possible to decompose p(x) into three 
component functions: if h(x) 5 x 2, g (x) 5 x 2 4 and f (x) 5  3 √

__
 x  , then 

p(x) 5 (f   g  h)(x) 5 f (g(h(x))). However, for our purposes it is best to 
decompose the composite function into only two component functions: 
if g(x) 5 x 2 2 4 and f (x) 5  3 √

__
 x  , then p : x ↦ (f   g)(x) 5 f (g (x)).

Finding the domain of a composition of functions
Referring back to Figure 2.5 (shown again here as Figure 2.6), it is 
important to note that in order for a value of x to be in the domain of the 
composite function g   h, two conditions must be met:

(1) x must be in the domain of h, and (2) h(x) must be in the domain of g.

Likewise, it is also worth noting that g (h(x)) is in the range of g   h only if x 
is in the domain of g   h. The next example illustrates these points – and also 
that, in general, the domains of g   h and h   g are not the same.

Example 10 

Let g (x) 5 x 2 2 4 and h(x) 5  √
__

 x  . Find:

a) (g   h)(x) and its domain and range

b) (h   g)(x) and its domain and range.

Solution
Firstly, establish the domain and range for both g and h. For g (x) 5 x 2 2 4, 
the domain is x    R and the range is y > 24. For h(x) 5  √

__
 x  , the domain is 

x > 0 and the range is y > 0.

a) (g   h)(x) 5 g (h(x))
  5 g ( √

__
 x  )  To be in the domain of g   h,  √

__
 x   must be 

defined for x ⇒ x > 0.
  5 ( √

__
 x  )2 2 4 Therefore, the domain of g   h is x >​0.

  5 x 2 4 Since x > 0, the range for y 5 x 2 4 is y > 24.
 Therefore, (g   h)(x) 5 x 2 4, and its domain is x > 0, and its range 

is y > 24.

b) (h   g)(x) 5 h (g(x)) g (x)5 x 2 2 4 must be in the domain of h
  x 2 2 4 > 0 ⇒ x 2 > 4

  5 h (x 2 2 4) Therefore, the domain of h   g is x <​22 or x > 2

  5  √
______

 x 2 2 4   and, with x <​22 or x > 2, the range for

   y 5  √
______

 x 2 2 4   is y > 0.

 Therefore, (h   g)(x) 5  √
______

 x 2 2 4  , and its domain is x <​22 or x > 2, 
and its range is y > 0.

Figure 2.6
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 1 Let f (x) 5 2x and g(x) 5   1 _____ x 2 3  , x  0.

a) Find the value of (i) (f    g)(5) and (ii) (g    f  )(5).
b) Find the function rule (expression) for (i) (f    g)(x) and (ii) (g    f )(x).

 2 Let f  :  x ↦ 2x 2 3 and g  :  x ↦ 2 2 x2.
 In a)-f ), evaluate:

a) (f    g)(0) b) (g    f  )(0) c) (f    f  )(4)
d) (g    g)(23) e) (f    g)(21) f ) (g    f  )(23)

 In g)-j), find the expression:
g) (f    g)(x) h) (g    f  )(x) i) (f    f  )(x) j) (g    g)(x)

For each pair of functions in questions 3–7, find (f    g)(x) and (g    f  )(x) and state the 
domain for each.
 3 f (x) 5 4x 2 1, g(x) 5 2 1 3x
 4 f (x) 5 x2 1 1, g(x) 5​22x
 5 f (x) 5  √

_____
 x 1 1  , g(x) 5 1 1 x2

 6 f (x) 5   2 _____ x 1 4  , g(x) 5 x 2 1

 7 f (x) 5 3x 1 5, g(x) 5   x 2 5 _____ 
3

  

 8 Let g(x) 5  √
_____

 x 2 1   and h(x) 5 10 2 x2. Find:
a) (g    h)(x) and its domain and range
b) (h    g)(x) and its domain and range.

In questions 9–14, determine functions g and h so that f (x) 5 g(h(x)).

 9 f (x) 5 (x 1 3)2 10 f (x) 5  √
_____

 x 2 5  

11 f (x) 5 7 2  √
__

 x   12 f (x) 5   1 _____ x 1 3  

13 f (x) 510x 1 1 14 f (x) 5  
3
 √
_____

 x 2 9  

In questions 15–18, find the domain for a) the function f, b) the function g, and c) the 
composite function f    g.

15 f (x) 5  √
__

 x  , g(x) 5 x2 1 1 16 f (x) 5   1 __ x  , g(x) 5​x 1 3

17 f (x) 5   3 ______ x2 2 1
  , g(x) 5 x 1 1 18 f (x) 5 2x 1 3, g(x) 5   x __ 

2
  

Exercise 2.2

Pairs of inverse functions
Let’s look again at the function at the start of this chapter – the formula 

that converts degrees Celsius (C) to degrees Fahrenheit (F): F 5   9 __ 5  C 1 32. 

If we rearrange the function so that C is the independent variable (i.e. C is 
expressed in terms of F ), we get a different formula that does the reverse, 
or inverse process, and converts F to C. Writing C in terms of F (solving for

C) gives: C 5   5 __ 
9

  (F 2 32)or C 5   5 __ 
9

  F 2   160 ___ 
9

  . This new formula could be 

useful for people travelling to the USA. These two conversion formulae, 

F 5   9 __ 5  C 1 32 and C 5   5 __ 
9

  F 2   160 ___ 
9

  , are both linear functions. As mentioned 

Inverse functions2.3
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previously, it is typical for the independent variable (domain) of a function 
to be x and the dependent variable (range) to be y. Let’s assign the name 
f to the function converting C to F, and the name g to the function 
converting F to C. 

 converting C to F: y 5   9 __ 5  x 1 32 ⇒ f (x) 5   9 __ 5  x 1 32

 converting C to F: y 5   5 __ 
9

  x 2   160 ___ 
9

   ⇒ g (x) 5   5 __ 
9

  x 2   160 ___ 
9

  

The two functions, f and g, have a ‘special’ relationship in that they ‘undo’ 
each other. 

To illustrate, function f converts 25  °C to 77  °F

 [ f  (25) 5   9 __ 5  (25) 1 32 5 45 1 32 5 77 ] , and then function g can ‘undo’ this 

by converting 77  °F back to 25  °C

 [ g (77) 5   5 __ 
9

  (77) 2   160 ___ 
9

   5   385 2 160 _________ 
9

   5   225 ___ 
9

   5 25 ] . Because function g has 

this reverse (inverse) effect on function f, we call function g the inverse of 
function f. Function f  has the same inverse effect on function g [g(77) 5 25 
and then f (25) 5 77], making f  the inverse function of g. The functions f 
and g are inverses of each other – they are a pair of inverse functions. 

In Figure 2.7, the mapping diagram for the functions f and g illustrates the 
inverse relationship for a pair of inverse functions where the domain of 
one is the range for the other.

The composition of two inverse functions
The mapping diagram (Figure 2.7) and the numerical examples in the 
previous paragraph indicate that if function f is applied to a number in 
its domain (e.g. 25) giving a result in the range of f (e.g. 77) and then 
function g is applied to this result, the final result (e.g. 25) is the same 
number first chosen from the domain of f. This process and result can be 
expressed symbolically as: (g    f  )(x) 5 x or g (f (x)) 5 x. The composition 
of two inverse functions maps any value x back to itself – i.e. one function 
‘undoing’ the other. It must also follow that (f    g) 5 x. Let’s verify these 
results for the pair of inverse functions f and g.

 (g    f  )(x) 5 g  (   9 __ 5  x 1 32 )  5   5 __ 
9

    (   9 __ 5  x 1 32 )  2   160 ___ 
9

   5 x 1   160 ___ 
9

   2   160 ___ 
9

   5 x

 f (g(x)) 5 f  (   5 __ 
9

  x 2   160 ___ 
9

   )  5   9 __ 5    (   5 __ 
9

  x 2   160 ___ 
9

   )  1 32 5 x 2   160 ___ 5   1 32 

  5 x 2 32 1 32 5 x

Examples 7 and 8 in the previous section on composite functions explored 
whether f    g 5 g    f. Example 7 provided a counter-example showing it 
is not a true statement. However, Example 8 showed a pair of functions 
for which (f     g)(x) 5 (g    f  )(x) 5 x; the same result that we just obtained 
for the pair of inverse functions that convert between C and F. The two 
functions in Example 8, f  :  x ↦ 3x 2 6 and g  :  x ↦   1 _ 3  x 1 2, are also a pair of 
inverse functions.

You are already familiar with 
pairs of inverse operations. 
Addition and subtraction 
are inverse operations. For 
example, the rule of ‘adding 
six’ (x 1 6) and the rule of 
‘subtracting six’ (x 2 6) undo 
each other. Accordingly, the 
functions f (x) 5 x 1 6 and 
g (x) 5 x 2 6 are a pair of 
inverse functions. Multiplication 
and division are also inverse 
operations.

domain of f  f

 g

range of f

C

range of g domain of g

F

25 77

Figure 2.7

 Hint: Writing a function using 
x and y for the independent and 
dependent variables, such that y is 
expressed in terms of x, is a good 
idea because this is the format in 
which you must enter it on your 
GDC in order to have the GDC 
display a graph or table for the 
function.

Plot1

Y1=(9/5)X+32
Plot2 Plot3

Y2=(5/9)X-160/9
Y3=
Y4=
Y5=
Y6=
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Definition of the inverse of a function

If f and g are two functions such that (f   g)(x) 5 x for every x in the domain of g and 
(g    f  )(x) 5 x for every x in the domain of f, the function g is the inverse of the function f. 
The notation to indicate the function that is the ‘inverse of function f ‘ is f 21. Therefore,

 (f   f 21)(x) 5 x and (f 21   f ​)(x) 5 x
The domain of f must be equal to the range of f 21, and the range of f must be equal to 
the domain of f 21. 

Figure 2.8 shows a mapping diagram for a pair of inverse functions.

Finding the inverse of a function
Example 11 

Given the linear function f (x) 5 4x 2 8, find its inverse function f 21(x) 
and verify the result by showing that (f   f 21)(x) 5 x and (f 21   f  )(x) 5 x.

Solution
Recall that the way we found the inverse of the function converting C to F, 
F 5   9 _ 5  C 1 32, was by making the independent variable the dependent 
variable and vice versa. Essentially what we are doing is switching the domain 
(x) and range (y), since the domain of f  becomes the range of f 21 and the 
range of f  becomes the domain of f 21, as stated in the definition of the 
inverse of a function, and depicted in Figure 2.8. Also, recall that y 5 f (x).

 f (x) 5 4x 2 8
 y 5 4x 2 8 write y 5 f (x)
 x 5 4y 2 8 interchange x and y (i.e. switch the domain and range)
 4y 5 x 1 8 solve for y (dependent variable) in terms of x (independent 
   variable)
 y 5   1 _ 4  x 1 2

 f 21(x) 5   1 _ 4  x 1 2 resulting equation is y 5 f 21(x)

Verify that f and f 21 are inverses by showing that f (f 21 (x)) 5 x and 
f 21(f (x)) 5 x.

f   (   1 _ 4  x 1 2 )  5 4 (   1 _ 4  x 1 2 )  2 8 5 x 1 8 2 8 5 x

f  21(4x 2 8) 5   1 _ 4  (4x 2 8) 1 2 5 x 2 2 1 2 5 x

This confirms that y 5 4x 2 8 and y 5   1 _ 4  x 1 2 are inverses of each other.

The method of interchanging x and y to find the inverse function also gives us 
a way for obtaining the graph of f 21 from the graph of f. Given the reversing 
effect that a pair of inverse functions have on each other, if f (a) 5 b then 
f 21(b) 5 a. Hence, if the ordered pair (a, b) is a point on the graph of y 5 f (x), 
the ‘reversed’ ordered pair (b, a) must be on the graph of y 5 f 21(x). Figure 
2.9 shows that the point (b, a) can be found by reflecting the point (a, b) about 
the line y 5 x.

As Figure 2.10 illustrates, the following is true.

Graphical symmetry of inverse functions

The graph of f 21 is a reflection of the graph of f about the line y 5 x.

domain of f f

f�1

range of f

range of f�1 domain of f�1

x y

Figure 2.8 f (x) 5 y and f 21(y) 5 x.

It follows from the definition 
that if g is the inverse of f, it 
must also be true that f is the 
inverse of g. 

 Hint: Do not mistake the 21 in 
the notation f 21 for an exponent. 
It is not an exponent. f 21 does not 
denote the reciprocal of f (x). If a 
superscript of 21 is applied to the 
name of a function – as in f 21(x) or 
sin21(x) – it denotes the function that 
is the inverse of the named function 
(e.g. f (x) or sin(x)). If a superscript of 
21 is applied to an expression, as in 
721 or (2x 1 5)21 or (f (x))21, it is an 
exponent and denotes the reciprocal 
of the expression. For example, the 

reciprocal of f (x) is (f (x))21 5 ​​ 1 ___​
f (x)

 ​.

(a, b)

(b, a)
y � x

x

y

0

Figure 2.9

0

y � x

f

f�1

x

y

Figure 2.10
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The identity function
We have repeatedly demonstrated the fact, and it is formally stated in 
the definition of the inverse of a function, that the composite function 
which has a pair of inverse functions as its components is always the linear 
function y 5 x. That is, (f     f 21)(x) 5 x or (f 21   f  )(x) 5 x. Let’s label the 
function y 5 x with the name I. Along with the fact that I(x) 5 (f     f 21)(x) 
5 (f 21   f  )(x) 5 x, the function I(x) has other interesting properties. It is 
obvious that the line y 5 x is reflected back to itself when reflected about 
the line y 5 x. Hence, from the graphical symmetry of inverse functions, 
the function I(x) is its own inverse; that is, I(x) 5 I21(x). Most interestingly, 
I(x) behaves in composite functions just like the number one behaves for 
real numbers and multiplication. The number one is the identity element 
for multiplication. For any function f, it is true that f     I 5 f and I     f 5 f. For 
this reason, we call the function f (x) 5 x, or I(x) 5 x, the identity function. 

The existence of an inverse function
Is it possible for the inverse of a function not to be a function? Recall that 
the definition of a function (Section 2.1) says that a function is a relation 
such that a certain value x in the domain produces only one value y in the 
range. The vertical line test for functions followed from this definition.

Example 12 

Find the inverse of the function g (x) 5 x 2 1 2 with domain x    R.

Solution
Following the method used in Example 11:
 g(x) 5 x 2 1 2
 y 5 x 2 1 2
 x 5 y 2 1 2
 y 2 5 x 2 2
 y 5 ​√

_____
 x 2 2  

Certainly the graphs of y 5 x 2 1 2 and y 5 ​√
_____

 x 2 2   are reflections about 
the line y 5 x (see Figure 2.11). However, the graph of y 5 ​√

_____
 x 2 2   does 

not pass the vertical line test. y 5 ​√
_____

 x 2 2   is the inverse of g (x) 5 x 2 1 2, 
but it is only a relation and not a function.

The inverse of g (x) will be a function only if g (x) is a one-to-one function; 
that is, a function such that no two elements in the domain (x) of g 
correspond to the same element in the range (y). The graph of a one-to-one 
function must pass both a vertical line test and a horizontal line test.

When f (x) 5 f 21(x), the 
function f is said to be self-
inverse. The fact that the 
function f (x) 5 x is self-inverse 
should make you wonder if 
there are any other functions 
with the same property. 
Knowing that inverses are 
symmetric about the line  
y 5 x, we only need to find a 
function whose graph has  
y 5 x as a line of symmetry.

y � x

y �    x � 2
y � x2 � 2

x

y

y � �   x � 2

0

Figure 2.11
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Definition of a one-to-one function
A function is one-to-one if each element y in the range is the image of exactly one 
element x in the domain. No horizontal line can pass through the graph of a one-to-one 
function at more than one point (horizontal line test).

Referring back to Example 12, you now understand that the function  
g (x) 5 x 2 1 2 with domain x  R does not have an inverse function g21(x). 
However, if the domain is changed so that g​(x) is one-to-one, then g21(x) 
exists. There is not only one way to change the domain of a function in 
order to make it one-to-one.

Example 13 

Given g (x) 5 x 2 1 2 such that x > 0, find g21(x) and state its domain.

Solution
Given that the domain is x > 0, the 
range for g​(x) will be y > 0. Since the 
domain and range are switched for the 
inverse, for g21(x) the domain is x > 2 
and the range is y > 2. Given the 
working in Example 12, it follows that 
g21(x) 5  √

_____
 x 2 2   with domain x > 2.

The function f (x) 5 x 2 with domain x    R (Figure 
2.12) is not a one-to-one function. Hence, its inverse 
is not a function. There are two different values of x 
that correspond to the same value of y; for example, 
x 5 2 and x 5 22 both get mapped to y 5 4. 
Hence, f does not pass the horizontal line test.

The function f (x) 5 x 2 with domain x > 0 is a one-
to-one function (Figure 2.13). Hence, its inverse is 
also a function. [Note: domain changed to x > 0.]

A function f has an inverse function f 21 if and only if 
f is one-to-one.

x

y

2

4

6

8

10

�1�2�3 1 2 30
Figure 2.12

x

y

2

4

6

8

10

�1�2�3 1 2 30
Figure 2.13

x

y

y � x2 � 2, x � 0

y �    x � 2, x � 2
0
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Example 14 

Given g (x) 5 x 2 1 2 such that x <​21, find g21(x) and state its domain.

Solution
Given that the domain is x <​21,
the range for g (x) will be y > 3. Since 
the domain and range are switched for 
the inverse, for g21(x) the domain is 
x > 3 and the range is y <​21. Given 
the working in Example 12, it follows 
that g21(x) 5​2​√

_____
 x 2 2   with domain 

x > 3.

Finding the inverse of a function
To find the inverse of a function f, use the following steps:
1 Confirm that f is one-to-one (although, for this course, you can assume this).
2 Replace f (x) with y.
3 Interchange x and y.
4 Solve for y.
5 Replace y with f 21(x).
6 The domain of f 21 is equal to the range of f; and the range of f 21 is equal to the 

domain of f.

Example 15 

Consider the function f  :  x ↦  √
_____

 x 1 3  , x >​23.

a) Determine the inverse function f 21.

b) What is the domain of f 21?

Solution
a) Following the steps for finding the inverse of a function gives:

 y 5  √
_____

 x 1 3   replace f (x) with y

 x 5  √
_____

 y 1 3   interchange x and y

 x 2 5 y 1 3 solve for y (squaring both sides here)

 y 5 x 2 2 3 solved for y

f 21  :  x ↦ x 2 2 3 replace y with f 21(x)

b) The domain explicitly defined for f is x >​23 and since the  √
__

  symbol 
stands for the principal square root (positive), then the range of f is 
all positive real numbers, i.e. y >​0. The domain of f 21 is equal to the 
range of f ; therefore, the domain of f 21 is x >​0.

Graphing y 5  √
_____

 x 1 3   and y 5 x 2 2 3 from Example 15 on your GDC 
visually confirms these results. Note that since the calculator would have 
automatically assumed that the domain is x  R, the domain for the 

 Hint: For the Mathematics 
Standard Level course, if an inverse 
function is to be found, the given 
function will be defined with a 
domain that ensures it is one-to-
one. x

y

y � x2 � 2
x � �1

y � �   x � 2
x � 3

0
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equation y 5 x 2 2 3 has been changed to x >​0. In order to show that 
f and f 21 are reflections about the line y 5 x, the line y 5 x has been 
graphed and a viewing window has been selected to ensure that the scales 
are equal on each axis. Using the trace feature of your GDC, you can 
explore a characteristic of inverse functions – that is, if some point (a, b) 
is on the graph of f, the point (b, a) must be on the graph of f 21.

Example 16 

Consider the function f (x) 5 2(x 1 4) and g (x) 5   1 2 x _____ 
3

  .

a) Find g 21 and state its domain and range.

b) Solve the equation (f    g 21)(x) 5 2.

Solution

a)  y 5   1 2 x _____ 
3

   replace f (x) with y

 x 5   
1 2 y

 _____ 
3

   interchange x and y

 3x 5 1 2 y solve for y

 y 5 23x 1 1 solved for y

 g21(x) 5 23x 1 1 replace y with g21(x)

g is a linear function and its domain is x    R and its range is y   R; 
therefore, for g21 the domain is x   R and range is y   R.

b)  (f    g 21)(x) 5 f (g 21(x)) 5 f (23x 1 1) 5 2

 2[(23x 1 1) 1 4] 5 2

 26x 1 2 1 8 5 2

 26x 5 28

 x 5   4 _ 3  

Example 17 

Given f (x) 5 x 2 2​6x, find the inverse f 21(x) and state its domain.

Solution
The graph of f (x) 5 x 2 2​6x, x   R, is a parabola with a vertex at (3, 29). It 
is not a one-to-one function. There are many ways to restrict the domain of f 
to make it one-to-one. The choices that have the domain as large as possible 
are x > 3 or x < 3. Let’s change the domain of f to x > 3.

Plot1 WINDOW
Xmin=–6
Xmax=6
Xscl=1
Ymin=–4
Ymax=4
Yscl=1
Xres=1

Y1= √( X+3)
Plot2 Plot3

Y2=(X2-3)(X > 0)
Y3= X
Y4=
Y5=
Y6=
Y7=

Y2=(X2-3)( X>0)

X=2 Y=1

Y1= √(X+3)

X=1 Y=2

Y1=X2-6X

X=3 Y=-9



52

Functions and Equations2

 y 5 x 2 2 6x replace f (x) with y

 x 5 y 2 2 6y interchange x and y

 y 2 2 6y 1 9 5 x 1 9  add 9 to both sides 
(See pg 67 for explanation of method)

 (y 2 3)2 5 x 1 9 substituting (y 2 3)2 for y 2 2 6y 1 9

 y 2 3 5  √
_____

 x 1 9  

 y 5 3 1  √
_____

 x 1 9   1 rather than  because range of f 21 is x > 3 
   (domain of f  )

In order for   √
_____

 x 1 9   to be a real number then x >​29.

Therefore, f 21(x)5 3 1  √
_____

 x 1 9   and the domain of f 21 is x >​29.

The inverse relationship between f (x) 5 x 2 2​6x and f 21(x)5 3 1  √
_____

 x 1 9   
is confirmed graphically in Figure 2.14.

y � x2 � 6x

y � 3 �   x � 9

(�9, 3)

(3, �9)

y

x0

Figure 2.14

In questions 1–4, assume that f is a one-to-one function.

 1 a) If f (2) 5 25, what is f 21(25)? b) If f 21(6) 5 10, what is f (10)?

 2 a) If f (21) 5 13, what is f 21(13)? b) If f 21(b) 5 a, what is f (a)?

 3 If g (x) 5 3x 2 7, what is g21(5)?

 4 If h (x) 5 x2 2 8x, with x > 4, what is h 21(212)?

In questions 5–12, show a) algebraically and b) graphically that f and g are inverse 
functions by verifying that (f    g)(x) 5 x and (g    f )(x) 5 x, and by sketching the 
graphs of f and g on the same set of axes, with equal scales on the x- and y-axes. Use 
your GDC to assist in making your sketches on paper.

 5 f  :  x ↦ x 1 6; g  :  x ↦ x 2 6  6 f  :  x ↦ 4x; g  :  x ↦   x __ 
4

  

 7 f  :  x ↦ 3x 1 9; g  :  x ↦   1 _ 3  x 2 3  8 f  :  x ↦   1 __ x  ; g  :  x ↦   1 __ x  

 9 f  :  x ↦ x 2 2 2, x > 0; g  :  x ↦  √
_____

 x 1 2  , x > 22 

10 f  :  x ↦ x 3; g  :  x ↦  3 √
__

 x   11 f  :  x ↦   1 _____ 1 1 x  ; g  :  x ↦   1 2 x _____ x   

12 f  :  x ↦ (6 2 x )   
1 _ 2   ; g  :  x ↦ 6 2 x 2, x > 0

In questions 13–20, find the inverse function f 21 and state its domain.

13 f (x) 5 2x 2 3 14 f (x) 5   x 1 7 _____ 
4

  

15 f (x) 5  √
__

 x   16 f (x) 5   1 _____ x 1 2  

17 f (x) 5 4 2 x 2, x > 0 18 f (x) 5  √
_____

 x 2 5  

19 f (x) 5 ax 1 b, a  0 20 f (x) 5 x 2 1 2x, x > 21

In questions 21–28, use the functions g (x) 5 x 1 3 and h (x) 5 2x 2 4 to find the 
indicated value or the indicated function.

21 (g21    h21)(5) 22 (h21    g21)(9) 23 (g21    g21)(2)

24 (h21    h21)(2) 25 g21    h21 26 h21    g21

27 (g    h)21 28 (h    g)21

29 The function in question 8, f (x) 5   1 __ x  , is its own inverse (self-inverse). Show that 

 any function in the form f (x) 5   a _____ x 1 b
   2 b, a  0, is its own inverse.

Exercise 2.3
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Even when you use your GDC to sketch the graph of a function, it is helpful 
to know what to expect in terms of the location and shape of the graph 
– and even more so if you’re not allowed to use your GDC for a particular 
question. In this section, we look at how certain changes to the equation 
of a function can affect, or transform, the location and shape of its graph. 
We will investigate three different types of transformations of functions 
that include how the graph of a function can be translated, reflected and 
stretched (or shrunk). This will give us a better understanding of how to 
efficiently sketch and visualize many different functions. 

Graphs of common functions
It is important for you to be familiar with the location and shape of a 
certain set of common functions. For example, from your previous 
knowledge about linear equations, you can determine the location of the 
linear function f (x) 5 ax 1 b. You know that the graph of this function is a 
line whose slope is a and whose y-intercept is (0, b).

The eight graphs in Figure 2.15 represent some of the most commonly 
used functions in algebra. You should be familiar with the characteristics 
of the graphs of these common functions. This will help you predict and 
analyze the graphs of more complicated functions that are derived from 
applying one or more transformations to these simple functions. There are 
other important basic functions with which you should be familiar – for 
example, exponential, logarithmic and trigonometric functions – but we 
will encounter these in later chapters.

Transformations of functions2.4

0

y

x

 Hint: When analyzing the graph 
of a function, it is often convenient 
to express a function in the form  
y 5 f (x). As we have done 
throughout this chapter, we often 
refer to a function such as f (x) 5 x 2 
by the equation y 5 x 2.

Figure 2.15 Graphs of common 
functions.

y

x

f(x) � c

0

a) Constant function

y

x

f(x) � x

0

b) Identity function

y

x

f(x) � x

0

c) Absolute value  
function

y

x

f(x) � x2

0

d) Squaring function

y

x

f(x) �    x

0

e) Square root function

y

x

f(x) � x3

0

f) Cubing function

y

x

f(x) � 1
x

0

g) Reciprocal function

y

x

f(x) � 1
x2

0

h) Inverse square function
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We will see that many functions have graphs that are a transformation 
(translation, reflection or stretch), or a combination of transformations, of 
one of these common functions.

Vertical and horizontal  
translations
Use your GDC to graph each of the following 
three functions: f (x) 5 x 2, g (x) 5 x 2 1 3 and 
h(x) 5 x 2 2 2. How do the graphs of g and h 
compare with the graph of f that is one of the 
common functions displayed in Figure 2.15? 
The graphs of g and h both appear to have the 
same shape – it’s only the location, or position, 
that has changed compared to f. Although the 
curves (parabolas) appear to be getting closer 
together, their vertical separation at every value 
of x is constant.

As Figures 2.16 and 2.17 clearly show, you can obtain the graph of  
g (x) 5 x 2 1 3 by translating (shifting) the graph of f (x) 5 x 2 up three 
units, and you can obtain the graph of h (x) 5 x 2 2 2 by translating the 
graph of f (x) 5 x 2 down two units. 

Vertical translations of a function
Given k . 0, then:
I. The graph of y 5 f (x) 1 k is obtained by translating up k units the graph of y 5 f (x).
II. The graph of y 5 f (x) 2 k is obtained by translating down k units the graph of y 5 f (x).

Change function g to g (x) 5 (x 1 3)2 and change function h to 
h (x) 5 (x 2 2)2. Graph these two functions along with the ‘parent’ function 

 Hint: The word inverse can have 
different meanings in mathematics 
depending on the context. In 
Section 2.3 of this chapter, inverse 
is used to describe operations or 
functions that undo each other. 
However, ‘inverse’ is sometimes 
used to denote the multiplicative 
inverse (or reciprocal) of a 
number or function. This is how it is 
used in the names for the functions 
shown in g) and h) of Figure 2.15. 
The function in g) is sometimes 
called the reciprocal function.

y

(�2, 7)

(1, 4)

(1, 1)

(3, 9)

(3, 12)

(�2, 4)

y � x2 � 3

y � x2

x0

Figure 2.16

y

(�2, 4)

(1, 1)

(1, �1)

(3, 7)

(3, 9)

(�2, 2)

y � x2 � 2

y � x2

x0

Figure 2.17

Plot1

Y1= X2
Plot2 Plot3

Y2= X2 + 3
Y3= X2 - 2
Y4=
Y5=
Y6=
Y7=
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f (x) 5 x 2 on your GDC. This time we observe that functions g and h can be 
obtained by a horizontal translation of f. 

Figure 2.18

Figure 2.19

As Figures 2.18 and 2.19 clearly show, you can obtain the graph of g (x) 5 
(x 1 3)2 by translating the graph of f (x) 5 x 2 three units to the left, and you 
can obtain the graph of h (x) 5 (x 2 2)2 by translating the graph of f (x) 5 x 2 
two units to the right.

Horizontal translations of a function
Given h . 0, then:

I. The graph of y 5​f (x 2 h) is obtained by translating the graph of y 5 f (x) h units to 
the right.

II. The graph of y 5 f (x 1 h) is obtained by translating the graph of y 5 f (x) h units to 
the left.

Note 
that a different 

graphing style is 
assigned to each 
equation on the 

GDC.

Plot1

Y1= X2
Plot2 Plot3

Y2=(X + 3)2
Y3=(X - 2)2
Y4=
Y5=
Y6=
Y7=

y

(�2, 4)
(�5, 4)

(0, 9)

y � (x � 3)2 y � x2

x

(3, 9)

0

y

(0, 4)(�2, 4)

(3, 9)

y � (x � 2)2

y � x2

x

(5, 9)

0
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Example 18 

The diagrams show how the graph of y 5  √
__

 x   is transformed to the graph 
of y 5 f (x) in three steps. For each diagram, a) and b), give the equation of 
the curve.

Solution
To obtain graph a), the graph of y 5  √

__
 x   is translated three units to the 

right. To produce the equation of the translated graph, 23 is added inside 
the argument of the function y 5  √

__
 x   . Therefore, the equation of the curve 

graphed in a) is y 5  √
_____

 x 2 3  .

To obtain graph b), the graph of y 5  √
_____

 x 2 3   is translated up one unit. 
To produce the equation of the translated graph, 11 is added outside the 
function. Therefore, the equation of the curve graphed in b) is  
y 5  √

_____
 x 2 3   1 1 (or y 5​1​1  √

_____
 x 2 3  ).

Example 19 

Write the equation of the absolute value function whose graph is shown 
on the left.

Solution
The graph shown is exactly the same shape as the graph of the equation 
y 5 |x | but in a different position. Given that the vertex is (22, 23), it is 
clear that this graph can be obtained by translating y 5 |x | two units left

 Hint: A common error is caused by confusion about the direction of a horizontal 
translation since f (x) is translated left if a positive number is added inside the argument of 
the function – e.g. g (x) 5 (x 1 3)2 is obtained by translating f (x) 5 x2 three units left. You 
are in the habit of associating positive with movement to the right (as on the x-axis) instead 
of left. Whereas f (x) is translated up if a positive number is added outside the function – e.g.
g (x) 5 x2 1 3 is obtained by translating f (x) 5 x2 three units up. This agrees with the 
convention that a positive number is associated with an upward movement (as on the 
y-axis). An alternative (and more consistent) approach to vertical and horizontal translations 
is to think of what number is being added directly to the x- or y-coordinate. For example, 
the equation for the graph obtained by translating the graph of y 5 x2 three units up is 
y 5 x2 1 3, which can also be written as y 2 3 5​x2. In this form, negative three is added to 
the y-coordinate (vertical coordinate), which causes a vertical translation in the upward (or 
positive) direction. Likewise, the equation for the graph obtained by translating the graph of  
y 5 x2 two units to the right is y 5 (x 2 2)2. Negative two is added to the x-coordinate 
(horizontal coordinate), which causes a horizontal translation to the right (or positive 
direction). There is consistency between vertical and horizontal translations. Assuming that 
movement up or to the right is considered positive, and that movement down or to the left 
is negative, then the direction for either type of translation is opposite to the sign () of the 
number being added to the vertical (y) or horizontal (x) coordinate. In fact, what is actually 
being translated is the y-axis or the x-axis. For example, the graph of y 2 3 5​x2 can also be 
obtained by not changing the graph of y 5 x2 but instead translating the y-axis three units 
down – which creates exactly the same effect as translating the graph of y 5 x2 three units up.

Note that in Example 18, if 
the transformations had been 
performed in reverse order 
– that is, the vertical translation 
followed by the horizontal 
translation – it would produce 
the same final graph (in part 
b)) with the same equation. In 
other words, when applying 
both a vertical and horizontal 
translation on a function it 
does not make any difference 
which order they are applied 
(i.e. they are commutative). 
However, as we will see further 
on in the chapter, it can make 
a difference to how other 
sequences of transformations 
are applied. In general, 
transformations are not 
commutative.

f(x) �    x

y

x

y

x

y

x

1

33

a) b)

0 0 0

(�2, �3)

(�5, 0) (1, 0)

y

x0
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and then three units down. When we move y 5 |x | two units left we get the 
graph of y 5 |x 1 2 |. Moving the graph of y 5 |x 1 2 | three units down 
gives us the graph of y 5 |x 1 2 | 2​3. Therefore, the equation of the graph 
shown is y 5 |x 1 2 | 2​3. (Note: The two translations applied in reverse 
order produce the same result.)

Reflections
Use your GDC to graph the two functions f (x) 5 x 2 and g (x) 5 2x 2. The 
graph of g (x) 5 2x 2 is a reflection in the x-axis of f (x) 5 x 2. This certainly 
makes sense because g is formed by multiplying f  by 21, causing the 
y-coordinate of each point on the graph of y 5 2x 2 to be the negative of the 
y-coordinate of the point on the graph of y 5 x 2 with the same x-coordinate.

Figures 2.20 and 2.21 illustrate that the graph of y 5 2f (x) is obtained by 
reflecting the graph of y 5 f (x) in the x-axis.

Graph the functions f (x) 5  √
_____

 x 2 2   and g (x) 5  √
______

 2x 22   . Previously, with 
f (x) 5 x 2 and g (x) 5​2x 2, g was formed by multiplying the entire function 
f  by 21. However, for f (x) 5  √

_____
 x 2 2   and g (x) 5  √

______
 2x 22  , g is formed by 

multiplying the variable x by 21. In this case, the graph of g (x) 5  √
______

 2x 22   
is a reflection in the y-axis of f (x) 5  √

_____
 x 2 2  . This makes sense if you 

recognize that the y-coordinate on the graph of y 5  √
___

 2x   will be the same as 
the y-coordinate on the graph of y 5  √

__
 x  , if the value substituted for x in 

y 5  √
___

 2x   is the opposite of the value of x in y 5  √
__

 x  . For example, if x 5 9 
then y 5  √

__
 9   5 3; and, if x 5 29 then y 5  √

______

 2(29)   5  √
__

 9   5 3. Opposite 
values of x in the two functions produce the same y-coordinate for each.

 Hint: The expression 2x 2 is 
potentially ambiguous. It is 
accepted to be equivalent to 2(x)2. 
It is not equivalent to (2x)2. For 
example, if you enter the expression 
232 into your GDC, it gives a result 
of 29, not 19. In other words, the 
expression 232 is consistently 
interpreted as 32 being multiplied 
by 21. The same as 2x 2 is 
interpreted as x 2 being multiplied 
by 21.

y � �x2

y � x2

y

x

(2, 4)

(2, �4)
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0

y � f(x)

y � �f(x)

y

x

(a, �f(a))

(a, f(a))

(b, f(b))

(b, �f(b))

0

Figure 2.20 Figure 2.21
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Figures 2.22 and 2.23 illustrate that the graph of y 5 f (2x) is obtained by 
reflecting the graph of y 5 f (x) in the y-axis.

Reflections of a function in the coordinate axes
I. The graph of y 5 2f (x) is obtained by reflecting the graph of y 5 f (x) in the x-axis.
II. The graph of y 5 f (2x) is obtained by reflecting the graph of y 5 f (x) in the y-axis.

Example 20 

For g (x) 5 2x 3 2 6x 2 1 3, find: 
a) the function h(x) that is the reflection of g(x) in the x-axis
b) the function p(x) that is the reflection of g(x) in the y-axis.

Solution
a) Knowing that y 5 2f (x) is the reflection of y 5 f (x) in the x-axis, then 

h(x) 5 2g(x) 5 2(2x 3 2 6x 2 1 3) ⇒ h(x) 5 22x 3 1 6x 2 2 3 will be 
the reflection of g(x) in the x-axis. We can verify the result on the GDC 
– graphing the original equation y 5 2x 3 2 6x 2 1 3 in bold style.

b) Knowing that y 5 f (2x) is the reflection of y 5 f (x) in the y-axis, we 
need to substitute 2x for x in y 5 g (x). Thus, 
p(x) 5 g(2x) 5 2(2x)3 2 6(2x)2 1 3 ⇒ p(x) 5 22x 3 2 6x 1 3 will be 
the reflection of g (x) in the y-axis. Again, we can verify the result on the 
GDC – graphing the original equation y 5 2x 3 2 6x 2 1 3 in bold style.

y �    x � 2

y

x

(11, 3)

(6, 2)
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y �    � x � 2

0

Figure 2.22
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0
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Non-rigid transformations: stretching and 
shrinking
Horizontal and vertical translations, and reflections in the x- and y-axes 
are called rigid transformations because the shape of the graph does not 
change – only its position is changed. Non-rigid transformations cause 
the shape of the original graph to change. The non-rigid transformations 
that we will study cause the shape of a graph to stretch or shrink in either 
the vertical or horizontal direction.

Vertical stretch or shrink
Graph the following three functions: f (x) 5 x 2, g (x) 5 3x 2 and 
h (x) 5   1 _ 3  x 2. How do the graphs of g and h compare to the graph of f ? 
Clearly, the shape of the graphs of g and h is not the same as the graph of 
f. Multiplying the function f  by a positive number greater than one, or less 
than one, has distorted the shape of the graph. For a certain value of x, the 
y-coordinate of y 5 3x 2 is three times the y-coordinate of y 5 x 2. Therefore, 
the graph of y 5 3x 2 can be obtained by vertically stretching the graph of 
y 5 x 2 by a factor of 3 (scale factor 3). Likewise, the graph of y 5   1 _ 3  x 2 can 
be obtained by vertically shrinking the graph of y 5 x 2 by scale factor   1 _ 3  . 

Figures 2.24 and 2.25 illustrate how multiplying a function by a positive 
number, a, greater than one causes a transformation by which the function 
stretches vertically by scale factor a. A point (x, y) on the graph of y 5 f (x) 
is transformed to the point (x, ay) on the graph of y 5 af (x).

y

(1, 3)

(1, 1)

y � 3x2

y � x2

x

(2, 12)

(2, 4)

0

Figure 2.24
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(x, af(x))

0

Figure 2.25

Plot1
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Figures 2.26 and 2.27 illustrate how multiplying a function by a positive 
number, a, greater than zero and less than one causes the function to 
shrink vertically by scale factor a. A point (x, y) on the graph of y 5 f (x) is 
transformed to the point (x, ay) on the graph of y 5 af (x).

Vertical stretching and shrinking of functions
I. If a . 1, the graph of y 5 af (x) is obtained by vertically stretching the graph of 

y 5 f (x).
II. If 0 , a , 1, the graph of y 5 af (x) is obtained by vertically shrinking the graph of 

y 5 f (x).

Horizontal stretch or shrink

Let’s investigate how the graph of y 5 f (ax) is obtained from the graph 
of y 5 f (x). Given f (x) 5 x 2 2 4x, find another function, g (x), such 
that g (x) 5 f (2x). We substitute 2x for x in the function f, giving 
g (x) 5 (2x)2 2 4(2x). For the purposes of our investigation, let’s leave g (x) 
in this form. On your GDC, graph these two functions, f (x) 5 x 2 2 4x and 
g (x) 5 (2x)2 2 4(2x), using the indicated viewing window and graphing f in 
bold style.

Comparing the graphs of the two equations, we see that y 5 g (x) is not a 
translation or a reflection of y 5 f (x). It is similar to the shrinking effect that 
occurs for y 5 af (x) when 0 , a , 1, except, instead of a vertical shrinking, 
the graph of y 5 g (x) 5 f (2x) is obtained by horizontally shrinking the graph 
of y 5 f (x). Given that it is a shrinking – rather than a stretching – the scale 
factor must be less than one. Consider the point (4, 0) on the graph of y 5 f (x). 
The point on the graph of y 5 g (x) 5 f (2x) with the same y-coordinate and on 

y

(2,    )

y �    x2
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x
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(3, 3)

4
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the same side of the parabola is (2, 0). The x-coordinate of the point on 
y 5 f (2x) is the x-coordinate of the point on y 5 f (x) multiplied by   1 _ 2  . Use 
your GDC to confirm this for other pairs of corresponding points on  
y 5 x 2 2 4x and y 5 (2x)2 2 4(2x) that have the same y-coordinate. 
The graph of y 5 f (2x) can be obtained by horizontally shrinking the 
graph of y 5 f (x) by scale factor   1 _ 2  . This makes sense because if
f (2x2) 5 (2x2)2 2 4(2x2) and f (x1) 5 x1

2 2 4x1 are to produce the same 

y-value then 2x2 5 x1; and, thus, x2 5   1 _ 2  x1. Figures 2.28 and 2.29 illustrate 
how multiplying the x-variable of a function by a positive number, a, 
greater than one causes the function to shrink horizontally by scale factor   1 __ a  . 

A point (x, y) on the graph of y 5 f (x) is transformed to the point  (   1 __ a  x, y )  

on the graph of y 5 f (ax).

If 0 , a , 1, the graph of the function y 5 f (ax) is obtained by a horizontal 
stretching of the graph of y 5 f (x) – rather than a shrinking – because the 
scale factor   1 __ a   will be a value greater than 1 if 0 , a , 1. Now, letting a 5   1 _ 2   

and, again using the function f (x) 5 x 2 2 4x, find g (x), such that 

g (x) 5 f  (   1 _ 2  x ) . We substitute   x __ 
2

   for x in f, giving  g (x) 5  (   x __ 
2

   ) 
2
 2 4 (   x __ 

2
   ) . On 

your GDC, graph the  functions f  and g using the indicated viewing 
window with f  in bold. 

The graph of y 5  (   x __ 
2

   ) 
2
 2 4 (   x __ 

2
   )  is a horizontal stretching of the graph of 

y 5 x 2 2 4x by scale factor   1 __ a   5    1  __ 
  1 
_ 2  
   5 2. For example, the point (4, 0) 

on y 5 f (x) has been moved horizontally to the point (8, 0) on 

y 5 g (x) 5 f  (   x __ 
2

   ) .

Figure 2.28
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Figures 2.30 and 2.31 illustrate how multiplying the x-variable of a 
function by a positive number, a, greater than zero and less than one causes 

the function to stretch horizontally by scale factor   1 __ a  . A point (x, y) on the 

graph of y 5 f (x) is transformed to the point  (   1 __ a  x, y )  on the graph of 
y 5 f (ax).

Horizontal stretching and shrinking of functions
I. If a . 1, the graph of y 5 f (ax) is obtained by horizontally shrinking the graph of 

y 5 f (x).
II. If 0 , a , 1, the graph of y 5 f (ax) is obtained by horizontally stretching the graph of 

y 5 f (x).

Example 21 

The graph of y 5 f (x) is shown. Sketch the graph of each of the following 
two functions.

 a) y 5 3f (x)

 b) y 5   1 _ 3   f (x)

 c) y 5 f (3x)

 d) y 5 f  (   1 _ 3  x ) 

Solution
a) The graph of y 5 3f (x) is obtained by 

vertically stretching the graph of y 5 f (x) by 
scale factor 3.
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x

y
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�1
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2
3

�4�5�6�7�8�9 �3 �2 �1 1 2 3 4 5 6 7 8 9
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3
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3
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y � f(   x)1
3

0

b) The graph of y 5   1 _ 3  f (x) is obtained by 
vertically shrinking the graph of y 5 f (x) by 
scale factor   1 _ 3  .

c) The graph of y 5 f (3x) is obtained by 
horizontally shrinking the graph of y 5 f (x) 
by scale factor   1 _ 3  .

d) The graph of y 5 f  (   1 _ 3  x )  is obtained by 
horizontally stretching the graph of y 5 f (x) 
by scale factor 3.

Example 22 

Describe the sequence of transformations performed on the graph of  
y 5 x 2 to obtain the graph of y 5 4x 2 2 3.

Solution
Step 1: Start with the graph of y 5 x 2.

Step 2: Vertically stretch y 5 x 2 by scale factor 4.

Step 3: Vertically translate y 5 4x 2 three units down.

x
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In questions 1–14, sketch the graph of f, without a GDC or by plotting points, by using your 
knowledge of some of the basic functions shown in Figure 2.15.

 1 f  :  x ↦ x 2 2 6  2 f  : x  ↦ (x 2 6) 2  3 f  :  x ↦ |x | 1 4

 4 f  :  x ↦ |x 1 4 |  5 f  :  x ↦ 5 1  √
_____

 x 2 2    6 f  :  x ↦   1 _____ x 2 3  

 7 f  :  x ↦   1 _______ 
(x 1 5)2   1 2  8 f  : x  ↦ 2x3 2 4  9 f  :  x ↦ 2​|x 2 1| 1 6

10 f  : x  ↦  √
_______

 2x 1 3    11 f  :  x ↦ 3 √
__

 x   12 f  : x  ↦   1 _ 2  x2 

13 f  :  x ↦  (   1 _ 2   x )  2 14 f  : x  ↦ (2x)3

In questions 15–18, write the equation for the graph that is shown.
15  16 

Exercise 2.4

x

�2

�4

�6

2

4

6

�2�4 2 4

y

0

x

�1

1

2

3

�2�4�6�8 2

y

0

Note that in Example 22, a vertical stretch followed by a vertical translation 
does not produce the same graph if the two transformations are performed 
in reverse order. A vertical translation followed by a vertical stretch would 
generate the following sequence of equations:

Step1: y 5 x 2  Step 2: y 5 x 2 2 3  Step 3: y 5 4(x 2 2 3) 5 4x 2 2 12

This final equation is not the same as y 5 4x 2 2 3.

When combining two or more transformations, the order in which they 
are performed can make a difference. In general, when a sequence of 
transformations includes a vertical/horizontal stretch or shrink, or a 
reflection through the x-axis, the order may make a difference.

Summary of transformations on the graphs of functions
Assume that a, h and k are positive real numbers.

Transformed function Transformation performed on y 5 f (x)
y 5 f (x) 1 k vertical translation k units up
y 5 f (x) 2 k vertical translation k units down
y 5 f (x 2 h) horizontal translation h units right
y 5 f (x 1 h) horizontal translation h units left
y 5 2f (x) reflection in the x-axis
y 5 f (2x) reflection in the y-axis
y 5 af (x) vertical stretch (a . 1) or shrink (0 , a , 1)
y 5 f (ax) horizontal stretch (0 , a , 1) or shrink (a . 1)
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A linear function is a polynomial function of degree one that can be 
written in the general form f (x) 5 ax 1 b, where a  0. The degree of 
a polynomial written in terms of x refers to the largest exponent for x in 
any terms of the polynomial. In this section, we will consider quadratic 
functions that are second degree polynomial functions, often written in the 
general form f (x) 5 ax 2 1 bx 1 c. Examples of quadratic functions, such as 
f (x) 5 x 2 1 2 (where a 5 1, b 5 0 and c 5 2) and f (x) 5 x 2 2 4x (where
a 5 1, b 5 24 and c 5 0), appeared earlier in this chapter.

Definition of a quadratic function
If a, b and c are real numbers, and a  0, the function f (x) 5 ax2 1 bx 1 c is a 
quadratic function. The graph of f is the graph of the equation y 5 ax2 1 bx 1 c and 
is called a parabola. 

Quadratic functions2.5

The word quadratic comes 
from the Latin word quadratus 
that means four-sided, to make 
square, or simply a square. 
Numerus quadratus means 
a square number. Before 
modern algebraic notation 
was developed in the 17th and 
18th centuries, the geometric 
figure of a square was used to 
indicate a number multiplying 
itself. Hence, raising a number 
to the power of two (in modern 
notation) is commonly referred 
to as the operation of squaring. 
Quadratic then came to be 
associated with a polynomial of 
degree two rather than being 
associated with the number 
four, as the prefix quad often 
indicates (e.g. quadruple).

17  18 Vertical and horizontal asymptotes shown:

19 The graph of f  is given. Sketch the 
graphs of the following functions.
a) y 5 f (x) 2 3
b) y 5 f (x 2 3)
c) y 5 2f (x)
d) y 5 f (2x)
e) y 5 2f (x)
f ) y 5 f (2x)
g) y 5​2f (x) 1 4

In questions 20–23, specify a sequence of transformations to perform on the graph 
of y 5 x2 to obtain the graph of the given function.

20 g  :  x ↦ (x 2 3)2 1 5 21 h  :  x ↦ 2​x 2 1 2

22 p  :  x ↦   1 _ 2  (x 1 4)2 23 f  :  x ↦ [3(x 2 1)]2 2 6
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Each parabola is symmetric about a vertical line called its axis of 
symmetry. The axis of symmetry passes through a point on the 
parabola called the vertex of the parabola, as shown in Figure 2.32. If
the leading coefficient, a, of the quadratic function f (x) 5 ax 2 1 bx 1 c 
is positive, the parabola opens upward (concave up) – and the  
y-coordinate of the vertex will be a minimum value for the function. 
If the leading coefficient, a, of f (x) 5 ax 2 1 bx 1 c is negative, the 
parabola opens downward (concave down) – and the y-coordinate of 
the vertex will be a maximum value for the function.

The graph of f (x) 5 a(x 2 h)2 1 k
From the previous section, we know that the graph of the equation  
y 5 (x 1 3)2 1 2 can be obtained by translating y 5 x 2 three units to 
the left and two units up. Being familiar with the shape and position of 
the graph of y 5 x 2, and knowing the two translations that transform 
y 5 x 2 to y 5 (x 1 3)2 1 2, we can easily visualize and/or sketch the 
graph of y 5 (x 1 3)2 1 2 (see Figure 2.33). We can also determine the 
axis of symmetry and the vertex of the graph. Figure 2.34 shows that the 
graph of y 5 (x 1 3)2 1 2 has an axis of symmetry of x 5 23 and a 
vertex at (23, 2). The equation y 5 (x 1 3)2 1 2 can also be written as 
y 5 x 2 1 6x 1 11. Because we can easily identify the vertex of the 
parabola when the equation is written as y 5 (x 1 3)2 1 2, we often 
refer to this as the vertex form of the quadratic equation, and 
y 5 x 2 1 6x 1 11 as the general form.

Vertex form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 h)2 1 k, with a  0, the graph 
of f has an axis of symmetry of x 5 h and a vertex at (h, k).

Completing the square
For visualizing and sketching purposes, it is helpful to have a quadratic 
function written in vertex form. How do we rewrite a quadratic function 
written in the form f (x) 5 ax 2 1 bx 1 c (general form) into the form 

 Hint: f (x) 5 a(x 2 h)2 1 k 
is sometimes referred to as the 
standard form of a quadratic 
function.

y � (x � 3)2

y � (x � 3)2 � 2

y � x2
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f (x) 5 a(x 2 h)2 1 k (vertex form)? We use the technique of completing 
the square. 

For any real number p, the quadratic expression x 2 1 px 1  (   p __ 
2

   ) 
2
 is the 

square of  ( x 1   
p

 __ 
2

   ) . Convince yourself of this by expanding  ( x 1   
p

 __ 
2

   ) 
2
. The 

technique of completing the square is essentially the process of adding a 
constant to a quadratic expression to make it the square of a binomial. If 
the coefficient of the quadratic term (x 2) is a positive one, the coefficient 

of the linear term is p, and the constant term is  (   p __ 
2

   ) 
2
, then

x 2 1 px 1  (   p __ 
2

   ) 
2
 5  ( x 1   

p
 __ 

2
   ) 

2
 and the square is completed. 

Remember that the coefficient of the quadratic term (leading coefficient) 
must be equal to positive one before completing the square.

Example 23 

Find the equation of the axis of symmetry and the coordinates of the 
vertex of the graph of f (x) 5 x 2 2 8x 1 18 by rewriting the function in the 
form f (x) 5 a(x 2 h)2 1 k.

Solution
To complete the square and get the quadratic expression x 2 2 8x 1 18 in 

the form x 2 1 px 1  (   p __ 
2

   ) 
2
, the constant term needs to be  (   28 ___ 

2
   ) 

2
 5 16. We 

need to add 16, but also subtract 16, so that we are adding zero overall and, 
hence, not changing the original expression.

f (x) 5 x 2 2 8x 1 16 2 16 1 18 actually adding zero (216 1 16) to the 
 right side

f (x) 5 x 2 2 8x 1 16 1 2 x 2 2 8x 1 16 fits the pattern x 2 1 px 1  (   p __ 
2

   ) 
2

 with p 5 28

f (x) 5 (x 2 4)2 1 2 x 2 2 8x 1 16  5 (x 2 4)2

The axis of symmetry of the graph of f is the vertical 
line x 5 4 and the vertex is at (4, 2). See Figure 2.35.

x

y � x2 � 8x � 18

x � 4

(4, 2)

y
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Example 24 

For the function g  :  x ↦ 22x 2 2 12x 1 7,
a) find the axis of symmetry and the vertex of the graph
b) indicate the transformations that can be applied to y 5 x 2 to obtain the 

graph
c) find the minimum or maximum value. 

Solution
a) g  :  x ↦ 22 ( x 2 1 6x 2   7 __ 

2
   )  factorize so that the coefficient of 

  the quadratic term is 11

 g  :  x ↦ 22 ( x 2 1 6x 1 9 2 9 2   7 __ 
2

   )  p 5 6 ⇒ (    p __ 
2

   ) 
2
  5  9; hence, add 19 2​9

  (zero)

 g  :  x ↦ 22 [ (x 1 3)2 2   18 ___ 
2

   2   7 __ 
2

   ]  x 2 1 6x 1 9 5 (x 1 3)2

 g  :  x ↦ 22 [ (x 1 3)2 2   25 ___ 
2

   ] 
 g  :  x ↦ 22(x 1​3)2 1 25 multiply through by 22 to remove 

  outer brackets

 g  :  x ↦ 22(x 2(23))2 1 25 express in vertex form:
  g  :  x ↦ a(x 2 h)2 1 k

The axis of symmetry of the graph of g is the vertical line x 5 23 and the 
vertex is at (23, 25). See Figure 2.36.

b) Since g  :  x ↦ 22x 2 2 12x 1 7 5 22(x 1 3)2 1 25, the graph of g can 
be obtained by applying the following transformations (in the order 
given) on the graph of y 5 x 2: horizontal translation of 3 units left; 
reflection in the x-axis (parabola opening down); vertical stretch of 
factor 2; and a vertical translation of 25 units up.

c) The parabola opens down because the leading coefficient is negative. 
Therefore, g has a maximum and no minimum value. The maximum 
value is 25 (y-coordinate of vertex) at x 5 23.

The technique of completing the square can be used to derive the quadratic 
formula. The following example derives a general expression for the axis  
of symmetry and vertex of a quadratic function in the general form  
f (x) 5 ax 2 1 bx 1 c  by completing the square.

Figure 2.36
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Example 25 

Find the axis of symmetry and the vertex for the general quadratic 
function f (x) 5 ax 2 1 bx 1 c.

Solution

f (x) 5 a  ( x 2 1   b __ a   x 1   c __ a   )  factorize so that the coefficient
  of the x 2 term is 11

f (x) 5 a  [ x 2 1   b __ a   x 1  (   b ___ 
2a

   ) 2 2  (   b ___ 
2a

   ) 2 1   c __ a   ]  p 5   b __ a   ⇒  (   p __ 
2

   ) 
2
 5  (   b ___ 

2a
   ) 

2

f (x) 5 a  [  ( x 1   b ___ 
2a

   ) 2 2   b 2 ___ 
4a2   1   c __ a   ]  x 2 1   b __ a   x 1  (   b ___ 

2a
   ) 

2
 5  ( x 1   b ___ 

2a
   ) 

2

f (x) 5 a  ( x 1   b ___ 
2a

   ) 
2
 2   b 2 ___ 4a   1 c multiply through by a 

f (x) 5 a  ( x 2​( 2   b ___ 
2a

   )  ) 
2
 1 c 2   b 2 ___ 4a   express in vertex form:

  f (x) 5 a(x 2 h)2 1 k

This result leads to the following generalization.

Symmetry and vertex of f (x) 5 ax 2 1 bx 1 c
For the graph of the quadratic function f (x) 5 ax 2 1 bx 1 c, the axis of symmetry is the 

vertical line with the equation x 5 2 ​​b ___ 2a   and the vertex has coordinates  ( 2   b ___ 2a
  , c 2   b 2 ___ 4a   ) .

Check the results for Example 24 using the formulae for the axis of 
symmetry and vertex. For the function g  :  x ↦ 22x 2 2 12x 1 7:

x 5​2 ​​b ___ 
2a

   5 2   212 ______ 
2(22)

   5 23 ⇒ axis of symmetry is the vertical line x 5 23

c 2   b 2 ___ 4a   5 7 2   
(212)2

 ______ 
4(22)

   5   56 ___ 
8

   1   144 ___ 
8

   5 25 ⇒ vertex has coordinates (23, 25)

These results agree with the results from Example 24.

Zeros of a quadratic function
A specific value for x is a zero (or root) of a quadratic function 
f (x) 5 ax 2 1 bx 1 c if it is a solution to the equation ax 2 1 bx 1 c 5 0. For 
this course, we are only concerned with values of x that are real numbers. 
The x-coordinate of any point(s) where f crosses the x-axis (y-coordinate is 
zero) is a zero of the function. A quadratic function can have no, one or two 
real zeros as Table 2.3 illustrates. Finding the zeros of a quadratic function 
requires you to solve quadratic equations of the form ax 2 1 bx 1 c 5 0. 
Although a  0, it is possible for b or c to be equal to zero. There are five 
general methods for solving quadratic equations as outlined in Table 2.3.
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Square root If a2 5 c and c . 0, then a 5 ​√_
​c   .

Examples x 2 2 25 5 0 (x 1 2)2 5 15
 x 2 5 25 x 1 2 5  √

___
 15  

 x 5 5 x 5 22  √
___

 15  

Factorizing If ab 5 0, then a 5 0 or b 5 0.

Examples x 2 1 3x 2 10 5 0 x 2 2 7x 5 0
 (x 1 5)(x 2 2) 5 0 x(x 2 7) 5 0
 x 5​25 or x 5 2 x 5 0 or x 5 7

Completing the  If x 2 1 px 1 q 5 0, then x 2 1 px 1  (   p __ 2   ) 
2
 5 2q 1  (   p __ 2   ) 

2
 which leads to  ( x 1   

p
 __ 2   ) 

2
 5 2q 1   

p2

 __ 4   … 
square

 and then the square root of both sides (as above).

Example x 2 2 8x 1 5 5 0
 x 2 2 8x 1 16 5 25 1 16
 (x 2 4)2 5 11
 x 2 4 5  √

___
 11  

 x 5 4 ​ √
___

 11  

Quadratic formula If ax 2 1 bx 1 c 5 0, then x 5   2b   √
________

 b2 2 4ac    ______________ 2a
   .

Example 2x 2 2 3x 2 4 5 0

 x 5   
2(23)   √

______________

  (23)2 2 4(2)(24)  
   ________________________  

2(2)
  

 x 5   3   √
___

 41   _______ 4  

Graphing Graph the equation y 5 ax 2 1 bx 1 c on your GDC. Use the calculating features of your GDC to 
determine the x-coordinates of the point(s) where the parabola intersects the x-axis.

Example 2x 2 2 5x 2 7 5 0 GDC calculations reveal that the zeros are at x 5   7 _ 2   and x 5 21

The quadratic formula and the discriminant
The expression b 2 2 4ac in the quadratic formula has special significance 
because you need to take the positive and negative square root of b 2 2 4ac 
when using the quadratic formula. Hence, whether b 2 2 4ac (often labelled 
; read ‘delta’) is positive, negative or zero will determine the number of 
real solutions for the quadratic equation ax 2 1 bx 1 c 5 0, and, 
consequently, also the number of times the graph of f (x) 5 ax 2 1 bx 1 c 
intersects the x-axis (y 5 0).

Table 2.3 Methods for solving 
quadratic equations.

Plot1

Y1= 2X2-5X-7
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

Y1=2X2-5X-7

Left bound?
X=2.787234 Y=-5.398823

Y1=2X2-5X-7

Left bound?
X=-1.297872 Y=2.8583069

Y1=2X2-5X-7

Guess?
X=3.6382979 Y=1.2829335

Y1=2X2-5X-7

Right bound?
X=3.8085106 Y=2.9669534

Zero
X=3.5 Y=0

Zero
X=-1 Y=0

Y1=2X2-5X-7

Right bound?
X=-.6170213 Y=-3.153463

Y1=2X2-5X-7

Guess?
X=-.8723404 Y=-1.116342



71

For the quadratic function f (x) 5 ax 2 1 bx 1 c, a  0:
If  5 b2 2 4ac . 0, f has two distinct real solutions, and the graph of f intersects the x-axis 
twice.

If  5 b2 2 4ac 5 0, f has one real solution (a double root), and the graph of f intersects 
the x-axis once (i.e. it is tangent to the x-axis).

If  5 b2 2 4ac , 0, f has no real solutions, and the graph of f does not intersect the x-axis.

Example 26 

Use the discriminant to determine how many real solutions each equation 
has. Visually confirm the result by graphing the corresponding quadratic 
function for each equation on your GDC.
a) x 2 1 3x 2 1 5 0 b) 4x 2 2 12x 1 9 5 0 c) 2x 2 2 5x 1 6 5 0

Solution
a) The discriminant is  5 32 2 4(1)(21) 5 13 . 0. Therefore, the 

equation has two distinct real zeros. This result is confirmed by the 
graph of the quadratic function y 5 x 2 1 3x 2 1 which clearly shows it 
intersecting the x-axis twice as shown in GDC image on the right. 

b) The discriminant is  5 (212)2 2 4(4)(9) 5 0. Therefore, the equation 
has one real zero. The graph on the GDC of y 5 4x 2 2 12x 1 9 appears 
to intersect the x-axis at only one point. We can be more confident with 
this conclusion by investigating further – for example, tracing or looking 
at a table of values on the GDC as shown in GDC images below.

 

c) The discriminant is  5 (25)2 2 4(2)(6) 5 223 , 0. Therefore, the 
equation has no real zeros. This result is confirmed by the graph of the 
quadratic function y 5 2x 2 2 5x 1 6 which clearly shows that the graph 
does not intersect the x-axis as shown in GDC image on the right.

Example 27 

For 4x 2 1 4kx 1 9 5 0, determine the value(s) of k so that the equation 
has a) one real zero, b) two distinct real zeros, and c) no real zeros.

Solution
a) For one real zero:  5 (4k)2 24(4)(9) 5 0 ⇒ 16k 2 2 144 5 0
 ⇒ 16k 2 5 144 ⇒ k 2 5 9 ⇒ k 5 3

b) For two distinct real zeros:  5 (4k)2 24(4)(9) . 0
⇒ 16k 2 . 144 ⇒k 2 . 9 ⇒ k , 23 or k . 3

c) For no real zeros:  5 (4k)2 24(4)(9) , 0 ⇒ 16k 2 , 144
⇒ k 2 , 9 ⇒ k . 23 and k , 3 ⇒ 23 , k , 3

 

TABLE SETUP
TblStart=1.2
Tbl=1

Indpnt:
Depend: Ask

X

Y1=0

Y1

Auto

1.2
1.3
1.4
1.5
1.6
1.7
1.8

.36

.16

.04
0
.04
.16
.36

AskAuto
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The graph of f (x) 5 a(x 2 p)(x 2 q)
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q) then 
we can easily identify the x-intercepts of the graph of f. Consider that 
f (p) 5 a(p 2 p)(p 2 q) 5 a(0)(p 2 q) 5 0 and that 
f (q) 5 a(q 2 p)(q 2 q) 5 a(q 2 p)(0) 5 0. Therefore, the quadratic 
function f (x) 5 a(x 2 p)(x 2 q) will intersect the x-axis at the points 
(p, 0) and (q, 0). We need to factorize in order to rewrite a quadratic function 
in the form f (x) 5 ax 2 1 bx 1 c   to the form f (x) 5 a(x 2 p)(x 2 q).
Hence, f (x) 5 a(x 2 p)(x 2 q) can be referred to as the factorized form of a 
quadratic function. Recalling the symmetric nature of a parabola, it is clear 
that the x-intercepts (p, 0) and (q, 0) will be equidistant from the axis of 
symmetry (see Figure 2.37). As a result, the equation of the axis of symmetry 
and the x-coordinate of the vertex of the parabola can be found from finding 
the average of p and q.

Factorized form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q), with a  0, the 
graph of f has x-intercepts at (p, 0) and (q, 0), an axis of symmetry with equation 

x 5   
p 1 q

 _____ 2  , and a vertex at  (    p 1 q
 _____ 2  , f  (    p 1 q

 _____ 2   )  ) .

Example 28 

Find the equation of each quadratic function from the graph in the form  
f (x) 5 a(x 2 p)(x 2 q) and also in the form f (x) 5 ax 2 1 bx 1 c.

a)   b)

   

Solution
a) Since the x-intercepts are 23 and 1 then y 5 a(x 1 3)(x 2 1). The 

y-intercept is 6, so when x 5 0, y 5 6. Hence, 
6 5 a(0 1 3)(0 2 1) 5 23a ⇒ a 5 22 (a , 0 agrees with the fact that 
the parabola is opening down). The function is f (x) 5 22(x 1 3)(x 2 1),
and expanding to remove brackets reveals that the function can also be 
written as f (x) 5 22x 2 2 4x 1 6.

b) The function has one x-intercept at 2 (double root), so p 5 q 5 2 and 
y 5 a(x 2 2)(x 2 2) 5 a(x 2 2)2. The y-intercept is 12, so when 
x 5 0, y 5 12. Hence, 12 5 a(0 2 2)2 5 4a ⇒ a 5 3 (a . 0 agrees with 
the parabola opening up). The function is f (x) 5 3(x 2 2)2. Expanding 
reveals that the function can also be written as f (x) 5 3x 2 2 12x 1 12.

(p, 0)

vertex

(q, 0)

f(x) x �

( , f

axis of symmetry

x

y p � q
2

p � q
2 ( ))p � q

2

0

Figure 2.37
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For each of the quadratic functions f in questions 1–5, find the following:
a) the axis of symmetry and the vertex, by algebraic methods
b) the transformation(s) that can be applied to y 5 x 2 to obtain the graph of y 5 f (x)
c) the minimum or maximum value of f.

Check your results using your GDC.

 1 f  :  x ↦ x 2 2 10x 1 32  2 f  :  x ↦ x 2 1 6x 1 8  3 f  :  x ↦ 22x 2 2 4x 1 10

 4 f  :  x ↦ 4x 2 2 4x 1 9  5 f  :  x ↦   1 _ 2  x 2 1 7x 1 26

In questions 6–13, solve the quadratic equation using factorization.

 6 x 2 1 2x 2 8 5 0 7 x 2 5 3x 1 10

 8 6x 2 2 9x 5 0 9 6 1 5x 5 x 2

10 x 2 1 9 5 6x 11 3x 2 1 11x 2 4 5 0

12 3x 2 1 18 5 15x 13 9x 2 2 5 4x 2

In questions 14–19, use the method of completing the square to solve the quadratic 
equation.

14 x 2 1 4x 2 3 5 0 15 x 2 2 4x 2 5 5 0

16 x 2 2 2x 1 3 5 0 17 2x 2 1 16x 1 6 5 0

18 x 2 1 2x 2 8 5 0 19 22x 2 1 4x 1 9 5 0

20 Let f (x) 5 x 2 2 4x 2 1. a) Use the quadratic formula to find the zeros of the 
function. b) Use the zeros to find the equation for the axis of symmetry of the 
parabola. c) Find the minimum or maximum value of f.

In questions 21–23, a) express the quadratic function in the form f (x) 5 a(x 2 h)2 1 k, 
and b) state the coordinates of the vertex of the parabola with equation y 5 f (x).

21 f (x) 5 x 2 1 6x 1 2 22 f (x) 5 x 2 2 2x 1 4

23 f (x) 5 4x 2 2 4x 2 1 

In questions 24–28, determine the number of real solutions to each equation.

24 x 2 1 3x 1 2 5 0 25 2x 2 2 3x 1 2 5 0

Exercise 2.5

Example 29 

The graph of a quadratic function intersects the x-axis at the points (26, 0)
and (22, 0) and also passes through the point (2, 16). a) Write the function 
in the form f (x) 5 a(x 2 p)(x 2 q). b) Find the vertex of the parabola. 
c) Write the function in the form f (x) 5 a(x 2 h)2 1 k.

Solution
a) The x-intercepts of 26 and 22 gives f (x) 5 a(x 1 6)(x 1 2). Since f 

passes through (2, 16), then f (2) 5 16 ⇒ f (2) 5 a(2 1 6)(2 1 2) 5 16
⇒ 32a 5 16 ⇒ a 5   1 _ 2  . Therefore, f (x) 5   1 _ 2  (x 1 6)(x 1 2).

b) The x-coordinate of the vertex is the average of the x-intercepts.

 x 5   26 2​2 _______ 
2

   5 24, so the y-coordinate of the vertex is 

 y 5 f (24) 5   1 _ 2  (24 1 6)(24 1 2) 5 22. Hence, the vertex is (24, 22).

c) In vertex form, the quadratic function is f (x) 5   1 _ 2  (x 1 4)2 2 2.
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26 x 2 2 1 5 0 27 2x 2 2   9 _ 4  x 1 1 5 0

28 Find the value(s) of p for which the equation 2x 2 1 px 1 1 5 0 has one real solution.

29 Find the value(s) of k for which the equation x 2 1 4x 1 k 5 0 has two distinct real 
solutions.

30 The equation x 2 2 4kx 1 4 5 0 has two distinct real solutions. Find the set of all 
possible values of k.

31 Find all possible values of m so that the graph of the function 
g  :  x ↦ mx 2 1 6x 1 m does not touch the x-axis.

Another important category of functions is rational functions. These are 

functions in the form R(x) 5 ​​
f (x)

 ____​
g (x)

 ​ where f and g are polynomials and the 

domain of the function R is the set of all real numbers, except the real zeros 
of polynomial g in the denominator. In the Mathematics Standard Level 

course, only rational functions of the form  R(x) 5 ​​ax 1 b ______​
cx 1 d

 ​​will be 

considered. Examples of this type of rational function include 

h(x) 5 ​​ 1 _____​
x 2 2 ​ (Example 4 in Section 2.1) and q(x) 5 ​​x 1 7 ______​

2x 2 5 ​.
The domain of h excludes x 5 2, and the domain of q excludes x 5 ​​5 _​

2 ​. 

Example 30 

Find the domain and range of f (x) 5 ​​2x 2 6 ______​x 1 5 ​. Sketch the graph of f, clearly 
indicating any asymptotes and x- and y- intercepts.

Solution

Because the denominator is zero when x 5 25, the domain of f is all real 
numbers except x 5 25, i.e. x  핉, ≠ 25. We anticipate that the graph of 
the function will have a vertical asymptote of x 5 25. Determining the 
range of the function is a little less straightforward. To give some insight 
into the behaviour of the function, some values of the domain and range 
(pairs of coordinates) are displayed in the table below (approximate values 
given to 5 significant figures). 

   x approaches 25 from the left       x approaches 25 from the right

x f(x)

2500 2.0323

2100 2.1684

225 2.8

210 5.2

26 18

25.5 34

25.1 162

25.01 1602

x f(x)

500 1.9683

100 1.8476

3 0

0 21.2

24 214

24.5 230

24.9 2158

24.99 21598

A fraction is only zero if its 
numerator is zero. Therefore, 
the zeros of a rational function 
are the zeros of the numerator.

Rational functions2.6
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The values in the table provide clear evidence that the range of f is all real 
numbers except x 5 2. The values in the table show that as x → 2, 
f (x) → 2 and as x → 1, again f (x) → 2. It follows that the line with 
equation y 5 2 is a horizontal asymptote for the graph of f. As x → 25 
from the left (sometimes written x → 252), f (x) appears to increase 
without bound, whereas as x → 25 from the right (x → 251), f (x) 
appears to decrease without bound. This confirms that the graph of f will 
have a vertical asymptote at x 5 25. This behaviour is supported by the 

graph below. The x-intercept of f is (3, 0) and its y-intercept is ​( 0, 2 ​​6 _​5 ​​)​.

y == sin 2 x ++
3

0, –
5
6

x

y

�15

�10

�5

0

5

horizontal
asymptote

y = 2

vertical
asymptote x = –5

2 x – 6
 x + 5

y =

10

15

10 20

(3, 0)

�20 �10

Why does the graph of f (x) 5 ​​2x 2 6 ______​x 1 5 ​​have a horizontal asymptote at y 5 2?

We can approach this question analytically by considering what we get if 
we divide both the numerator and denominator by x.

f (x) 5 ​​2x 2 6 ______​x 1 5 ​ 5 ​​
​​2x __​x ​ 2 ​​6 _​x ​
​______​

​​x 
_
​x ​ 1 ​​5 _​x ​

​​ 5 ​​
2  2  ​​6 _​x ​
​______​

1 1 ​​5 _​x ​
​​. In this equivalent form of the rational 

function, if we substitute large values for x (i.e. x → 1 or x → 2), then 
both of the terms ​​6 _​x ​ and ​​5 _​x ​ will approach zero. Thus as x → ±, 

f (x) → ​​2 2 0 _____​
1 1 0 ​ 5 2. For the general rational function R(x) 5 ​​ax 1 b ______​

cx 1 d
 ​, as 

x → ±, f (x) → ​​a _​c ​. Furthermore, as occurred for the function h(x) 5 ​​ 1 _____​
x 2 2 ​​ 

(Example 4 in Section 2.1), if a 5 0, then as x → ±, f (x) → 0 and the 
x-axis is a horizontal asymptote.

Horizontal and vertical asymptotes

The line x 5 c is a horizontal asymptote of the graph of the function f if at least one of 
the following statements is true:

• as x → 1, then f (x) 5 c1 • as x → 2, then f (x) 5 c1

• as x → 1, then f (x) 5 c2 • as x → 2, then f (x) 5 c2

 The line x 5 d is a vertical asymptote of the graph of the function f if at least one of 
the following statements is true:

• as x → d1, then f (x) → 1 • as x → d1, then f (x) → 2

• as x → d2, then f (x) → 1 • as x → d2, then f (x) → 2

Range: y  핉, y ≠ 2Domain: x  핉, x ≠ –5

The further the number n is 
from 0, the closer the number   1 __ n   
is to 0. Conversely, the closer 
the number n is to 0, the 

further the number   1 __ n   is from 0. 
These facts can be expressed 
simply as:
  1 ___ 
BIG

   5 little and   1 ____ 
little

   5 BIG. 

They can also be expressed 
more mathematically using the 
concept of a limit expressed 
in limit notation as:   lim    

n → 
    1 __ n   5 0 

and   lim    
n → 0

    1 __ n   5 .

Note: Infinity is not a number, 
so   lim    

n → 0
    1 __ n   actually does not 

exist, but writing   lim    
n → 0

    1 __ n   5 ​

expresses the idea that   1 __ n   
increases without bound as n 
approaches 0.

The superscript + means 
approaching the number 
c from the right (not 
necessarily positive numbers) 
and superscript – means 
approaching from the left.
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Using Example 30 and the discussion that followed it as a guide, we can set 
out a general procedure for analyzing rational functions of the form 

R(x) 5 ​​ax 1 b ______​
cx 1 d

 ​, leading to a complete sketch of the function’s graph and 

determining its domain and range.

Analyzing rational functions R(x) 5   ax 1 b _______ 
cx 1 d

  

1  Intercepts: A zero of the numerator ax 1 b will be a zero of R and hence, an 

x-intercept of the graph of R. The y-intercept is found by evaluating R(0) which always 

 equals   b __ 
d

  .

2  Vertical asymptote: A zero of cx 1 d will give the location of a vertical asymptote. 
On one side of the vertical asymptote, R(x) → 1 and on the other side R(x) → 2.

3  Horizontal asymptote: As x → ±, R(x) →   a __ c  . Thus a vertical asymptote is the line 

y 5   a __ c  .

4  Sketch of graph: Start by drawing dashed lines where the asymptotes are located. 
Use the information about the x- and y- intercepts, whether R(x) falls or rises on 
either side of a vertical asymptote, and additional points as needed to make an 
accurate sketch.

5  Domain and range: The domain of R will be all real numbers except the zeros of the 
denominator. The range of R will be all real numbers except for where the horizontal 

asymptote occurs, i.e. y 5   a __ c  . 

Exercise 2.6

In questions 12​8, sketch the graph of the rational function without the aid of your 
GDC. On your sketch, clearly indicate any x- or y- intercepts and any asymptotes. Use 
your GDC to verify your sketch. Also, state the domain and range of the function.

 1 f (x) 5   1 _____ x 1 2    2 g(x) 5   3 _____ x 2 2  

 3 h(x) 5   3x 1 4 ______ x 2 2    4 R(x) 5   x _______ 
 2x 2 8

  

 5 p(x) 5   10 _______ 3x 2 10    6 M(x) 5   x 2 5 _______ 
 4x 2 1

  

 7 f (x) 5   7 2 2x ______ x 1 3    8 h(x) 5   6x 1 5 ________  2x 2 12  

In questions 9212, use your GDC to sketch a graph of the function, and state the 
domain and range of the function.

 9 f (x) 5   x _____ x 2 4
   10 g(x) 5   x 2 4 _____ x   

11 h(x) 5 10 2   1 __ x   12 r (x) 5   6x 2 18 _______ x 2 12  

13  If n is positive, sketch the curve y 5   mx 1 n _______ x 1 1   for each of the following 
conditions.

 a) m > 0 b) m < 0  

14  The diagram shows part of the graph of the function f (x) 5   m _____ x 1 n  . The curve 

  passes through the point (6, 3). The line (AB) is a vertical asymptote. Find the 
value of m and the value of n.
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x

y

(6,3)

0

B

A

15 Consider the function g(x) 5   
px _____ x 2 p  . The curve passes through the points 

  (24, 212) and (22, 6). Find the equations for the vertical asymptote and the 
horizontal asymptote.

  1	 Let	f		:		x	↦		√
_____

	x	2	3			and	g		:		x	↦	x	2	1	2x.	The	function	(f			g)(x	)	is	defined	for	all	x				R	
except	for	the	interval	]a,	b	[.
a)	 Calculate	the	values	of	a	and	b.
b)	 Find	the	range	of	f			g.

  2	 Two	functions	g	and	h	are	defined	as	g	(x	)	5	2x	2	7	and	h(x	)	5	3(2	2	x	).
Find:	 a)	 g	21(3)	 b)	 (h			g)(6)

  3	 Consider	the	functions	f	(x	)	5	5x	2	2	and	g	(x	)	5			4	2	x _____	
3
	 	.

a)	 Find	g	21.
b)	 Solve	the	equation	(f			g	21)(x	)	5	8.

  4	 The	functions	g	and	h	are	defined	by	g		:		x	↦	x	2	3	and	h		:		x	↦	2x.
a)	 Find	an	expression	for	(g			h	)(x	).
b)	 Show	that	g	21(14)	1	h	21(14)	5	24.

	 5	 The	function	f	is	defined	by	f	(x	)	5	x	2	1	8x	1	11,	for	x	>	24.
a)	 Write	f	(x	)	in	the	form	(x	2	h	)2	1	k.
b)	 Find	the	inverse	function	f	21.
c)	 State	the	domain	of	f	21.

	 6	 The	diagram	right	shows	the	graph	of	
y	5	f	(x	).	It	has	maximum	and	minimum	points	
at	(0,	0)	and	(1,	21),	respectively.
a)	 Copy	the	diagram	and,	on	the	same	diagram,	

draw	the	graph	of	y	5	f	(x	1	1)	2			1	_	2		.
b)	 What	are	the	coordinates	of	the	minimum	

and	maximum	points	of	y	5	f	(x	1	1)	2			1	_	2		?

Practice questions

y

x
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	 7	 The	diagram	shows	parts	of	the	graphs	of	y	5	x	2	and	y	5	2 ​​1	__	
2
		(x	1	5)2	1	3.

	 The	graph	of	y	5	x	2	may	be	transformed	into	the	graph	of	y	5	2 ​​1	__	
2
			(x	1	5)2	1	3	by	

these	transformations.

	 A	reflection	in	the	line	y	5	0,	followed	by

	 a	vertical	stretch	by	scale	factor	k,	followed	by

	 a	horizontal	translation	of	p	units,	followed	by

	 a	vertical	translation	of	q	units.

	 Write	down	the	value	of
a)	 k	 	 	 b)	 p	 	 	 c)	 q.

	 8	 The	function	f		is	defined	by	f	(x	)	5			 4	________	
	√

_______

	16	2	x	2		
		,	for	24	,	x	,	4.

a)	 Without	using	a	GDC,	sketch	the	graph	of	f.

b)	 Write	down	the	equation	of	each	vertical	asymptote.

c)	 Write	down	the	range	of	the	function	f.

	 9	 Let	g		:		x	↦			1	__	x  ,	x		0.

a)	 Without	using	a	GDC,	sketch	the	graph	of	g.

	 The	graph	of	g	is	transformed	to	the	graph	of	h	by	a	translation	of	4	units	to	the	left	and	
2	units	down.

b)	 Find	an	expression	for	the	function	h.

c)	 (i)	 Find	the	x-	and	y-intercepts	of	h.
	 (ii)	 Write	down	the	equations	of	the	asymptotes	of	h.
	 (iii)	 Sketch	the	graph	of	h.

10	 Consider	f	(x	)	5		√
_____

	x	1	3		.
a)	 Find:
	 (i)	 f	(8)
	 (ii)	 f	(46)
	 (iii)	 f	(23)

b)	 Find	the	values	of	x	for	which	f	is	undefined.

c)	 Let	g		:		x	↦	x	2	2	5.	Find	(g			f			)(x	).

y

y � x2
y � �   (x � 5)2 � 3

x

2

4

�2

6

2 4�4�6�8�10 �2

1
2

0
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11	 Let	g	(x	)	5			x	2	8	_____	
2
	 		and	h	(x	)	5	x	2	2	1.

a)	 Find	g	21(22).

b)	 Find	an	expression	for	(g	21				h	)(x	).

c)	 Solve	(g	21				h	)(x	)	5	22.

12	 Given	the	functions	f		:		x	↦	3x	2	1	and	g		:		x	↦			4	__	x  ,	find	the	following:

a)	 f	21	 	 	 	 b)	 f			g	 	 	 	 c)	 (f			g)21	 	 	 	 d)	 g			g

13	 The	quadratic	function	f	is	defined	by	f	(x	)	5	2x	2	1	8x	1	17.

a)	 Write	f	in	the	form	f	(x	)	5	2(x	2	h	)2	1	k.

b)	 The	graph	of	f	is	translated	5	units	in	the	positive	x-direction	and	2	units	in	the	
positive	y-direction.	Find	the	function	g	for	the	translated	graph,	giving	your	
answer	in	the	form	g	(x	)	5	2(x	2	h	)2	1	k.

14	 Let	g	(x	)	5	3x	2	2	6x	2	4.
a)	 Express	g	(x	)	in	the	form	g	(x	)	5	3(x	2	h	)2	1	k.
b)	 Write	down	the	vertex	of	the	graph	of	g.
c)	 Write	down	the	equation	of	the	axis	of	symmetry	of	the	graph	of	g.
d)	 Find	the	y-intercept	of	the	graph	of	g.

e)	 The	x-intercepts	of	g	can	be	written	as			
p			√

__
	q		
	______	r	 	,	where	p,	q,	r				Z.	Find	the	value	

of	p,	q	and	r.

15	 a)	 The	diagram	shows	part	of	the	graph	

	 	 of	the	function	h	(x	)	5			 a	_____	x	2	b
		.	The	curve

	 	 passes	through	the	point	A	(24,	28).	
The	vertical	line	(MN)	is	an	asymptote.

	 	 Find	the	value	of:	(i)	a		 (ii)	b.

b)	 The	graph	of	h	(x	)	is	transformed	as	
shown	in	the	diagram	right.	The	point	
A	is	transformed	to	A9(24,	8).	Give	
a	full	geometric	description	of	the	
transformation.

x

y
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M
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16	 The	graph	of	y	5	f	(x	)	is	shown	in	the	diagram.

a)	 Make	two	copies	of	the	coordinate	system	as	shown	in	the	diagram	but	without	
the	graph	of	y	5	f	(x	).	On	the	first	diagram	sketch	a	graph	of	y	5	2f	(x	),	and	on	
the	second	diagram	sketch	a	graph	of	y	5	f	(x	2	4).

b)	 The	point	A(23,	1)	is	on	the	graph	of	y	5	f	(x	).	The	point	A9	is	the	corresponding	
point	on	the	graph	of	y	5​2f	(x	)	2​1.	Find	the	coordinates	of	A9.

17	 The	diagram	represents	the	graph	of	the	function	f	(x	)	5	(x	2	p)(x	2	q).

a)	 Write	down	the	values	of	p	and	q.

b)	 The	function	has	a	minimum	value	at	the	point	B.	Find	the	x-coordinate	of	B.

c)	 Write	the	expression	for	f	(x	)	in	the	form	ax	2	1	bx	1	c.

18	 The	diagram	shows	the	parabola	y	5	(5	1	x	)(2	2	x	).	The	points	A	and	C	are	the	
x-intercepts	and	the	point	B	is	the	maximum	point.	Find	the	coordinates	of	A,	B	and	C.
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The heights of consecutive bounds of a ball, compound interest and 
Fibonacci numbers are only a few of the applications of sequences and series 
that you have seen in previous courses. In this chapter, you will review these 
concepts, consolidate your understanding and take them one step further.

Take the following pattern as an example:

The first figure represents 1 dot, the second represents 3 dots, etc. This 
pattern can also be described differently. For example, in function notation:

f (1) 5 1, f (2) 5 3, f (3) 5 6, etc., where the domain is Z1

Here are some more examples of sequences:
1 6, 12, 18, 24, 30
2 3, 9, 27,…, 3k, …

3  {   1 __ 
i 2

  ; i 5 1, 2, 3, …, 10 } 
4 {b1, b2, …, bn, …}, sometimes used with an abbreviation {bn}

The first and third sequences are finite and the second and fourth are 
infinite. Notice that, in the second and third sequences, we were able to 
define a rule that yields the nth number in the sequence (called the nth 
term) as a function of n, the term’s number. In this sense, a sequence is a 
function that assigns a unique number (an) to each positive integer n.

3 Sequences and 
Series

Assessment statements

1.1	 Arithmetic	sequences	and	series;	sum	of	finite	arithmetic	sequences;	
geometric	sequences	and	series;	sum	of	finite	and	infinite	geometric	series.

	 Sigma	notation.

1.3	 The	binomial	theorem:	expansion	of	(a	1	b)n, n	[	N.
Calculation	of	binomial	coefficients	using	Pascal’s	triangle	and		( 			n 				r 		)	.

Sequences3.1

Introduction

1 32 4 5 6
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Example 1 

Find the first five terms and the 50th term of the sequence {bn} such that 

bn 5 2 2   1 __ 
n2  .

Solution 
Since we know an explicit expression for the nth term as a function of its 
number n, we only need to find the value of that function for the required 
terms:

b1 5 2  2 ​​1 __ 
12   5 1; b2  5  2  2   1 __ 

22    5  1  3 __ 4  ; b3  5  2  2   1 __ 
32   5  1  8 __ 

9
  ; b4  5  2  2   1 __ 

42   5 1  15 ___ 
16

  ; 

b5 5 2 2   1 __ 
52   5 1  24 ___ 

25
  ; and b50 5 2 2   1 ___ 

502   5 1  2499 ____ 
2500

  .

So, informally, a sequence is an ordered set of real numbers. That is, there 
is a first number, a second, and so forth. The notation used for such sets is 
shown above. The way we defined the function in Example 1 is called the 
explicit definition of a sequence. There are other ways to define sequences, 
one of which is the recursive definition. The following example will show 
you how this is used.

Example 2 

Find the first five terms and the 20th term of the sequence {bn} such that 
b1 5 5 and bn 5 2(bn 2 1 1 3).

Solution
The defining formula for this sequence is recursive. It allows us to find the 
nth term bn if we know the preceding term bn 2 1. Thus, we can find the 
second term from the first, the third from the second, and so on. Since we 
know the first term, b1 5 5, we can calculate the rest:

 b2 5 2(b1 1 3) 5 2(5 1 3) 5 16

 b3 5 2(b2 1 3) 5 2(16 1 3) 5 38

 b4 5 2(b3 1 3) 5 2(38 1 3) 5 82

 b5 5 2(b4 1 3) 5 2(82 1 3) 5 170

Thus, the first five terms of this sequence are 5, 16, 38, 82, 170. However, 
to find the 20th term, we must first find all 19 preceding terms. This is 
one of the drawbacks of the recursive definition, unless we can change the 
definition into explicit form.

However, you need to understand that not all sequences have formulae, 
either recursive or explicit. Some sequences are given only by listing their 
terms. Among the many kinds of sequences that there are, two types are of 
interest to us: arithmetic and geometric sequences.

Plot1
nMin�1

Plot2 Plot3

U(n)�2(u(n�1)�3

U(nMin)�5
V(n)�

W(n)�
V(nMin)�

)

U(5)
170

5767162
U(20)

 Hint:  This can easily be done 
using a GDC.
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Examine the following sequences and the most likely recursive formula for 
each of them.
 7, 14, 21, 28, 35, 42, … a1 5 7 and an 5 an 2​1 1 7, for n . 1
 2, 11, 20, 29, 38, 47, … a1 5 2 and an 5 an 2​1 1 9, for n . 1
 48, 39, 30, 21, 12, 3, 26, … a1 5 48 and an 5 an 2​1 2 9, for n . 1

Note that in each case above, every term is formed by adding a constant 
number to the preceding term. Sequences formed in this manner are called 
arithmetic sequences.

Definition of an arithmetic sequence
A sequence a1, a2, a3, … is an arithmetic sequence if there is a constant d for which

an 5 an 2​1 1 d

for all integers n . 1. d is called the common difference of the sequence, and 
d 5 an 2 an 2​1 for all integers n . 1.

So, for the sequences above, 7 is the common difference for the first, 9 is 
the common difference for the second and 29 is the common difference 
for the third.

This description gives us the recursive definition of the arithmetic sequence. 
It is possible, however, to find the explicit definition of the sequence.

Applying the recursive definition repeatedly will enable you to see the 
expression we are seeking:

  a2 5 a1 1 d; a3 5 a2 1 d 5 a1 1 d 1 d 5 a1 1 2d;
 a4 5 a3 1 d 5 a1 1 2d 1 d 5 a1 1 3d; …

So, as you see, you can get to the nth term by adding d to a1, (n 2 1) times, 
and therefore:

nth term of an arithmetic sequence
The general (nth) term of an arithmetic sequence, an, with first term a1 and common 
difference d, may be expressed explicitly as

an5 a1 1 (n 2 1)d

Find the first five terms and the 50th term of each infinite sequence defined in  
questions 1–8.

 1  an 5 2n 2 3

 2  bn5 2 3​3n 2​1

 3  un 5 (21)n 2 1    2n ______ 
n2 1 2

  

 4  an 5 nn 2 1

 5  an 5 2an 2 1 1 5 and a1 5 3

 6  un 1 1 5    3 _______ 2un 1 1   and u1 5 0

 7  bn 5 3    bn 2 1 and b1 5 2

 8  an 5 an 2 1 1 2 and a1 5 21

Exercise 3.1

Arithmetic sequences3.2
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This result is useful in finding any term of the sequence without knowing 
all the previous terms.

Note: The arithmetic sequence can be looked at as a linear function as 
explained in the introduction to this chapter, i.e. for every increase of one 
unit in n, the value of the term will increase by d units. As the first term is 
a1, the point (1, a1) belongs to this function. The constant increase d can be 
considered to be the gradient (slope) of this linear model; hence, the nth 
term, the dependent variable in this case, can be found by using the point-
slope form of the equation of a line:

 y 2 y1 5 m(x 2 x1)
 an 2 a1 5 d(n 2 1) ⇔ an 5 a1 1 (n 2 1)d

This agrees with our definition of an arithmetic sequence.

Example 3 

Find the nth and the 50th terms of the sequence 2, 11, 20, 29, 38, 47, …

Solution 
This is an arithmetic sequence whose first term is 2 and common 
difference is 9. Therefore,

 an 5 a1 1 (n 2 1)d 5 2 1 (n 2 1) 3 9 5 9n 2 7
 ⇒ a50 5 9 3 50 2 7 5 443

Example 4 

Find the recursive and the explicit forms of the definition of the following 
sequence, then calculate the value of the 25th term.

 13, 8, 3, 22, …

Solution
This is clearly an arithmetic sequence, since we observe that 25 is the 
common difference. 

Recursive definition: a1 5 13
 an 5 an 2 1 2 5

Explicit definition: an 5 13 2 5(n 2 1) 5 18 2 5n, and
 a25 5 18 2 5 3 25 5 2107

Example 5 

Find a definition for the arithmetic sequence whose first term is 5 and fifth 
term is 11.

Solution
Since the fifth term is given, using the explicit form, we have
  a5 5 a1 1 (5 2 1)d ⇒ 11 5 5 1 4d ⇒ d 5   3 _ 2  

This leads to the general term,

  an 5 5 1   3 _ 2  (n 2 1), or, equivalently, the recursive form
  a1 5 5
  an 5 an 2 1 1   3 _ 2  , n . 1
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Example 6 

Insert four arithmetic means between 3 and 7. 

Solution
Since there are four means between 3 and 7, the problem can be reduced to 
a situation similar to Example 5 by considering the first term to be 3 and 
the sixth term to be 7. The rest is left as an exercise for you!

Examine the following sequences and the most likely recursive formula for 
each of them.
7, 14, 28, 56, 112, 224, … a1 5 7 and an 5 an 2​1 3 2, for n . 1
2, 18, 162, 1458, 13  122, … a1 5 2 and an 5 an 2​1 3 9, for n . 1
48, 224, 12, 26, 3, 21.5, … a1 5 48 and an 5 an 2​1 3 20.5, for n . 1

Note that in each case above, every term is formed by multiplying a 
constant number with the preceding term. Sequences formed in this 
manner are called geometric sequences.

Definition of a geometric sequence 
A sequence a1, a2, a3… is a geometric sequence if there is a constant r for which

an 5 an 2​1 3 r

for all integers n . 1. r is called the common ratio of the sequence, and r 5 an 4 an21 
for all integers n . 1.

 1  Insert four arithmetic means between 3 and 7.

 2  Say whether each given sequence is an arithmetic sequence. If yes, find the 
common difference and the 50th term; if not, say why not.
a) an 5 2n 2 3  b)  bn 5 n 1 2
c)  cn 5 cn 2 1 1 2, and c1 5 21  d)  un 5 3un 2 1 1 2
e)  2, 5, 7, 12, 19, …  f )  2, 25, 212, 219, …

For each arithmetic sequence in questions 3–8, find:
a)  the 8th term 
b)  an explicit formula for the nth term
c)  a recursive formula for the nth term.

 3  22, 2, 6, 10, …   4  29, 25, 21, 17, …

 5  26, 3, 12, 21, …   6  10.07, 9.95, 9.83, 9.71, …

 7  100, 97, 94, 91, …   8  2,   3 _ 4  , 2 ​​1 _ 2  , 2 ​​7 _ 4  , …

 9  Find five arithmetic means between 13 and −23.

10  Find three arithmetic means between 299 and 300.

11  In an arithmetic sequence, a5 5 6 and a14 5 42. Find an explicit formula for the 
nth term of this sequence.

12  In an arithmetic sequence, a3 5 240 and a9 5 218. Find an explicit formula for 
the nth term of this sequence.

Exercise 3.2

Geometric sequences3.3

 Hint:  Definition: In a finite 
arithmetic sequence a1, a2, a3, …, 
ak, the terms a2, a3, …, ak 2 1 are 
called arithmetic means between 
a1 and ak.
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Thus, for the sequences above, 2 is the common ratio for the first, 9 is the 
common ratio for the second and 20.5 is the common ratio for the third.

This description gives us the recursive definition of the geometric 
sequence. It is possible, however, to find the explicit definition of the 
sequence.

Applying the recursive definition repeatedly will enable you to see the 
expression we are seeking:

  a2 5 a1 3 r ; a3 5 a2 3 r 5 a1 3 r 3 r 5 a1 3 r 2;
 a4 5 a3 3 r 5 a1 3 r 2 3 r 5 a1 3 r  3; …

So, as you see, you can get to the nth term by multiplying a1 with r, (n 2 1) 
times, and therefore:

nth term of geometric sequence
The general (nth) term of a geometric sequence, an, with common ratio r and first term 
a1, may be expressed explicitly as

an 5 a1 3 r (n 2 1)

This result is useful in finding any term of the sequence without knowing 
all the previous terms.

Example 7 

a) Find the geometric sequence with a1 5 2 and r 5 3.

b) Describe the sequence 3, 212, 48, 2192, 768, …

c) Describe the sequence 1,   1 _ 2  ,   1 _ 4  ,   1 _ 8  , …

d) Graph the sequence an 5   1 _ 4      3n 2 1

Solution
a) The geometric sequence is 2, 6, 18, 54, …, 2 3​3n 2 1. Notice that the 

ratio of a term to the preceding term is 3.

b) This is a geometric sequence with a1 5 3 and r 5 24. The nth term is 
an 5 3 3​(24)n 2​1. Notice that, when the common ratio is negative, 
the terms of the sequence alternate in sign.

c) The nth term of this sequence is an 5 1    (    1 _ 2   ) 
n 2 1

. Notice that the ratio 
of any two consecutive terms is   1 _ 2  . Also, notice that the terms decrease in 
value.

d) The graph of the geometric 
sequence is shown on the left. 
Notice that the points lie on 
the graph of the function  
y 5   1 _ 4      3x 2 1.
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Example 8 

At 8:00 a.m., 1000  mg of medicine is administered to a patient. At the end 
of each hour, the concentration of medicine is 60% of the amount present 
at the beginning of the hour.

a) What portion of the medicine remains in the patient’s body at noon if 
no additional medication has been given?

b) If a second dosage of 1000  mg is administered at 10:00 a.m., what is the 
total concentration of the medication in the patient’s body at noon?

Solution
a) We use the geometric model, as there is a constant multiple by the end 

of each hour. Hence, the concentration at the end of any hour after 
administering the medicine is given by: 

an 5 a1 3 r (n 2 1), where n is the number of hours

 Thus, at noon n 5 5, and a5 5 1000 3 0.6(5 2 1) 5 129.6.

b) For the second dosage, the amount of medicine at noon corresponds to 
n 5 3, and a3 5 1000 3 0.6(321) 5 360.

 So, the concentration of medicine is 129.6 1 360 5 489.6  mg.

Compound interest
Interest compounded annually

When we borrow money we pay interest, and when we invest money we 
receive interest. Suppose an amount of e1000 is put into a savings account 
that bears an annual interest of 6%. How much money will we have in the 
bank at the end of four years?

It is important to note that the 6% interest is given annually and is added 
to the savings account, so that in the following year it will also earn 
interest, and so on.

This appears to be a geometric sequence with five terms. You will notice 
that the number of terms is five, as both the beginning and the end of the 
first year are counted. (Initial value, when time 5 0, is the first term.)

In general, if a principal of P euros is invested in an account that yields 
an interest rate r (expressed as a decimal) annually, and this interest is 

Table 3.1  Compound interest.

Time in years Amount in the account

0 1000

1 1000 1 1000 3​0.06 5 1000(1 1 0.06)

2 1000(1 1 0.06) 1 (1000(1 1 0.06)) 3 0.06 5 1000(1 1 0.06) (1 1 0.06) 5 1000(1 1 0.06)2

3 1000(1 1 0.06)2 1 (1000(1 1 0.06)2) 3 0.06 5 1000(1 1 0.06)2 (1 1 0.06) 5 1000(1 1 0.06)3

4 1000(1 1 0.06)3 1 (1000(1 1 0.06)3) 3 0.06 5 1000(1 1 0.06)3 (1 1 0.06) 5 1000(1 1 0.06)4

See also Section 4.2.
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added at the end of the year, every year, to the principal, then we can use 
the geometric sequence formula to calculate the future value A, which is 
accumulated after t years. 

If we repeat the steps above, with

 A0 5 P 5 initial amount
 r 5 annual interest rate
 t 5 number of years

it becomes easier to develop the formula:

Time in years Amount in the account

0 A0 5 P

1 A1 5 P 1 Pr 5 P(1 1 r)

2 A2 5 A1(1 1 r) 5 P(1 1 r)2

⋮

t At 5 P(1 1 r)t

Notice that since we are counting from 0 to t, we have t 1 1 terms, and 
hence using the geometric sequence formula, 

 an 5 a1 3 r (n 2 1)  ⇒ At 5 A0 3 (11 r)t

Interest compounded n times per year

Suppose that the principal P is invested as before but the interest is paid 
n times per year. Then   r __ n   is the interest paid every compounding period. 
Since every year we have n periods, for t years, we have nt periods. The 
amount A in the account after t years is 

A 5 P  ( 1 1   r __ n   ) 
nt

Example 9 

E1000 is invested in an account paying compound interest at a rate of 6%. 
Calculate the amount of money in the account after 10 years if

a) the compounding is annual

b) the compounding is quarterly

c) the compounding is monthly.  

Solution
a) The amount after 10 years is
 A 5 1000(1 1 0.06)10 5 E1790.85.

b) The amount after 10 years quarterly compounding is

 A 5 1000 ( 1 1   0.06 ____ 4   ) 
40

 5 E1814.02.

c) The amount after 10 years monthly compounding is

 A 5 1000 ( 1 1   0.06 ____ 
12

   ) 
120

 5 E1819.40.

Table 3.2  Compound interest 
formula.
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Example 10 

You invested E1000 at 6% compounded quarterly. How long will it take 
this investment to increase to E2000?

Solution
Let P 5 1000, r 5 0.06, n 5 4 and A 5 2000 in the compound interest 
formula:

A 5 P ( 1 1   r __ n   ) 
nt

Then solve for t:

2000 5 1000 ( 1 1   0.06 ____ 4   ) 
4t

 ⇒ 2 5 1.0154t

Using a GDC, we can graph the functions y 5 2 and y 5 1.0154t and then 
find the intersection between their graphs.

As you can see, it will take the E1000 investment 11.64 years to double to 
E2000. This translates into approximately 47 quarters.

You can check your work to see that this is accurate by using the 
compound interest formula:

A 5 1000 ( 1 1   0.06 ____ 4   ) 
47

 5 E2013.28

In the next chapter you will learn how to solve the problem algebraically.

Example 11 

You want to invest €1000. What interest rate is required to make this 
investment grow to €2000 in 10 years if interest is compounded quarterly?

Solution
Let P 5 1000, n 5 4, t 5 10 and A 5 2000 in the compound interest 
formula:

A 5 P  ( 1 1   r __ n   ) 
nt

Now solve for r:

2000 5 1000 ( 1 1   r __ 4   ) 40 ⇒ 2 5  ( 1 1   r __ 4   ) 40 ⇒ 1 1   r __ 4   5  
40

 √
__

 2   ⇒ r 5 4( 
40

 √
__

 2   2 1)

 5 0.0699

So, at a rate of 7% compounded quarterly, the €1000 investment will grow 
to at least €2000 in 10 years.

You can check to see whether your work is accurate by using the 
compound interest formula:

A 5 1000 ( 1 1   0.07 ____ 4   ) 
40

 5 €2001.60

Population growth

The same formulae can be applied when dealing with population growth.

Example 12 

The city of Baden in Lower Austria grows at an annual rate of 0.35%. 
The population of Baden in 1981 was 23  140. What is the estimate of the 
population of this city for 2011?

Y2�1.015 (4x)
y

x

y

Intersection
X�11.638881 Y�2

x
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Solution
This situation can be modelled by a geometric sequence whose first term is 
23  140 and whose common ratio is 1.0035. Since we count the population 
of 1981 among the terms, the number of terms is 31.

2011 is equivalent to the 31st term in this sequence. The estimated 
population for Baden is, therefore,

 Population (2011) 5 a31 5 23  140(1.0035)30 5 25  697

Note: In Chapter 4, more realistic population growth models will be 
explored and more efficient methods will be developed, as well as the 
ability to calculate interest that is continuously compounded.

 Hint:  Definition: In a finite 
geometric sequence a1, a2, a3, …, ak, 
the terms a2, a3, … ak 2 1 are called 
geometric means between a1 
and ak.

 1  Insert four geometric means between 3 and 96. 

 2  Determine whether the sequence in each question is arithmetic, geometric or 
neither. Find the common difference for the arithmetic ones and the common 
ratio for the geometric ones. Find the common difference or ratio, and the 10th 
term for each arithmetic or geometric one as appropriate.
a)  an 5 3n 2 3  b)  bn 5 2n 1 2

c)  cn 5 2cn 2 1 2 2, and c1 5 21  d)  un 5 3un 2 1 and u1 5 4

e)  2, 5, 12.5, 31.25, 78.125 …  f )  2, 25, 12.5, 231.25, 78.125 …

g)  2, 2.75, 3.5, 4.25, 5, …  h)  18, 212, 8, 2   16
 __ 3  ,    32

 __ 9  , …

For each geometric sequence in questions 3–8, find
a)  the 8th term   b)  an explicit formula for the nth term
c)  a recursive formula for the nth term.

 3  22, 3, 2   9 _ 2  ,    27
 __ 4  , …   4  35, 25,   125

 ___ 7   ,    625
 ___ 49  , …   5  26, 23, 2   3 _ 2  , 2   3 _ 4  , …

 6  9.5, 19, 38, 76, …   7  100, 95, 90.25, …   8  2,   3 _ 4  ,    9 __ 32  ,    27
 ___ 256  , …

 9  Find three geometric means between 7 and 4375. 

10  Find a geometric mean between 16 and 81.   Hint:  This is also called the
    mean proportional.
11 The first term of a geometric sequence is 24 and the fourth term is 3. Find the 

fifth term and an expression for the nth term.

12  The common ratio in a geometric sequence is   2 _ 7   and the fourth term is   14
 __ 3  . Find 

the third term.

13  Which term of the geometric sequence 6, 18, 54, … is 118  098?

14  The fourth term and the seventh term of a geometric sequence are 18 and   729
 ___ 8   . 

  Is   59049
 ____ 128    a term of this sequence? If so, which term is it?

15  Jim put €1500 into a savings account that pays 4% interest compounded semi-
annually. How much will his account hold 10 years later if he does not make any 
additional investments in this account?

16  At her daughter Jane’s birth, Charlotte set aside £500 into a savings account. The 
interest she earned was 4% compounded quarterly. How much money will Jane 
have on her 16th birthday?

17  How much money should you invest now if you wish to have an amount of €4000 
in your account after 6 years if interest is compounded quarterly at an annual rate 
of 5%?

18  In 2007, the population of Switzerland (in thousands) was estimated to be 7554. 
How large would the Swiss population be in 2012 if it grows at a rate of 0.5% 
annually?

Exercise 3.3
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The word ‘series’ in common language implies much the same thing as 
‘sequence’. But in mathematics when we talk of a series, we are referring in 
particular to sums of terms in a sequence, e.g. for a sequence of values an , 
the corresponding series is the sequence of Sn with 

Sn 5 a1 1 a2 1 … 1 an 2 1 1 an

If the terms are in an arithmetic sequence, we call the sum an arithmetic 
series.

Sigma notation
Most of the series we consider in mathematics are infinite series. This 
name is used to emphasize the fact that the series contain infinitely many 
terms. Any sum in the series Sk will be called a partial sum and is given by

Sk 5 a1 1 a2 1 … 1 ak 2 1 1 ak

For convenience, this partial sum is written using the sigma notation:

Sk 5  ∑ 
i 5 1  

   

i 5 k

  ai 5 a1 1 a2 1 … 1 ak 2 1 1 ak 

Sigma notation is a concise and convenient way to represent long sums. 
Here, the symbol S is the Greek capital letter sigma that refers to the initial 

letter of the word ‘sum’. So, the expression  ∑ 
i 5 1  

   

i 5 k

  ai  means the sum of all the 

terms ai , where i takes the values from 1 to k. We can also write  ∑ 
i 5 m   

  

n

   ai  to 

mean the sum of the terms ai, where i takes the values from m to n. In such 
a sum, m is called the lower limit and n the upper limit.

Example 13 

Write out what is meant by:

a)  ∑ 
i 5 1   

   

5

  i 4  b)  ∑ 
r 5 3   

   

7

  3r  c)  ∑ 
j 5 1   

   

n

   xjp(xj) 

Solution

a)  ∑ 
i 5 1   

   

5

  i 4  5 14 1 24 1 34 1 44 1 54

b)  ∑ 
r 5 3   

   

7

  3r  5 33 1 34 1 35 1 36 1 37

c)  ∑ 
j 5 1   

   

n

   xjp(xj )  5 x1p(x1) 1 x2p(x2) 1 … 1 xnp(xn)

Series3.4
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Example 14 

Evaluate  ∑ 
n 5 0  

  

5

  2n 

Solution

 ∑ 
n 5 0

  

5

    2n  5 20 1 21 1 22 1 23 1 24 1 25 5 63

Example 15 

Write the sum   1 _ 2   2   2 _ 3   1   3 _ 4   2   4 _ 5   1 … 1   99
 ___ 100   in sigma notation.

Solution
We notice that each term’s numerator and denominator are consecutive 

integers, so they take on the absolute value of   k _____ 
k 1 1

   or any equivalent form. 

We also notice that the signs of the terms alternate and that we have 99 
terms. To take care of the sign, we use some power of (21) that will start 
with a positive value. If we use (21)k , the first term will be negative, so we 
can use (21)k 1 1 instead. We can, therefore, write the sum as

(21)1 1 1   1 _ 
2

   1 (21)2 1 1   2 _ 
3

   1 (21)3 1 1   3 _ 4   1 … 1 (21)99 1 1   99 ___ 
100

   5​ ∑ 
k 5 1

   

99

    (21)k 1 1   k ____ 
k 1 1

  

Properties of the sigma notation

There are a number of useful results that we can obtain when we use sigma 
notation. 
1 For example, suppose we had a sum of constant terms

   ∑ 
i 5 1   

   

5

  2 

 What does this mean? If we write this out in full, we get

   ∑ 
i 5 1   

   

5

  2  5 2 1 2 1 2 1 2 1 2 5 5 3 2 5 10.

 In general, if we sum a constant n times then we can write

   ∑ 
i 5 1   

   

n

   k  5 k 1 k 1 … 1 k 5 n 3 k 5 nk.

2 Suppose we have the sum of a constant times i. What does this give us? 
For example,

  ∑ 
i 5 1

   

   5

  5i  5 5 3 1 1 5 3 2 1 5 3 3 1 5 3 4 1 5 3 5 5 5 3 (1 1 2 1 3 1 4 1 5) 5 75.

 However, this can also be interpreted as follows

  ∑ 
i 5 1  

   

5

  5i  5 5 3 1 1 5 3 2 1 5 3 3 1 5 3 4 1 5 3 5 5 5 3 (1 1 2 1 3 1 4 1 5) 5 5 ∑ 
i 5 1   

   

5

  i 
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 which implies that

   ∑ 
i 5 1   

   

5

  5i  5 5 ∑ 
i 5 1  

   

5

  i 

 In general, we can say

   ∑ 
i 5 1  

   

n

   ki  5 k 3 1 1 k 3 2 1 … 1 k 3 n

   5 k 3 (1 1 2 1 … 1 n)

   5 k ∑ 
i 5 1  

   

n

   i 

3 Suppose that we need to consider the summation of two different 
functions, such as

   ∑ 
k 5 1  

   

n

   (k2 1 k3)  5 (12 1 13) 1 (22 1 23) 1 … 1 n2 1 n3

   5 (12 1 22 1 … 1 n2) 1 (13 1 23 1 … 1 n3)

   5  ∑ 
k 5 1  

   

n

   (k2)  1  ∑ 
k 5 1  

   

n

   (k3) 

 In general,

   ∑ 
k 5 1  

   

n

   (f (k))  1 g (k)) 5  ∑ 
k 5 1   

   

n

   f (k)  1  ∑ 
k 5 1   

   

n

   g (k) 

Arithmetic series
In arithmetic series, we are concerned with adding the terms of arithmetic 
sequences. It is very helpful to be able to find an easy expression for the 
partial sums of this series.

Let us start with an example:

Find the partial sum for the first 50 terms of the series

 3 1 8 1 13 1 18 1 …

We express S50 in two different ways:

 S50 5 3 1 8 1 13 1 … 1 248, and

 S50 5 248 1 243 1 238 1 … 1 3 
 2S50 5 251 1 251 1 251 1 … 1 251

There are 50 terms in this sum, and hence

 2S50 5 50 3 251 ⇒ S50 5   50 ___ 
2

   (251) 5 6275.

This reasoning can be extended to any arithmetic series in order to develop 
a formula for the nth partial sum Sn.

Let {an} be an arithmetic sequence with first term a1 and a common 
difference d. We can construct the series in two ways: Forward, by adding d 
to a1 repeatedly, and backwards by subtracting d from an repeatedly. We get 
the following two expressions for the sum:

Sn 5 a1 1 a2 1 a3 1 … 1 an 5 a1 1 (a1 1 d) 1 (a1 1 2d) 1 … 1​(a1 1 (n 2 1)d ) 

and

Sn 5 an 1 an 2 1 1 an 2 2 1 … 1 a1 5 an 1 (an 2 d) 1 (an 2 2d) 1 … 1​(an 2 (n 2 1)d )
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By adding, term by term vertically, we get

 Sn 5 a1 1 (a1 1 d ) 1 (a1 1 2d ) 1 … 1​(a1 1 (n 2 1)d )

 Sn 5 an 1 (an 2 d ) 1 (an 2 2d ) 1 … 1​(an 2 (n 2 1)d )
 

    
 2Sn 5 (a1 1 an) 1 (a1 1 an) 1 (a1 1 an) 1 … 1​(a1 1 an)

Since we have n terms, we can reduce the expression above to

 2Sn 5 n(a1 1 an), which can be reduced to

 Sn 5   n __ 
2

   (a1 1 an), which in turn can be changed to give an 

   interesting perspective of the sum, 

   i.e. Sn 5 n (   a1 1 an _______ 
2

   )  is n times the average of 

   the first and last terms!

If we substitute a1 1 (n 2 1)d for an then we arrive at an alternative 
formula for the sum:

 Sn 5   n __ 
2

   (a1 1 a1 1 (n 21)d ) 5   n __ 
2

   (2a1 1 (n 2 1)d )

Example 16 

Find the partial sum for the first 50 terms of the series

3 1 8 1 13 1 18 1 …

Solution
Using the second formula for the sum, we get

  S50 5   50 ___ 
2

  (2 3 3 1 (50 2 1)5) 5 25 3 251 5 6275.

Using the first formula requires that we know the nth term. So, 
a50 5 3 1 49 3 5 5 248, which now can be used:

  S50 5 25(3 1 248) 5 6275.

Geometric series
As is the case with arithmetic series, it is often desirable to find a general 
expression for the nth partial sum of a geometric series.

Let us start with an example:

Find the partial sum for the first 20 terms of the series

3 1 6 1 12 1 24 1 …

Sum of an arithmetic series
The sum, Sn, of n terms of an arithmetic series with common difference d, first term a1 
and nth term an is:

Sn 5   n __ 2  (a1 1 an)   or   Sn 5   n __ 2  (2a1 1 (n 2 1)d) 
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We express S20 in two different ways and subtract them:

 S20 5 3 1 6 1 12 1 … 1 1  572  864

 2S20 5   6 1 12 1 … 1​1  572  864 1 3  145  728
 
 2S20 5 3       2 3  145  728

 ⇒S20 5 3  145  725

This reasoning can be extended to any geometric series in order to develop 
a formula for the nth partial sum Sn.

Let {an} be a geometric sequence with first term a1 and a common ratio 
r  1. We can construct the series in two ways as before and using the 
definition of the geometric sequence, i.e. an 5 an21 3 r, then

 Sn 5 a1 1 a2 1 a3 1 … 1​ an 2 1 1 an, and

 rSn 5 ra1 1 ra2 1​ra3 1 … 1​ ran 2 1 1 ran

           
  5 a2 1 a3 1 … 1​an 2 1 1 an 1 ran

Now, we subtract the first and last expressions to get

 Sn  2  rSn 5 a1 2  ran ⇒ Sn(1 2 r) 5 a1 2 ran ⇒ Sn 5   
a1 2 ran _______ 1 2 r    ; r  1.

This expression, however, requires that r, a1, as well as an be known in 
order to find the sum. However, using the nth term expression developed 
earlier, we can simplify this sum formula to

 Sn 5   
a1 2 ran _______ 

1 2 r
    5   

a1 2 ra1r n 2 1

 ____________ 
1 2 r

    5   
a1(1 2 rn)

 _________ 
1 2 r

    ; r  1.

Example 17 

Find the partial sum for the first 20 terms of the series 3 1 6 1 12 1 24 1 … 
in the opening example for this section.

Solution

 S20 5   
3(1 2 220)

 _________ 
1 2 2

   5   
3(1 2 1  048  576)

  ______________ 
21

   5 3  145  725

Infinite geometric series

Consider the series

  ∑ 
k 5 1

   

n

      2 (   1 _ 2   ) k 2 1 5 2 1 1 1   1 _ 2   1   1 _ 4   1   1 _ 8   1 …

Consider also finding the partial sums for 10, 20 and 100 terms. The sums 
we are looking for are the partial sums of a geometric series. So,

Sum of a geometric series
The sum, Sn , of n terms of a geometric series with common ratio r (r ≠ 1) and first term a1 
is:

Sn 5   
a1(1 2 r n)

 ________ 1 2 r      [ equivalent to Sn 5   
a1(r n 2 1)

 ________ r 2 1    ] 
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  ∑ 
k 5 1

   

10

     2 (   1 _ 2   ) k 2 1 5 2 3    
1 2 ​( ​​1 _ 2   ) 

10 

 ________ 
1 2   1 _ 2  

    3.996

 
  

 ∑ 
k 5 1

   

20

     2 (   1 _ 2   ) k 2 1 5 2 3    
1 2 ​( ​​1 _ 2   ) 

20 

 ________ 
1 2   1 _ 2  

    3.999  996

  ∑ 
k 5 1

   

100

     2 (   1 _ 2   ) k 2 1 5 2 3    
1 2 ​( ​​1 _ 2   ) 

100 

 _________ 
1 2   1 _ 2  

    4

As the number of terms increases, the partial sum appears to be approaching 
the number 4. This is no coincidence. In the language of limits,

  lim    n→   ∑ 
k 5 1

   

n

      2 (   1 _ 2   ) k 2 1 5  lim    n→  2 3    
1 2 ​( ​​1 _ 2   ) 

k 

 ________ 
1 2  (   1 _ 2   ) 

   5 2 3   1 2 0 _____ 
   1 _ 2  

   5 4, since  lim    n→  (   1 _ 2   ) 
n
 5 0.

This type of problem allows us to extend the usual concept of a ‘sum’ of a 
finite number of terms to make sense of sums in which an infinite number 
of terms is involved. Such series are called infinite series.

One thing to be made clear about infinite series is that they are not true 
sums! The associative property of addition of real numbers allows us to 
extend the definition of the sum of two numbers, such as a 1 b, to three or 
four or n numbers, but not to an infinite number of numbers. For example, 
you can add any specific number of 5s together and get a real number, but 
if you add an infinite number of 5s together, you cannot get a real number! 
The remarkable thing about infinite series is that, in some cases, such as the 
example above, the sequence of partial sums (which are true sums) approach 
a finite limit L. The limit in our example is 4. This we write as

   lim    n→   ∑ 
k 5 1

   

n

     ak 5  lim    n→   (a1 1 a2 1 … 1 an) 5 L.

We say that the series converges to L, and it is convenient to define L as the 
sum of the infinite series. We use the notation

  ∑ 
k 5 1

   



​    ak 5  lim    n→   ∑ 
k 5 1

   

n

      ak 5 L.

We can, therefore, write the limit above as

  ∑ 
k 5 1

   



​    2 (   1 _ 2   ) k 2 1 5  lim    n→   ∑ 
k 5 1

   

n

     2 (   1 _ 2   ) k 2 1 5​4. 

If the series does not have a limit, it diverges and does not have a sum.

We are now ready to develop a general rule for infinite geometric series. 
As you know, the sum of the geometric series is given by

 S n 5   
a1 2 ran _______ 

1 2 r
    5   

a1 2 ra1r n 2 1

 ____________ 
1 2 r

    5   
a1(1 2 rn)

 _________ 
1 2 r

    ; r  1.

If |r  | , 1, then   lim    n→  r n 5 0 and

 Sn 5 S 5   lim    n→    
a1(1 2 rn)

 _________ 
1 2 r

    5   
a1 _____ 

1 2 r
  .
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We will call this the sum of the infinite geometric series. In all other cases 
the series diverges. The proof is left as an exercise.

  ∑ 
k 5 1

   



​     2 (   1 _ 2   ) k 2 1 5   2 _____ 
1 2   1 _ 2  

   5 4, as already shown.

Example 18 

A rational number is a number that can be expressed as a quotient of two 
integers. Show that 0. 

_
 6  5 0.666 … is a rational number.

Solution
 0. 

_
 6  5 0.666 … 5 0.6 1 0.06 1 0.006 1 0.0006 1 …

  5   6 __ 10   1   6 __ 10        1 __ 10   1   6 __ 10      (    1 __ 10   ) 2 1   6 __ 10       (   1 __ 10   ) 3 1 …

This is an infinite geometric series with a1 5   6 __ 10   and r 5   1 __ 10  ; therefore,

 0. 
_

 6  5   
  6 __ 10  
 ______ 

1 2   1 __ 10  
   5   6 __ 10       10

 __ 9   5   2 _ 3  

Example 19 

If a ball has elasticity such that it bounces up 80% of its previous height, 
find the total vertical distances travelled down and up by this ball when it is 
dropped from an altitude of 3 metres. Ignore friction and air resistance.

Solution

After the ball is dropped the initial 3  m, it bounces up and down a distance 
of 2.4  m. Each bounce after the first bounce, the ball travels 0.8 times the 
previous height twice – once upwards and once downwards. So, the total 
vertical distance is given by

h 5 3 1 2(2.4 1 (2.4 3 0.8) 1 (2.4 3 0.82) 1 …) 5 3 1 2 3 l

The amount in parenthesis is an infinite geometric series with a1 5 2.4 and 
r 5 0.8. The value of that quantity is

3 m
2.4 m

1.92 m

Sum of an infinite geometric series
The sum, S, of an infinite geometric series with first term a1 such that the common ratio, 
r, satisfies the condition  | r |  < 1 is given by:

S​5   
a1 ____ 1 2 r  
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l 5   2.4 _______ 
1 2 0.8

   5 12.

Hence, the total distance required is

h 5 3 1 2(12) 5 27  m.

Applications of series to compound interest 
calculations (optional)
Annuities

An annuity is a sequence of equal periodic payments. If you are saving 
money by depositing the same amount at the end of each compounding 
period, the annuity is called ordinary annuity. Using geometric series you 
can calculate the future value (FV) of this annuity, which is the amount of 
money you have after making the last payment.

You invest e1000 at the end of each year for 10 years at a fixed annual 
interest rate of 6%. See table below.

Year Amount invested Future value

10 1000 1000

9 1000 1000(1 1 0.06)

8 1000 1000(1 1 0.06)2

⋮

1 1000 1000(1 1 0.06)9

The future value of this investment is the sum of all the entries in the last 
column, so it is

FV 5 1000 1 1000(1 1​0.06) 1 1000(1 1​0.06)2 1 … 1 1000(1 1​0.06)9

This sum is a partial sum of a geometric series with n 5 10 and r 5 1 1 0.06. 
Hence,

FV 5   
1000(1 2 (1 1 0.06)10)

  ___________________  
1 2 (1 1 0.06)

   5   
1000(12(1 1 0.06)10)

  __________________  
20.06

   5 13  180.79.

This result can also be produced with a GDC, as shown.

We can generalize the previous formula in the same manner. Let the 
periodic payment be R and the periodic interest rate be i, i.e. i 5   r __ n   . Let the 
number of periodic payments be m. 

Period Amount invested Future value

m R R

m 2 1 R R(1 1 i )

m 2 2 R R(1 1 i )2

⋮

1 R R(1 1 i )m 2 1

Table 3.3  Calculating the future 
value.

Table 3.4  Calculating the future 
value 2 formula.

Plot1
nMin�1

Plot2 Plot3

U(n)�U(n�1)*(1�

U(nMin)�1000
V(n)�

W(n)�
V(nMin)�

0.06)

sum(seq(u(n),n,1,
10)

13180.79494
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The future value of this investment is the sum of all the entries in the last 
column, so it is

FV 5 R 1 R(1 1 i) 1 R(1 1 i)2 1 … 1 R(1 1 i)m 2 1

This sum is a partial sum of a geometric series with m terms and r 5 1 1 i. 
Hence,

FV 5   
R(1 2​(1 1 i)m)

  ______________  
1 2 (1 1 i)

   5   
R (1 2 (1 1 i)m)

  ______________ 
2i

    5 R  (   (1 1 i)m 2 1
 ___________ 

i
    ) 

Note: If the payment is made at the beginning of the period rather than 
at the end, the annuity is called annuity due and the future value after m 
periods will be slightly different. The table for this situation is given below. 

Period Amount invested Future value

m R R (1 1 i )

m 2 1 R R (1 1 i )2

m 2 2 R R (1 1 i )3

⋮

1 R R (1 1 i )m

The future value of this investment is the sum of all the entries in the last 
column, so it is

FV 5 R(1 1 i) 1 R(1 1 i)2 1 … 1 R(1 1 i)m 2 1 1 R(1 1 i)m

This sum is a partial sum of a geometric series with m terms and r 5 1 1 i. 
Hence,

FV 5   
R (1 1 i(1 2 (1 1 i)m)

  ________________  
1 2 (1 1 i)

   5   
R (1 1 i 2 (1 1 i)m 1 1)

  _________________ 
2i

    5 R  (   (1 1 i)m 1 1 2 1
  ____________ 

i
    2 1 ) 

If the previous investment is made at the beginning of the year rather than 
at the end, then in 10 years we have

FV 5 R  (   (1 1 i)m 1 1 2 1
  _____________ 

i
    21 )  51000  (   (1 1 0.06)10 1 1 21

  ________________ 
0.006

   2 1 )  5 13  971.64.

Table 3.5  Calculating the future 
value (annuity due).

 1  Find the sum of the arithmetic series 11 1 17 1 … 1 365.

 2  Find the sum:

  2 2 3 1   9 __ 2   2   27 ___ 4   1 … 2   177  147 _______ 1024   

 3  Evaluate  ∑ 
k 5 0

   

13

     (2  2 0.3k).

 4  Evaluate 2 2   4 __ 5   1   8 ___ 25   2   16 ____ 125   1 …

 5  Evaluate   1 __ 3   1    
√

__
 3   ___ 12   1   1 ___ 16   1    

√
__

 3   ___ 64   1    3 ____ 256   1 …

 6  Express each repeating decimal as a fraction:
a)  0. 

__
 52   b)  0.4 

__
 53   c)  3.01 

__
 37 

 7  At the beginning of every month, Maggie invests £150 in an account that pays 
6% annual rate. How much money will there be in the account after six years?

Exercise 3.4
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In this section, you will learn about a sequence of numbers called Pascal’s 
triangle and work with one of its applications, the binomial theorem.

A binomial is a polynomial with two terms. For example, x 1 y is a 
binomial. In principle, it is easy to raise x 1 y to any power; but raising it 
to high powers would be tedious. In this book, we will find a formula that 
gives the expansion of (x 1 y)n for any positive integer n, but we will leave 
the proof for higher level courses.

Let us look at some special cases of the expansion of (x 1 y)n:

(x1y)0 5 1

(x1y)1 5 x 1 y

(x1y)2 5 x 2 1 2xy 1 y 2

(x1y)3 5 x 3 1 3x 2y 1 3xy 2 1 y 3

(x1y)4 5 x 4 1 4x 3y 1 6x 2y 2 1 4xy 3 1 y 4

(x1y)5 5 x 5 1 5x 4y 1 10x 3y 2 110x 2y 3 1 5xy 4 1 y 5

(x1y)6 5 x 6 1 6x 5y 1 15x 4y 2 1​20x 3y 3 1 15x 2y 4 1 6xy 5 1 y 6

There are several things that you will have noticed after looking at the 
expansion: 
• There are n 1 1 terms in the expansion of (x 1 y)n.
• The degree of each term is n. 
• The powers on x begin with n and decrease to 0.
• The powers on y begin with 0 and increase to n. 
• The coefficients are symmetric. 

For instance, notice how the exponents of x and y behave in the expansion of 
(x 1 y)5.

The exponents of x decrease:

(x 1 y)5 5 x 5u 1 5x 4uy 1 10x 3uy 2 1 10x 2uy 3 1 5x 1uy 4 1 x 0uy 5

The exponents of y increase:

(x 1 y)5 5 x 5y  0u 1 5x 4y  1u 1 10x 3y  2u 1 10x 2y  3u 1 5xy 4u 1 y  5u

Using this pattern, we can now proceed to expand any binomial raised to 
power n: (x 1 y)n. For example, leaving a blank for the missing coefficients, 
the expansion for (x 1 y)7 can be written as

(x 1 y)7

5 ux 7 1 ux 6y  1ux 5y 2 1 ux 4y 3 1 ux 3y 4 1 ux 2y 5 1 uxy 6 1 uy 7

To finish the expansion we need to determine these coefficients. In order 
to see the pattern, let us look at the coefficients of the expansion we started 
the section with.

The binomial theorem3.5
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A triangle like the one above is known as Pascal’s triangle. Notice how the 
first and second terms in row 3 give you the second term in row 4; the 
third and fourth terms in row 3 give you the fourth term of row 4; the 
second and third terms in row 5 give you the third term in row 6; and the 
fifth and sixth terms in row 5 give you the sixth term in row 6, and so on. 
So now we can state the key property of Pascal’s triangle.

Pascal’s triangle
Every entry in a row is the sum of the term directly above it and the entry diagonally 
above and to the left of it. When there is no entry, the value is considered zero.

Take the last entry in row 5, for example; there is no entry directly above it, 
so its value is 0 1 1 5 1.

From this property it is easy to find all the terms in any row of Pascal’s 
triangle from the row above it. So, for the expansion of (x 1 y)7, the terms 
are found from row 6 as follows:

0 1 6 15 20 15 6 1 0

1 7 21 35 35 21 7 1

So, (x 1 y)7 5 x 7 1 u7  x 6y  1 u21 x 5y 2 1 u35 x 4y 3 1 u35 x 3y 4 1 u21 x 2y 5 

 1 u7  xy 6 1 y 7.

Note: Several sources use a slightly different arrangement for Pascal’s 
triangle. The common usage considers the triangle as isosceles and uses 
the principle that every two entries add up to give the entry diagonally 
below them, as shown in the following diagram. 
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1
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1

6 1

Pascal’s triangle was known 
to Persian and Chinese 
mathematicians in the 13th 
century.
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Example 20 

Use Pascal’s triangle to expand (2k 2 3)5.

Solution
We can find the expansion above by replacing x by 2k and y by 23 in the 
binomial expansion of (x 1 y)5.

Using the fifth row of Pascal’s triangle for the coefficients will give us the 
following:

1(2k)5 1 5(2k)4(23) 1 10(2k)3(23)2 1 10(2k)2(23)3 1 5(2k)(23)4 
 1 1(23)5 5 32k 5 2 240k 4 1 720k 3 2 1080k 2 1 810k 2 243.

Pascal’s triangle is an easy and useful tool in finding the coefficients of the 
binomial expansion for relatively small values of n. It is not very efficient 
doing that for large values of n. Imagine you want to evaluate (x 1 y)20. 
Using Pascal’s triangle, you will need the terms in the 19th row and the 
18th row and so on. This makes the process tedious and not practical. 

Luckily, we have a formula that can find the coefficients of any Pascal’s 
triangle row. This formula is the binomial formula, whose proof is beyond 

the scope of this book. Every entry in Pascal’s triangle is denoted by  (  n   r   ) , 
which is also known as the binomial coefficient.

In  (  n   r   ) , n is the row number and r is the column number. To understand 
the binomial coefficient, we need to understand what the factorial notation 
means.

Factorial notation
The product of the first n positive integers is denoted by n! and is called n factorial:

n! 5 1 3 2 3 3 3 4 … (n 2 2) 3 (n 2 1) 3 n
We also define 0! 5 1.

This definition of the factorial makes many formulae involving the 
multiplication of consecutive positive integers shorter and easier to write. 
That includes the binomial coefficient.

The binomial coefficient
With n and r as non-negative integers such that n > r, the binomial coefficient  (  n   r   )  is 
defined by

  (  n   r   )  5    n! _______ 
r!(n 2 r)! 

   

Note: The GDC uses nCr to represent  (  n   r   ) .

Example 21 

Find the value of a)  (  7   3  )    b)  (  7   4  )    c)  (  7   0  )    d)  (  7   7  ) 

Solution

a)  (  7   3  )  5   7! _________ 
3!(7 2 3)!

   5   7! ____ 
3!4!

   5   1    2    3    4    5    6    7  _________________  
(1    2    3)(1    2    3    4)

   5   5    6    7 ______ 
1    2    3

   5 35
     

The proof that Pascal’s entry and 
the binomial coefficient are the 
same can be found by visiting 
www.pearsonhotlinks.com, enter 
the title or ISBN of this book and 
select weblink 1.



103

b)  (  7   4  )  5   7! _________ 
4!(7 2 4)!

   5   7! ____ 
4!3!

   5   1    2    3    4    5    6    7  _________________  
(1    2    3    4)(1    2    3)

   5   5    6    7 ______ 
1    2    3

   5 35
  
  

c)  (  7   0  )  5   7! _________ 
0!(7 2 0)!

   5   7/ ! ____ 
0!7/ !

   5   1 __ 
1

   5 1

d)  (  7   7  )  5   7! _________ 
7!(7 2 7)!

   5   7/ ! ____ 
7/ !0!

   5   1 __ 
1

   5 1

Although the binomial coefficient  (  n   r   )  appears as a fraction, all its results 
where n and r are non-negative integers are positive integers. Also, notice 
the symmetry of the coefficient in the previous examples. This is a 
property that you are asked to prove in the exercises:

 (  n   r   )  5  (   n     n 2 r  ) 

Example 22 

Calculate the following:

 (  6   0  ) ,  (  6   1  ) ,  (  6   2  ) ,  (  6   3  ) ,  (  6   4  ) ,  (  6   5  ) ,  (  6   6  ) 

Solution

 (  6   0  )  5 1,  (  6   1  )  5 6,  (  6   2  )  5 15,  (  6   3  )  5 20,  (  6   4  )  5 15,  (  6   5  )  5 6,  (  6   6  )  5 1

The values we calculated above are precisely the entries in the sixth row of 
Pascal’s triangle.

We can write Pascal’s triangle in the following manner:

 (  0   0  ) 

 (  1   0  )  (  1   1  ) 

 (  2   0  )  (  2   1  )  (  2   2  ) 

 (  3   0  )  (  3   1  )  (  3   2  )  (  3   3  ) 

… … … …

 (  n   0   )  (  n   1   ) … … … …  (  n   n  ) 

Example 23 

Calculate  (   n        r 2 1  )  1  (  n   r   ) .    Hint:  You will be able to provide reasons for
  the steps after you do the exercises!

Solution

 (   n        r 2 1  )  1  (  n   r   )   5   n! _________________  
(r 2 1)!(n 2 r 1 1)!

   1   n! ________ 
r!(n 2 r)!

   

 5   n!    r  ___________________  
r    (r 2 1)!(n 2 r 1 1)!

   1   
n!    (n 2 r 1 1)

  ___________________  
r!(n 2 r)!    (n 2 r 1 1)

   

​ 5   n!    r ____________  
r!(n 2 r 1 1)!

   1 ​​
n!    (n 2 r 1 1)

  _____________  
r!(n 2 r 1 1)!

 ​

 Hint:  Your calculator can do 
the tedious work of evaluating the 
binomial coefficient. If you have a 
TI, the binomial coefficient appears 
as nCr, which is another notation 
frequently used in mathematical 
literature.

7 nCr 3

7 nCr 4

7 nCr 0

35

35

1
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 5   
n!    r 1 n!    (n 2 r 1 1)

  ___________________  
r!(n 2 r 1 1)!

 ​ 5 ​​
n!(r 1 n 2 r 1 1)

  _______________  
r!(n 2 r 1 1)!

 ​​

​ 5 ​​
n!(n 1 1)

 ____________  
r!(n 2 r 1 1)!

 ​ 5 ​​
(n 1 1)!

 ____________  
r!(n 1 1 2 r)!

 ​ 5 ​( ​n 1 1 ​​​​ r  ​​)​

If we read the result above carefully, it says that the sum of the terms in the 
nth row (r 2 1)th and rth columns is equal to the entry in the (n 1 1)th 
row and rth column. That is, the two entries on the left are adjacent entries 
in the nth row of Pascal’s triangle and the entry on the right is the entry in 
the (n 1 1)th row directly below the rightmost entry. This is precisely the 
principle behind Pascal’s triangle!

Using the binomial theorem
We are now prepared to state the binomial theorem.

(x 1 y)n 5 ​( ​n ​​0 ​​)​x n  1  ​( ​n ​​1 ​​)​x n 2 1y  1  ​( ​n ​​2 ​​)​x n 2 2y 2  1  ​( ​n ​​3 ​​)​x n 2 3y 3  1  …  1  ​( ​​ n ​​​n 2 1​​)​xy n 2 1  1  ​( ​n ​​n​​)​y n

In a compact form, we can use sigma notation to express the theorem as 
follows:

(x 1 y)n 5  ∑ 
i 5 0

   

n

       (  n   
i
   ) xn 2 i yi 

Example 24 

Use the binomial theorem to expand (x 1 y)7.

Solution 

(x 1 y)7 5  (  7   0  ) x 7 1  (  7   1  ) x 7 2 1y 1  (  7   2  ) x 7 2 2y 2 1  (  7   3  ) x 7 2 3y 3 1  (  7   4  ) x 7 2 4y 4

    1  (  7   5  ) x 7 2 5y 5 1  (  7   6  ) xy 6 1  (  7   7  ) y 7

 5 x 7 1 7x 6y 1 21x 5y 2 1 35x 4y 3 1 35x 3y 4 1 21x 2y 5 1 7xy 6 1 y 7

Example 25 

Find the expansion for (2k 2 3)5.

Solution

(2k 2 3)5 5  (  5   0  ) (2k)5 1  (  5   1  ) (2k)4(23) 1  (  5   2  ) (2k)3(23)2 1  (  5   3  ) (2k)2(23)3 

   1  (  5   4  ) (2k)(23)4 1  (  5   5  ) (23)5

 5 32k 5 2 240k 4 1 720k 3 2 1080k 2 1 810k 2 243

Example 26 

Find the term containing a3 in the expansion (2a 2 3b)9.
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Solution
To find the term, we do not need to expand the whole expression. 

Since (x 1 y)n 5  ∑ 
i 5 0

   

n

       (  n   
i
   ) xn 2 i yi , the term containing a3 is the term where

n 2 i 5 3, i.e. when i 5 6. So, the required term is

 (  9   6  ) (2a)9 2 6(23b)6 5 84    8a3    729b6 5 489  888a3b6.

Example 27 

Find the term independent of x in ​( 4x 3 2 ​​2 __​
x2 ​​)​5.

Solution

The phrase ‘term independent of x’ means the term with no x variable, i.e. 
the constant term. A constant is equivalent to the product of a number and 
x 0, since x 0 5 1. We are looking for the term in the expansion such that 
the resulting power of x is zero. In terms of i, each term in the expansion is 
given by:

​( ​​5 ​​​
i
 ​​)​(4x 3)5 2 i(22x22)i

Thus, for the constant term: 

3(5 2 i) 2 2i 5 0 ⇒ 15 2 5i 5 0 ⇒ i 5 3

Therefore, the term independent of x is: 

​( ​​5 ​​​3 ​​)​(4x 3)2(22x 22)3 5 1016x 6(28x 26) 5 21280

Example 28 

Find the coefficient of b 6 in the expansion of  ( 2b 2 2   1 __ 
b

   ) 
12.

Solution 
The general term is

 (  12   
  i

    ) (2b 2)12 2 i  ( 2 ​​1 __ 
b

   ) 
i
 5  (  12   

  i
    ) (2)12 2 i(b 2)12 2 i  ( 2 ​​1 __ 

b
   )  

i
 

​ ​ 5  (  12   
  i

    ) (2)12 2 ib 24 2 2ib2i(21)i 5  (  12   
  i

    ) (2)12 2 i b 24 2 3i(21)i 

24 2 3i 5 6 ⇒ i 5 6. So, the coefficient in question is  (  12     6   ) (2)6(21)6 5 59  136.
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Sequences and Series3

 1  Use Pascal’s triangle to expand each binomial.
a)  (x 1 2y)5  b)  (a 2 b)4  c)  (x 2 3)6

d)  (2 2 x3)4  e)  (x 2 3b)7  f )   ( 2n 1   1 __ 
n2   ) 

6

g)   (   3 __ x   22 √
__

 x   ) 
4

 2  Evaluate each expression.

a)   (  8   3  )   b)   (  18     5   )  2  (  18   13  )   c)   (  7   4  )   (  7   3  ) 

d)   (  5   0  )  1 ​( ​5   1  )  1 ​( ​5   2  )  1 ​( ​5   3  )  1 ​( ​5   4  )  1 ​( ​5   5  )  

e)   (  6   0  )  2 ​( ​6   1  )  1 ​( ​6   2  )  2 ​( ​6   3  )  1 ​( ​6   4  )  2 ​( ​6   5  )  1 ​( ​6   6  )  

 3  Use the binomial theorem to expand each of the following.
a)  (x 1 2y)7  b)  (a 2 b)6  c)  (x 2 3)5

d)  (2 2 x3)6  e)  (x 2 3b)7  f )   ( 2n 1   1 __ 
n2   ) 

6

g)   (   3 __ x   22 √
__

 x   ) 
4
  h)   ( 1 1  √

__
 5   ) 4 1  ( 1 2  √

__
 5   ) 4 

i)   (  √
__

 3   1 1 ) 8 2  (  √
__

 3   2 1 ) 8  j)  (1 1 i )8, where i 2 5 21

k)   (  √
__

 2   2 i ) 6, where i 2 5 21

 4  Consider the expression  ( x 2   2 __ x   ) 
45

.

a)  Find the first three terms of this expansion.
b)  Find the constant term if it exists or justify why it does not exist.
c)  Find the last three terms of the expansion.
d)  Find the term containing x 3 if it exists or justify why it does not exist.

 5  Prove that  (  n   
k

   )  5  (    n      
n 2 k

  )  for all n, k [ N and n > k.

 6  Prove that for any positive integer n,

   (  n   1   )  1  (  n   2   )  1 … 1  (    n       n 2 1  )  1  (  n   n  )  5 2n 2 1   Hint:  2n 5 (1 1 1)n

 7  Consider all n, k [ N and n > k.
a)  Verify that k! 5 k(k 2 1)!
b)  Verify that (n 2 k 1 1)! 5 (n 2 k 1 1) (n 2 k)!

c)  Justify the steps given in the proof of  (      n     r 2 1  )  1  (  n   r   )  5  (  n 1 1       r   )  in the 
examples.

 8  Find the value of the expression:

   (  6   0  )  (   1 __ 3   ) 
6
 1  (  6   1  )  (   1 __ 3   ) 

5
  (   2 __ 
3

   )  1  (  6   2  )  (   1 __ 3   ) 
4

  (   2 __ 
3

   ) 
2
 1 … 1  (  6   6  )  (   2 __ 3   ) 

6

 9  Find the value of the expression:

   (  8   0  )  (   2 __ 5   ) 
8
 1  (  8   1  )  (   2 __ 5   ) 

7
  (   3 __ 

5
   )  1  (  8   2  )  (   2 __ 5   ) 

6
  (   3 __ 
5

   ) 
2
 1 … 1  (  8   8  )  (   3 __ 5   ) 

8

10  Find the value of the expression:

   (  n   0   )  (   1 __ 7   ) 
n
 1  (  n   1   )  (   1 __ 7   ) 

n 2 1
  (   6 __ 
7

   )  1  (  n   2   )  (   1 __ 7   ) 
n 2 2

  (   6 __ 
7

   ) 
2
 1 … 1  (  n   n  )  (   6 __ 7   ) 

n

Exercise 3.5
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Find the first five terms of each infinite sequence defined in questions 1–6.

  1 s(n ) 5 2n 2 3 2 g(k ) 5 2k 2 3

  3 f (n ) 5 3 3​22n 4 
 a1 5 5
 an 5 an 2 1 1 3; for n . 1

  5 an 5 (21)n(2k) 1 3 6 
 b1 5 3
 bn 5 bn 2 1 1 2n; for n > 2

Determine whether each sequence in questions 7–12 is arithmetic, geometric or neither. Find 
the common difference for the arithmetic ones and the common ratio for the geometric ones.

  7 52, 55, 58, 61, …

  8 21, 3, 29, 27, 281, …

  9 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, …

10 3, 6, 12, 18, 21, 27, …

11 6, 14, 20, 28, 34, …

12 2.4, 3.7, 5, 6.3, 7.6, …

For each arithmetic or geometric sequence in questions 13–23, find
a) the 8th term 
b) an explicit formula for the nth term
c) a recursive formula for the nth term.

13 23, 2, 7, 12, …

14 19, 15, 11, 7, …

15 28, 3, 14, 25, …

16 10.05, 9.95, 9.85, 9.75, …

17 100, 99, 98, 97, …

18 2,   1 _ 2  , 21, 2   5 _ 2  , …

19 3, 6, 12, 24, …

20 4, 12, 36, 108, …

21 5, 25, 5, 25, …

22 3, 26, 12, 224, …

23 972, 2324, 108, 236, …

24 Find five arithmetic means between 15 and 221.

25 Find three arithmetic means between 99 and 100.

26 In an arithmetic sequence, a3 5 11 and a12 5 47. Find an explicit formula for the nth 
term of this sequence.

27 In an arithmetic sequence, a7 5 248 and a13 5 210. Find an explicit formula for the 
nth term of this sequence.

28 Find four geometric means between 7 and 1701. 

29 Find a geometric mean between 9 and 64.   Hint:  This is also called the 
      mean proportional.

Practice questions
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Sequences and Series3

30 The first term of a geometric sequence is 24 and the third term is 6. Find the fourth term 
and an expression for the nth term.

31 The common ratio in a geometric sequence is   3 _ 7   and the fourth term is   14 __ 3  . Find the third 
term.

32 Which term of the geometric sequence 7, 21, 63, … is 137  781?

33 The third term and the sixth term of a geometric sequence are 18 and   243 ___ 
4
  . 

 Is   19  683 ______ 
64

   a term of this sequence? If so, which term is it?

34 Tim put E2500 into a savings account that pays 4% interest compounded semi-
annually. How much will his account hold 10 years later if he does not make any 
additional investments in this account?

35 At her son William’s birth, Jane set aside £1000 into a savings account. The interest she 
earned was 6% compounded quarterly. How much money will William have on his 18th 
birthday?

36 How much money should you invest now if you wish to have an amount of E3000 in 
your account after six years if interest is compounded quarterly at an annual rate of 
6%?

37 Find the sum of the arithmetic series 13 1 19 1 … 1 367.

38 Find the sum of

 2 2   4 __ 
3
   1   8 __ 

9
   2   16 ___ 

27
   1 … 2   4096 _______ 

177  147
  

39 Evaluate ∑ 
k 5 0   

   
11

  (3 1​ 0.2k) .

40 Evaluate 2 2   4 __ 
3
   1   8 __ 

9
   2   16 ___ 

27
   1 …

41 Evaluate   1 __ 
2
   1    

√
__

 2   ____ 
2 √

__
 3  
   1   1 __ 

3
   1    

√
__

 2   ____ 
3 √

__
 3  
   1   2 __ 

9
   1 …

42 Express each repeating decimal as a fraction:

a) 0. 
_

 7  b) 0.3 
__

 45  c) 3.21 
__

 29 

43 Find the coefficient of x 6 in the expansion of (2x 2 3)9.

44 Find the coefficient of x 3b 4 in (ax 1 b)7.

45 Find the constant term of  (   2 __ 
z 2

   2 z  ) 
15

.

46 Expand (3n 2 2m)5.

47 Find the coefficient of r 10 in (4 1 3r 2)9.

48 In an arithmetic sequence, the first term is 4, the fourth term is 19 and the nth term is 
99. Find the common difference and the number of terms n.

49 Two students, Nick and Charlotte, decide to start preparing for their IB exams 15 weeks 
ahead of the exams. Nick starts by studying for 12 hours in the first week and plans 
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to increase the amount by 2 hours per week. Charlotte starts with 12 hours in the first 
week and decides to increase her time by 10% every week.
a) How many hours did each student study in week 5?
b) How many hours in total does each student study for the 15 weeks?
c) In which week will Charlotte exceed 40 hours per week?
d) In which week does Charlotte catch up with Nick in the number of hours spent on 

studying per week?

50 Two diet schemes are available for relatively overweight people to lose weight. Plan A 
promises the patient an initial weight loss of 1000  g the first month, with a steady loss 
of an additional 80  g every month after the first. So, the second month the patient will 
lose 1080  g and so on for a maximum duration of 12 months.

 Plan B starts with a weight loss of 1000  g the first month and an increase in weight loss 
by 6% more every following month.
a) Write down the amount of grams lost under Plan B in the second and third months.
b) Find the weight lost in the 12th month for each plan.
c) Find the total weight loss during a 12-month period under
 (i) Plan A (ii) Plan B.

51 Planning on buying your first car in 10 years, you start a savings plan where you invest 
E500 at the beginning of the year for 10 years. Your investment scheme offers a fixed 
rate of 6% per year compounded annually.

 Calculate, giving your answers to the nearest euro (E),
(a) how much the first E500 is worth at the end of 10 years
(b) the total value your investment will give you at the end of the 10 years.

52 The first three terms of an arithmetic sequence are 6, 9.5, 13.
 a) What is the 40th term of the sequence?
 b) What is the sum of the first 103 terms of the sequence?

53 A marathon runner plans her training programme for a 20  km race. On the first day 
she plans to run 2  km, and then she wants to increase her distance by 500  m on each 
subsequent training day.
a) On which day of her training does she first run a distance of 20   km?
b) By the time she manages to run the 20  km distance, what is the total distance she 

would have run for the whole training programme?

54 In the nation of Telefonica, cellular phones were first introduced in the year 2000. During 
the first year, the number of people who bought a cellular phone was 1600. In 2001, the 
number of new participants was 2400, and in 2002 the new participants numbered 3600.
a) You notice that the trend is a geometric sequence; find the common ratio.

 Assuming that the trend continues,
b) how many participants will join in 2012?
c) in what year would the number of new participants first exceed 50  000?

 Between 2000 and 2002, the total number of participants reaches 7600.
d) What is the total number of participants between 2000 and 2012?

 During this period, the total adult population of Telefonica remains at approximately 
800  000.
e) Use this information to suggest a reason why this trend in growth would not continue.
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55 In an arithmetic sequence, the fist term is 25, the fourth term is 13 and the n th term is 
211  995. Find the common difference d and the number of terms n.

56 The midpoints M, N, P, Q of the sides 
of a square of side 1  cm are joined to  
form a new square.

a) Show that the side of the second 

 square MNPQ is    
√

__
 2   ___ 

2
  .

b) Find the area of square MNPQ.

A new third square RSTU is 
constructed in the same manner.
c)  (i) Find the area of the third 

square just constructed.
 (ii) Show that the areas of the 

squares are in a geometric 
  sequence and find its common ratio.

The procedure continues indefinitely. 
d)  (i) Find the area of the tenth square.

 (ii) Find the sum of the areas of all the squares.

57 Tim is a dedicated swimmer. He goes swimming once every week. He starts the first 
week of the year by swimming 200 metres. Each week after that he swims 20  m more 
than the previous week. He does that all year long (52 weeks).
a) How far does he swim in the final week?
b) How far does he swim altogether?

58 The diagram below shows three iterations of constructing squares in the following 
manner: A square of side 3 units is given, then it is divided into nine smaller squares 
as shown and the middle square is shaded. Each of the unshaded squares is in turn 
divided into nine squares and the process is repeated. The area of the first shaded 
square is 1 unit.

a) Find the area of each of the squares A and B.
b) Find the area of any small square in the third diagram.
c) Find the area of the shaded regions in the second and third iterations.
d) If the process is continued indefinitely, find the area left unshaded.

59 The table below shows four series of numbers. One series is an arithmetic one, one is 
a converging geometric series, one is a diverging geometric series and the fourth is 
neither geometric nor arithmetic.

A

B

M

P

T

S

N Q

U

R
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Series Type of series

(i) 2 1 22 1 222 1 2222 1 …

(ii) 2 1   4 _ 3   1   8 _ 9   1   16 __ 27   1 …

(iii) 0.8 1 0.78 1 0.76 1 0.74 1 …

(iv) 2 1   8 _ 3   1   32 __ 9   1   128 ___ 27   1 …

a) Complete the table by stating the type of each series.
b) Find the sum of the infinite geometric series above.

60 Two IT companies offer ‘apparently’ similar salary schemes for their new appointees. Kell 
offers a starting salary of e18  000 per year and then an annual increase of e400 every 
year after the first. YBO offers a starting salary of e17  000 per year and an annual increase 
of 7% for the rest of the years after the first.
a) (i) Write down the salary paid during the second and third years for each company.
 (ii) Calculate the total amount that an employee working for 10 years will 

accumulate in each company.

 (iii) Calculate the salary paid during the tenth year for each company.

b) Tim works at Kell and Merijayne works at YBO.

 (i) When would Merijayne start earning more than Tim?

 (ii) What is the minimum number of years that Merijayne requires so that her 
total earnings exceed Tim’s total earnings?

61 A theatre has 24 rows of seats. There 
are 16 seats in the first row and each 
successive row increases by 2 seats,  
1 on each side.

a) Calculate the number of seats in 
the 24th row.

b) Calculate the number of seats in 
the whole theatre.

62 The amount of e7000 is invested at 5.25% annual compound interest.

a) Write down an expression for the value of this investment after t full years.

b) Calculate the minimum number of years required for this amount to become 
e10  000.

c) For the same number of years as in part b), would an investment of the same 
amount be better if it were at a 5% rate compounded quarterly?

63 With Sn denoting the sum of the first n terms of an arithmetic sequence, we are given 
that S1 5 9 and S2 5 20.

a) Find the second term.

b) Calculate the common difference of the sequence.

c) Find the fourth term.  

R1

R24
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A variety of functions have already been considered in this text (see Figure 
2.15 in Section 2.4): polynomial functions (e.g. linear, quadratic and cubic 
functions), functions with radicals (e.g. square root function), rational 
functions (e.g. inverse and inverse square functions) and the absolute value 
functions. This chapter examines two very important and useful functions: 
the exponential function and its inverse function, the logarithmic function. 

Characteristics of exponential functions
We begin our study of exponential functions by comparing two algebraic 
expressions that represent two seemingly similar but very different 
functions. The two expressions x 2 and 2x are similar in that they both 
contain a base and an exponent (or power). In x 2, the base is the variable 
x and the exponent is the constant 2. In 2x, the base is the constant 2 and 
the exponent is the variable x. However, x 2 and 2x are examples of two 
different types of functions.

The quadratic function y 5 x 2 is in the form ‘variable baseconstant power’, 
where the base is a variable and the exponent is an integer greater than or 
equal to zero (non-negative integer). Any function in this form is called a 
polynomial (or power) function.

The function y 5 2x is in the form ‘constant basevariable power’, where the base 
is a positive real number (not equal to one) and the exponent is a variable. 
Any function in this form is called an exponential function.

4 Exponential and 
Logarithmic Functions

Assessment statements

1.2	 Exponents	and	logarithms.	
Laws	of	exponents;	laws	of	logarithms.	
Change	of	base.

2.6	 Exponential	functions	and	their	graphs.

	 x		a	x,	a	>	0;	x		e	x.

	 Logarithmic	functions	and	their	graphs.

	 x		loga
	x,	x	>	0;	x		ln	x,	x	>	0.

	 Relationships	between	these	functions.

	 a	x	5	e	x	ln	a;	loga a	x	5	x	;	aloga	x	5	x,	x	>	0.

Exponential functions4.1

Introduction

 Hint:  Another word for exponent 
is index (plural: indices).
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To demonstrate just how 
quickly y 5 2x increases, 
consider what would happen 
if you were able to repeatedly 
fold a piece of paper in half 50 
times. A typical piece of paper 
is about five thousandths of 
a centimetre thick. Each time 
you fold the piece of paper 
the thickness of the paper 
doubles, so after 50 folds the 
thickness of the folded paper 
is the height of a stack of 250 
pieces of paper. The thickness 
of the paper after being folded 
50 times would be 250 3 
0.005  cm – which is more than 
56 million kilometres (nearly 35 
million miles)! Compare that 
with the height of a stack of 
502 pieces of paper that would 
be a meagre 12  1 _ 2   cm – only 
0.000  125 km.

To illustrate a fundamental difference between exponential functions and 
power functions, consider the function values for y 5 x 2 and y 5 2x when 
x is an integer from 0 to 10. Both a table and a graph (Figure 4.1) showing 
these results display clearly how the values for the exponential function 
eventually increase at a significantly faster rate than the power function. 

x y 5 x 2 y 5 2x

0 0 1
1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512

10 100 1024

Another important point to make is that polynomial, or power, functions 
can easily be defined (and computed) for any real number. For any power 
function y 5 xn, where n is any positive integer, y is found by simply taking 
x and repeatedly multiplying it n times. Hence, x can be any real number. 
For example, for the power function y 5 x 3, if x 5 p, then y 5 p 3  
31.006  276  68…. Since a power function like y 5 x 3 is defined for all real 
numbers, we can graph it as a continuous curve so that every real number 
is the x-coordinate of some point on the curve. What about the exponential 
function y 5 2x ? Can we compute a value for y for any real number x ? Before 
we try, let’s first consider x being any rational number and recall the following 
laws of exponents (indices) that were covered in Section 1.3.

Laws of exponents
For b . 0 and m, n    Q (rational numbers):

bm    bn 5 bm 1 n        b
m

 ___ 
bn   5 bm 2 n      (bm)n 5 bmn      b0 5 1      b2m 5   1 ___ 

bm  

Also, in Section 1.3, we covered the definition of a rational exponent.

Rational exponent
For b . 0 and m, n   Z (integers):

 b   
m __ n    5  

n
 √

___

 bm   5 ( 
n
 √

__

 b  )m

From these established facts, we are able to compute b x (b . 0) when x 

is any rational number. For example, b4.7 5  b 
  47 ___ 
10

  
  represents the 10th root 

of b raised to the 47th power i.e.  
10

 √
___

 b47  . Now, we would like to define b x 
when x is any real number such as p or  √

__
 2  . We know that p has a non-

terminating, non-repeating decimal representation that begins p 5 
3.141  592  653  589  793 …. Consider the sequence of numbers 

b3, b3.1, b3.14, b3.141, b3.1415, b3.14159, …

y

x

100

0

200

300

400

500

600

700

800

900

1000

10 2 3 4 5 6 7 8 9 10

y � 2x

y � x2

Figure 4.1
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Exponential and Logarithmic Functions4

Every term in this sequence is defined because each has a rational 
exponent. Although it is beyond the scope of this text, it can be proved that 
each number in the sequence gets closer and closer to a certain real number 
– defined as b p. Similarly, we can define other irrational exponents, thus 
proving that the laws of exponents hold for all real exponents. Figure 4.2 
shows a sequence of exponential expressions approaching the value of 2p.

x 2x (12 s.f.)

3 8.000  000  000  00

3.1 8.574  187  700  29

3.14 8.815  240  927  01

3.141 8.821  353  304  55

3.1415 8.824  411  082  48

3.141  59 8.824  961  595  06

3.141  592 8.824  973  829  06

3.141  5926 8.824  977  499  27

3.141  592  65 8.824  977  805  12

Graphs of exponential functions
Using this definition of irrational powers, we can now construct a complete 
graph of any exponential function f (x) 5 b x such that b is a number 
greater than zero and x is any real number. 

Example 1 

Graph each exponential function by plotting points.

a) f (x) 5 3x b) g(x) 5  (   1 _ 3   ) 
x

Solution
We can easily compute values for each function for integral values of x 
from 23 to 3. Knowing that exponential functions are defined for all real 
numbers – not just integers – we can sketch a smooth curve in Figure 4.3, 
filling in between the ordered pairs shown in the table.

x f (x) 5 3 x g (x) 5  (   1 _ 3   ) 
x

23   1 __ 27   27

22   1 _ 9   9

21   1 _ 3   3

0 1 1

1 3   1 _ 3  

2 9   1 _ 9  

3 27   1 __ 27  

2 π̂
8.824977827

Figure 4.2

Your GDC will give an approximate 
value for 2p to at least 10 significant 
figures, as shown below.
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x

1
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0
Figure 4.3
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Remember that in Section 2.4 we established that the graph of y 5 f (2x) 
is obtained by reflecting the graph of y 5 f (x) in the y-axis. It is clear 
from the table and the graph in Figure 4.3 that the graph of function g is a 
reflection of function f about the y-axis. Let’s use some laws of exponents 
to show that g (x) 5 f (2x).

g(x) 5  (   1 __ 
3

   ) 
x
 5   1

x
 __ 

3x   5   1 __ 
3x   5 32x 5 f (2x)

It is useful to point out that both of the graphs, y 5 3x and y 5  (   1 __ 
3

   ) 
x
, pass 

through the point (0, 1) and have a horizontal asymptote of y 5 0 (x-axis). 
The same is true for the graph of all exponential functions in the form  
y 5 b  x given that b  1. If b 5 1, then y 5 1x 5 1 and the graph is a 
horizontal line rather than a constantly increasing or decreasing curve.

Exponential functions
If b . 0 and b  1, the exponential function with base b is the function defined by

f (x) 5 bx

The domain of f is the set of real numbers (x    R) and the range of f is the set of 
positive real numbers (y . 0). The graph of f passes through (0, 1), has the x-axis as a 
horizontal asymptote, and, depending on the value of the base of the exponential 
function b, will either be a continually increasing exponential growth curve or a 
continually decreasing exponential decay curve.

  f is an increasing function  f is a decreasing function
  exponential growth curve  exponential decay curve

The graphs of all exponential functions will display a characteristic 
growth or decay curve. As we shall see, many natural phenomena exhibit 
exponential growth or decay. Also, the graphs of exponential functions 
behave asymptotically for either very large positive values of x (decay 
curve) or very large negative values of x (growth curve). This means that 
there will exist a horizontal line that the graph will approach, but not 
intersect, as either x →  or as x → 2.

Transformations of exponential functions
Recalling from Section 2.4 how the graphs of functions are translated 
and reflected, we can efficiently sketch the graph of many exponential 
functions.

y

x

(0, 1)

f(x) � bx for b � 1
as x → �, f(x)  → �

y

x

(0, 1)

f(x) � bx for 0 � b � 1
as x → �, f(x)  → 0

0 0
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Example 2 

Using the graph of f (x) 5 2x, sketch the graph of each function. State the 
domain and range for each function and the equation of its horizontal 
asymptote.

a) g(x) 5 2x 1 3 b) h(x) 5 22x c) p(x) 5 22x

d) r(x) 5 2x 2 4 e) v(x) 5 3(2x)

Solution

a) The graph of g(x) 5 2x 1 3 can be 
obtained by translating the graph of 
f (x) 5 2x vertically three units up. For 
function g, the domain is x is any real 
number (x    R) and the range is y . 3. 
The horizontal asymptote for g is y 5 3.

b) The graph of h(x) 5 22x can be 
obtained by reflecting the graph 
of f (x) 5 2x across the x-axis. For 
function h, the domain is x    R and 
the range is y . 0. The horizontal 
asymptote is y 5 0 (x-axis). 

c) The graph of p(x) 5 22x can be obtained 
by reflecting the graph of f (x) 5 2x across 
the x-axis.  For function p, the domain 
is x    R and the range is y , 0. The 
horizontal asymptote is y 5 0 (x-axis). 
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d) The graph of r(x) 5 2x 2 4 can be 
obtained by translating the graph of 
f (x) 5 2x four units to the right. For 
function r, the domain is x    R and 
the range is y . 0. The horizontal 
asymptote is y 5 0 (x-axis).

e) The graph of v(x) 5 3(2x) can be 
obtained by a vertical stretch of the 
graph of f (x) 5 2x by scale factor 3. 
For function v, the domain is x    R 
and the range is y . 0. The horizontal  
asymptote is y 5 0 (x-axis).

Note that for function p in part c) of Example 2 the horizontal asymptote 
is an upper bound (i.e. no function value is equal to or greater than y 5 0). 
Whereas, in parts a), b), d) and e) the horizontal asymptote for each 
function is a lower bound (i.e. no function value is equal to or less than 
the y-value of the asymptote).

Mathematical models of growth and decay
Exponential functions are well suited as a mathematical model for a wide 
variety of steadily increasing or decreasing phenomena of many kinds, 
including population growth (or decline), investment of money with 
compound interest and radioactive decay. Recall from the previous chapter 
that the formula for finding terms in a geometric sequence (repeated 
multiplication by common ratio r) is an exponential function. Many 
instances of growth or decay occur geometrically (repeated multiplication 
by a growth or decay factor).

Exponential growth and decay4.2
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Exponential models 
Exponential models are equations of the form A(t) 5 A0bt, where A0  0, b . 0 and b  1.
 A(t) is the amount after time t. A(0) 5 A0b0 5 A0(1) 5 A0, so A0 is called the initial 
amount or value (often the value at time (t) 5 0). If b . 1, then A(t) is an exponential 
growth model. If 0 , b , 1, then A(t) is an exponential decay model. The value of b, 
the base of the exponential function, is often called the growth or decay factor.

Example 3 

A sample count of bacteria in a culture indicates that the number of bacteria 
is doubling every hour. Given that the estimated count at 15:00 was 12  000 
bacteria, find the estimated count three hours earlier at 12:00 and write an 
exponential growth function for the number of bacteria at any hour t.

Solution
Consider the time at 12:00 to be the starting, or initial, time and label it  
t 5 0 hours. Then the time at 15:00 is t 5 3. The amount at any time t (in 
hours) will double after an hour so the growth factor, b, is 2. Therefore, 
A(t) 5 A0(2)t. Knowing that A(3) 5 12  000, compute A0: 12  000 5 A0(2)3 
⇒ 12  000 5 8A0 ⇒ A0 5 1500
A(t) 5 15 00(2)t

Radioactive material decays at exponential rates. The half-life is the 
amount of time it takes for a given amount of material to decay to half of 
its original amount. An exponential function that models decay with a 

known value for the half-life, h, will be of the form A(t) 5 A0 (   1 _ 
2
   ) k, where 

the growth factor is   1 _ 2   and k represents the number of half-lives that have 

occurred (i.e. the number of times that A0 is multiplied by   1 _ 2  ). If t 

represents the amount of time, the number of half-lives will be   t __ 
h

  . For 

example, if the half-life of a certain material is 25 days and the amount
of time that has passed since measuring the amount A0 is 75 days, then the 

number of half-lives is k 5   t __ 
h

   5   75 ___ 
25

   5 3, and the amount of material 

remaining is equal to A0 (   1 __ 
2

   ) 
3
 5   

A0 ___ 
8

  .

Half-life formula
If a certain initial amount, A0, of material decays with a half-life of h, the amount of 

material that remains at time t is given by the exponential decay model A(t) 5 A0  (   1 __ 
2

   )    
t
 _ 

h
   . 

The time units (e.g. seconds, hours, years) for h and t must be the same.

Example 4 

The half-life of radioactive carbon-14 is approximately 5730 years. How 
much of a 10  g sample of carbon-14 remains after 15  000 years?

Solution
The exponential decay model for the carbon-14 is A(t) 5 A0  (   1 __ 

2
   )  

  t
 ____ 5730  

 . 
What remains of 10  g after 15  000 years is given by 

A(15  000) 5 10  (   1 __ 
2

   )  
  15  000

 _____ 5730  
   1.63  g.

Radioactive carbon (carbon-
14 or C-14), produced when 
nitrogen-14 is bombarded by 
cosmic rays in the atmosphere, 
drifts down to Earth and is 
absorbed from the air by 
plants. Animals eat the plants 
and take C-14 into their bodies. 
Humans in turn take C-14 into 
their bodies by eating both 
plants and animals. When a 
living organism dies, it stops 
absorbing C-14, and the C-14 
that is already in the object 
begins to decay at a slow 
but steady rate, reverting to 
nitrogen-14. The half-life of 
C-14 is 5730 years. Half of the 
original amount of C-14 in 
the organic matter will have 
disintegrated after 5730 years; 
half of the remaining C-14 will 
have been lost after another 
5730 years, and so forth. By 
measuring the ratio of C-14 
to N-14, archaeologists are 
able to date organic materials. 
However, after about 50  000 
years, the amount of C-14 
remaining will be so small that 
the organic material cannot be 
dated reliably.

t

6000

0

12 000

Count

1 2 3
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Compound interest
Recall from Chapter 3 that exponential functions occur in calculating 
compound interest. If an initial amount of money P, called the principal, 
is invested at an interest rate r per time period, then after one time period 
the amount of interest is P 3 r and the total amount of money is 
A 5 P 1 Pr 5 P(1 1 r). If the interest is added to the principal, the new 
principal is P(1 1 r), and the total amount after another time period is 
A 5 P(1 1 r)(1 1 r) 5 P(1 1 r)2. In the same way, after a third time 
period the amount is A 5 P(1 1 r)3. In general, after k periods the total 
amount is A 5 P(1 1 r)k, an exponential function with growth factor 
1 1 r. For example, if the amount of money in a bank account is earning 
interest at a rate of 6.5% per time period, the growth factor is  
1 1 0.065 5 1.065. Is it possible for r to be negative? Yes, if an amount 
(not just money) is decreasing. For example, if the population of a town is 
decreasing by 12% per time period, the decay factor is 1 2 0.12 5 0.88.

For compound interest, if the annual interest rate is r and interest is 
compounded (number of times added in) n times per year, then each time 
period the interest rate is   r __ n  , and there are n 3 t time periods in t years.

Compound interest formula
The exponential function for calculating the amount of money after t years, A(t), where 
P is the initial amount or principal, the annual interest rate is r and the number of times 
interest is compounded per year is n, is given by 

A(t) 5 P ( 1 1   r __ n   ) 
nt

Example 5 

An initial amount of 1000 euros is deposited into an account earning 5  1 _ 4  % 
interest per year. Find the amounts in the account after eight years if interest 
is compounded annually, semi-annually, quarterly, monthly and daily.

Solution

We use the exponential function associated with compound interest with 
values of P 5 1000, r 5 0.0525 and t 5 8.

Compounding n Amount after 8 years

Annual     1 1000 ( 1 1   0.0525 ______ 1    ) 
8
 5 1505.83

Semi-annual     2 1000 ( 1 1   0.0525 ______ 2    ) 
2(8)

 5 1513.74

Quarterly     4 1000 ( 1 1   0.0525 ______ 4    ) 
4(8)

 5 1517.81

Monthly   12 1000 ( 1 1   0.0525 ______ 12    ) 
12(8)

 5 1520.57

Daily 365 1000 ( 1 1   0.0525 ______ 365    ) 
365(8)

 5 1521.92

 Table 4.1
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Example 6 

A new car is purchased for $22  000. If the value of the car decreases 
(depreciates) at a rate of approximately 15% per year, what will be the 
approximate value of the car to the nearest whole dollar in 4  1 _ 2   years?

Solution

The decay rate for the exponential function is 1 2 r 5 1 2 0.15 5 0.85. In 
other words, after each year the car’s value is 85% of what it was one year 
before. We use the exponential decay model A(t) 5 A0b t with values 
A0 5 22  000, b 5 0.85 and t 5 4.5.

A(4.5) 5 22  000(0.85)4.5  10  588

The value of the car will be approximately $10  588.

For questions 1–3, sketch a graph of the function and state its domain, range,  
y-intercept and the equation of its horizontal asymptote.

 1  f (x) 5 3x 1 4   2  g (x) 5 22x 1 8   3  h (x) 5 42x 2 1

 4  If a general exponential function is written in the form f  (x) 5 a(b)x 2 c 1 d, state 
the domain, range, y-intercept and the equation of the horizontal asymptote in 
terms of the parameters a, b, c and d.

 5  Using your GDC and a graph-viewing window with Xmin 5 22, Xmax 5 2, 
Ymin 5 0 and Ymax 5 4, sketch a graph for each exponential equation on the 
same set of axes.
a)  y 5 2x  b)  y 5 4x  c)  y 5 8x

d)  y 5 22x  e)  y 5 42x  f )  y 5 82x

 6  Write equations that are equivalent to the equations in 5 d), e) and f ) but have an 
exponent of positive x rather than negative x. 

 7  If 1 , a , b, which is steeper: the graph of y 5 ax or y 5 bx?

 8  The population of a city triples every 25 years. At time t 5 0, the population is 
100  000. Write a function for the population P(t) as a function of t. What is the 
population after:
a)  50 years  b)  70 years  c)  100 years?

 9  An experiment involves a colony of bacteria in a solution. It is determined that 
the number of bacteria doubles approximately every 3 minutes and the initial 
number of bacteria at the start of the experiment is 104. Write a function for the 
number of bacteria N(t) as a function of t (in minutes). Approximately how many 
bacteria are there after:
a)  3 minutes  b)  9 minutes  c)  27 minutes  d)  one hour?

10  If $10  000 is invested at an annual interest rate of 11%, compounded quarterly, 
find the value of the investment after the given number of years.
a)  5 years  b)  10 years  c)  15 years

11  A sum of $5000 is deposited into an investment account that earns interest at a 
rate of 9% per year compounded monthly.
a)  Write the function A(t) that computes the value of the investment after t years.

b)  Use your GDC to sketch a graph of  A(t) with values of t on the horizontal axis 
ranging from t 5 0 years to t 5 25 years.

c)  Use the graph on your GDC to determine the minimum number of years (to 
the nearest whole year) for this investment to have a value greater than $20  000.

Exercise 4.1 and 4.2
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Recalling the definition of an exponential function f (x) 5 bx, we recognize 
that any positive number can be used as the base b. Given that our number 
system is a base 10 system and that a base 2 number system (binary 
numbers) has useful applications (e.g. computers), it is understandable 
that exponential functions with base 2 or 10 are commonly used for 
modelling certain applications. However, the most important base is 
an irrational number that is denoted with the letter e. The value of e, 
approximated to 6 significant figures, is 2.71  828. The importance of e will 
be clearer when we get to calculus topics. The number p – another very 
useful irrational number – has a natural geometric significance as the ratio 
of circumference to diameter for any circle. Although not geometric, the 
number e also occurs in a ‘natural’ manner. We can see this by revisiting 
compound interest and considering continuous change rather than 
incremental change.

12  If $10  000 is invested at an annual interest rate of 11% for a period of five years, 
find the value of the investment for the following compounding periods.
a)  annually  b)  monthly  c)  daily  d)  hourly

13  Imagine a bank account that has the fantastic annual interest rate of 100%. If you 
deposit $1 into this account, how much will be in the account exactly one year 
later, for the following compounding periods?
a)  annually  b)  monthly  c)  daily  d)  hourly  e)  every minute

14  Each year for the past eight years, the population of deer in a national park 
increases at a steady rate of 3.2% per year. The present population is approximately 
248  000.
a)  What was the approximate number of deer one year ago?
b)  What was the approximate number of deer eight years ago?

15  Radioactive carbon-14 has a half-life of 5730 years. The remains of an animal are 
found 20  000 years after it died. About what percentage (to 3 significant figures) 
of the original amount of carbon-14 (when the animal was alive) would you 
expect to find?

16  Once a certain drug enters the bloodstream of a human patient, it has a half-life 
of 36 hours. An amount of the drug, A0, is injected in the bloodstream at 12:00 
on Monday. How much of the drug will be in the bloodstream of the patient five 
days later at 12:00 on Friday?

17  Why are exponential functions of the form f (x) 5 bx defined so that b . 0? 

18  You are offered a highly paid job that lasts for just one month – exactly 30 days. 
Which of the following payment plans, I or II, would give you the largest salary? 
How much would you get paid?
I  One dollar on the first day of the month, two dollars on the second day, three 

dollars on the third day, and so on (getting paid one dollar more each day) 
until the end of the 30 days. (You would have a total of $55 after 10 days.)

II  One cent ($0.01) on the first day of the month, two cents ($0.02) on the 
second day, four cents on the third day, eight cents on the fourth day, and so 
on (each day getting paid double from the previous day) until the end of the 
30 days. (You would have a total of $10.23 after 10 days.)

The number e4.3

The ‘discovery’ of the 
constant e is attributed to 
Jakob Bernoulli (1654–1705). 
He was a member of the 
famous Bernoulli family of 
distinguished mathematicians, 
scientists and philosophers. 
This included his brother 
Johann (1667–1748), who 
made important developments 
in calculus, and his nephew 
Daniel (1700–1782), who is 
most well known for Bernoulli’s 
principle in physics. The 
constant e is of enormous 
mathematical significance 
– and it appears ‘naturally’ in 
many mathematical processes. 
Jakob Bernoulli first observed 
e when studying sequences 
of numbers in connection to 
compound interest problems.
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Continuously compounded interest
In the previous section and in Chapter 3, we computed amounts of 
money resulting from an initial amount (principal) with interest being 
compounded (added in) at discrete intervals (e.g. yearly, monthly, daily). 
In the formula that we used, A(t) 5 P ( 1 1   r __ n   ) nt, n is the number of times 
that interest is compounded per year. Instead of adding interest only at 
discrete intervals, let’s investigate what happens if we try to add interest 
continuously – that is, let the value of n increase without bound (n → ). 

Consider investing just $1 at a very generous annual interest rate of 100%. 
How much will be in the account at the end of just one year? It depends on 
how often the interest is compounded. If it is only added at the end of the 
year (n 5 1), the account will have $2 at the end of the year. Is it possible 
to compound the interest more often to get a one-year balance of $2.50 
or of $3.00? We use the compound interest formula with P 5 $1, r 5 1.00 
(100%) and t 5 1, and compute the amounts for increasing values of n. 

A(1) 5 1 ( 1 1   1 __ n   ) 
n    1

 5  ( 1 1   1 __ n   ) 
n
. This can be done very efficiently on your 

GDC by entering the equation y 5  ( 1 1   1 __ x   ) 
x to display a table showing 

function values of increasing values of x.

As the number of compounding periods during the year increases, the 
amount at the end of the year appears to approach a limiting value.

As n → , the quantity of  ( 1 1   1 __ n   ) 
n
 approaches the number e. To 13 

decimal places, e is approximately 2.718  281  828  459 0.

Compounding n A(1) 5  ( 1 1   1 __ n   ) 
n

Annual 1  2

Semi-annual 2  2.25

Quarterly 4  2.441  406  25…

Monthly 12  2.613  035  290  22…

Daily 365  2.714  567  482  02…

Hourly 8  760  2.718  126  690  63…

Every minute 525  600  2.718  279  2154…

Every second 31  536  000  2.718  282  472  54…

Table 4.2

Plot1

Y1=(1+1/X)̂  X
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

TABLE SETUP
TblStart=1
Tbl=1

Indpnt:
Depend: Ask

X

Y1=2.61303529022

Y1

Auto

1
2
4
12

2
2.25
2.4414
2.613

X

Y1=2.71456748202

Y1
1
2
4
12
365

2
2.25
2.4414
2.613
2.7146

X

Y1=2.71812669063

Y1
1
2
4
12
365
8760

2
2.25
2.4414
2.613
2.7146
2.7181

X

Y1=2.44140625

Y1
1
2
4

2
2.25
2.4414AskAuto

X

Y1=2.7182792154

Y1
1
2
4
12
365
8760
525600

2
2.25
2.4414
2.613
2.7146
2.7181
2.7183

X

Y1=2.71828247254

Y1
2
4
12
365
8760
525600
3.15E7

2.25
2.4414
2.613
2.7146
2.7181
2.7183
2.7183
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Definition of e 
e 5    lim    

n → 
   ( 1 1   1 __ n   ) 

n

The definition is read as ‘e equals the limit of   ( 1 1   1 __ n   ) 
n
 as n goes to infinity’.

As the number of compoundings, n, increase without bound, we approach 
continuous compounding – where interest is being added continuously. In 
the formula for calculating amounts resulting from compound interest, 
letting m 5   n __ r   produces

A(t) 5 P ( 1 1   r __ n   ) 
nt

 5 P ( 1 1   1 __ m   ) 
mrt

 5 P [  ( 1 1   1 __ m   ) m ] rt

Now if n →  and the interest rate r is constant, then   n __ r   5 m → . From the 

limit definition of e, we know that if m → , then  ( 1 1   1 __ m   ) 
m

 → e. 

Therefore, for continuous compounding, it follows that 

A(t) 5 P [  ( 1 1   1 __ m   ) n ] rt
 5 P[e]rt. 

This result is part of the reason that e is the best choice for the base of an 
exponential function modelling change that occurs continually  
(e.g. radioactive decay) rather than in discrete intervals.

Continuous compound interest formula

The exponential function for calculating the amount of money after t years, A(t), for 
interest compounded continuously, where P is the initial amount or principal and r is the 
annual interest rate, is given by A(t) 5 Pe rt.

Example 7 

An initial investment of 1000 euros earns interest at an annual rate of 7  1 _ 2  %. 
Find the total amount after five years if the interest is compounded  
a) quarterly, and b) continuously.

Solution

a) A(t) 5 P ( 1 1   r __ n   ) 
nt

 5 1000 ( 1 1   0.075 _____ 4   ) 
45

 5 1449.95 euros

b) A(t) 5 Pert 5 1000e 0.075(5) 5 1454.99 euros

Leonhard Euler (1701–1783) was the dominant mathematical figure of the 18th century and is one of the most influential and 
prolific mathematicians of all time. Euler’s collected works fill over 70 large volumes. Nearly every branch of mathematics has 
significant theorems that are attributed to Euler. 

Euler proved mathematically that the limit of  ( 1 1   1 __ n   ) 
n
 as n goes to 

infinity is precisely equal to an irrational constant which he labelled 
e. His mathematical writings were influential not just because of the 
content and quantity but also because of Euler’s insistence on clarity 
and efficient mathematical notation. Euler introduced many of the 
common algebraic notations that we use today. Along with the 
symbol e for the base of natural logarithms (1727), Euler introduced 
f (x) for a function (1734), i for the square root of negative one (1777), 
p for pi, S for summation (1755), and many others. His introductory 
algebra text, written originally in German (Euler was Swiss), is still available in English translation. Euler spent most of his 
working life in Russia and Germany. Switzerland honoured Euler by placing his image on the 10 Swiss franc banknote.
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The natural exponential function and 
continuous change
For many applications involving continuous change, the most suitable 
choice for a mathematical model is an exponential function with a base 
having the value of e.

The natural exponential function
The natural exponential function is the function defined as

f (x ) 5 e x

As with other exponential functions, the domain of the natural exponential function is 
the set of all real numbers (x    R), and its range is the set of positive real numbers 
(y . 0). The natural exponential function is often referred to as the exponential function.

The formula developed for continuously compounded interest does not 
apply only to applications involving adding interest to financial accounts. 
It can be used to model growth or decay of a quantity that is changing 
geometrically (i.e. repeated multiplication by a constant ratio, or growth/
decay factor) and the change is continuous, or approaching continuous. 
Another version of a formula for continuous change, which we will learn 
more about in calculus, follows.

Continuous exponential growth/decay
If an initial quantity C (when t 5 0) grows or decays continuously at a rate r over a certain 
time period, the amount A(t) after t time periods is given by the function A(t) 5 Cert. 
If r . 0, the quantity is increasing (growing). If r , 0, the quantity is decreasing (decaying).

Example 8 

A programme to reduce the number of rabbits has been taking place in a 
certain Australian city park. At the start of the programme there were 230 
rabbits. After t years the number of rabbits, R, is modelled by R 5 230e20.2t. 
How many rabbits are there after three years?

Solution

R 5 230e20.2(3)  126.2. There are approximately 126 rabbits after three 
years of the programme.

 1  Use your GDC to graph the curve y 5  ( 1 1   1 __ x   ) 
x
 and the horizontal line y 5 2.72. 

  Use a graph window so that x ranges from 0 to 20 and y ranges from 0 to 3. 

  Describe the behaviour of the graph of y 5  ( 1 1   1 __ x   ) 
x
. Will it ever intersect the 

graph of y 5 2.72? Explain.

 2  Two different banks, Bank A and Bank B, offer accounts with exactly the same 
annual interest rate of 6.85%. However, the account from Bank A has the 
interest compounded monthly whereas the account from Bank B compounds 
the interest continuously. To decide which bank to open an account with, you 

Exercise 4.3
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calculate the amount of interest you would earn after three years from an 
initial deposit of 500 euros in each bank’s account. It is assumed that you make 
no further deposits and no withdrawals during the three years. How much 
interest would you earn from each of the accounts? Which bank’s account earns 
more – and how much more?

 3  Dina wishes to deposit $1000 into an investment account and then withdraw 
the total in the account in five years. She has the choice of two different 
accounts. Blue Star account: interest is earned at an annual interest rate of 6.13% 
compounded weekly (52 weeks in a year). Red Star account: interest is earned at 
an annual interest rate of 5.95% compounded continuously. Which investment 
account – Blue Star or Red Star – will result in the greatest total at the end of five 
years? What is the total after five years for this account? How much more is it 
than the total for the other account?

 4  Strontium-90 is a radioactive isotope of strontium. Strontium-90 decays according 
to the function A(t) 5 Ce20.0239t, where t is time in years and C is the initial amount 
of strontium-90 when t 5 0. If you have 1 kilogram of strontium-90 to start with, 
how much (approximated to 3 significant figures) will you have after:

a)  1 year?

b)  10 years?

c)  100 years?

d)  250 years?

 5  A radioactive substance decays in such a way that the mass (in kilograms) 
remaining after t days is given by the function A(t) 5 5e20.0347t.

a)  Find the mass (i.e. initial mass) at time t 5 0.

b)  What percentage of the initial mass remains after 10 days?

c)  On your GDC and then on paper, draw a graph of the function A(t) for 
0 < t < 50.

d)  Use one of your graphs to approximate, to the nearest whole day, the half-life 
of the radioactive substance.

 6  Which of the given interest rates and compounding periods would provide the 
better investment?

a)  8  1 _ 2  % per year, compounded semi-annually

b)  8  1 _ 4  % per year, compounded quarterly

c)  8% per year, compounded continuously

In Example 7 of the previous section, we used the equation A(t) 5 1000e 0.075t 
to compute the amount of money in an account after t years. Now suppose 
we wish to determine how much time, t, it takes for the initial investment of 
1000 euros to double. To find this we need to solve the following equation for 
t : 2000 5 1000e 0.075t ⇒ 2 5 e 0.075t. The unknown t is in the exponent. At this 
point in the book, we do not have an algebraic method to solve such an 
equation, but developing the concept of a logarithm will provide us with the 
means to do so.

Logarithmic functions4.4
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The inverse of an exponential function
For b . 1, an exponential function with base b is increasing for all x, and 
for 0 , b , 1 an exponential function is decreasing for all x. It follows 
from this that all exponential functions must be one-to-one. Recall from 
Section 2.3 that a one-to-one function passes both a vertical line test and a 
horizontal line test. We demonstrated that an inverse function would exist 
for any one-to-one function. Therefore, an exponential function with base 
b such that b . 0 and b  1 will have an inverse function, which is given in 
the following definition. Also recall from Section 2.3 that the domain of a 
function f (x) is the range of its inverse function f 21(x), and, similarly, the 
range of f (x) is the domain of f 21(x). The domain and range are switched 
around for a function and its inverse.

Definition of a logarithmic function
For b . 0 and b  1, the logarithmic function y 5 logb x (read as ‘logarithm with base 
b of x’ ) is the inverse of the exponential function with base b.

y 5 logb x if and only if x 5 by

The domain of the logarithmic function y 5 logb x is the set of positive real numbers 
(x . 0) and its range is all real numbers (y    R).

Logarithmic expressions and equations
When evaluating logarithms, note that a logarithm is an exponent. This 
means that the value of logb x is the exponent to which b must be raised to 
obtain x. For example, log2 8 5 3 because 2 must be raised to the power of 
3 to obtain 8 – that is, log2 8 5 3 if and only if 23 5 8.

We can use the definition of a logarithmic function to translate a 
logarithmic equation into an exponential equation and vice versa. When 
doing this, it is helpful to remember, as the definition stated, that in either 
form – logarithmic or exponential – the base is the same.

John Napier (1550–1617) was a Scottish landowner, scholar and mathematician who 
‘invented’ logarithms – a word he coined which derives from two Greek words: logos 
– meaning ratio, and arithmos – meaning number. Logarithms made numerical 
calculations much easier in areas such as astronomy, navigation, engineering and 
warfare. English mathematician Henry Briggs (1561–1630) came to Scotland to work 
with Napier and together they perfected logarithms, which included the idea of using 
the base ten. After Napier died in 1617, Briggs took over the work on logarithms and 
published a book of tables in 1624. By the second half of the 17th century, the use 
of logarithms had spread around the world. They became as popular as electronic 
calculators in our time. The great French mathematician Pierre-Simon Laplace (1749–
1827) even suggested that the logarithms of Napier and Briggs doubled the life of 
astronomers, because it so greatly reduced the labours of calculation. In fact, without 
the invention of logarithms it is difficult to imagine how Kepler and Newton could have 
made their great scientific advances. In 1621, an English mathematician and clergyman, 
William Oughtred (1574–1660) used logarithms as the basis for the invention of the slide 
rule. The slide rule was a very effective calculation tool that remained in common use for over three hundred years.
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 logarithmic equation exponential equation
 exponent exponent

  
 y 5 logb(x) x 5 b y

  
 base base

Example 9 

Find the value of each of the following logarithms.

a) log7 49  b) log5(  1 _ 5  )  c) log6  √
__

 6    d) log4 64  e) log10 0.001

Solution

For each logarithmic expression in a) to e), we set it equal to y and use the 
definition of a logarithmic function to obtain an equivalent equation in 
exponential form. We then solve for y by applying the logical fact that if 
b . 0, b  1 and by 5 bk then y 5 k.

a) Let y 5 log7 49 which is equivalent to the exponential equation 7y 5 49. 
Since 49 5 72, then 7y 5 72. Therefore, y 5 2 ⇒ log7 49 5 2.

b) Let y 5 log5(  1 _ 5  ) which is equivalent to the exponential equation 5y 5   1 _ 5  . 
Since   1 _ 5   5 521, then 5y 5 521. Therefore, y 5 21 ⇒ log5(  1 _ 5  ) 5 21.

c) Let y 5 log6  √
__

 6   which is equivalent to the exponential equation 6y 5  √
__

 6  . 

 Since  √
__

 6   5  6   
1
 _ 2   , then 6y 5  6   

1
 _ 2   . Therefore, y 5   1 _ 2   ⇒ log6  √

__
 6   5   1 _ 2  .

d) Let y 5 log4 64 which is equivalent to the exponential equation 4y 5 64. 
Since 64 5 43, then 4y 5 43. Therefore, y 5 3 ⇒ log4 64 5 3.

e) Let y 5 log10 0.001 which is equivalent to the exponential equation

 10y 5 0.001. Since 0.001 5   1 ____ 
1000

   5   1 ___ 
103   5 1023, then 10y 5 1023. 

 Therefore, y 5 23 ⇒ log10 0.001 5 23.

Example 10 

Find the domain of the function f (x ) 5 log2(4 2 x 2).

Solution

From the definition of a logarithmic function the domain of 
 y 5 logb x is x . 0, thus for f (x) it follows that
 4 2 x 2 . 0 ⇒ (2 1 x)(2 2 x) . 0 ⇒ 22 , x , 2.
Hence, the domain is 22 , x , 2.

Properties of logarithms
As with all functions and their inverses, their graphs are reflections of 
each other over the line y 5 x. Figure 4.4 illustrates this relationship for 
exponential and logarithmic functions, and also confirms the domain and 
range for the logarithmic function stated in the previous definition.
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Notice that the points (0, 1) and (1, 0) are mirror images of each other 
over the line y 5 x. This corresponds to the fact that since b  0 5 1 
then logb 1 5 0. Another pair of mirror image points, (1, b) and (b, 1), 
highlight the fact that logb b 5 1.

Notice also that since the x-axis is a horizontal asymptote of y 5 b  x, the 
y-axis is a vertical asymptote of y 5 logb x.

In Section 2.3, we established that a function f and its inverse function 
f 21 satisfy the equations

 f 21(f (x)) 5 x for x in the domain of f

 f(f 21(x)) 5 x for x in the domain of f 21

When applied to f (x) 5 b x and f 21(x) 5 logb x , these equations become

 logb(b x) 5 x x    R

 blog
b   

x 5 x x . 0

Properties of logarithms I
For b . 0 and b  1, the following statements are true:

1.  logb 1  5 0  (because b0 5 1)

2.  logb b  5 1  (because b1 5 b)

3.  logb(b x)  5 x  (because bx 5 bx)

4.  blogb   
x  5 x  (because logb x is the power to which b must be raised to get x)

The logarithmic function with base 10 is called the common logarithmic 
function. On calculators and on your GDC, this function is denoted by log. 
The value of the expression log10 1000 is 3 because 103 is 1000. Generally, 
for common logarithms (i.e. base 10) we omit writing the base of 10. Hence, 
if log is written with no base indicated, it is assumed to have a base of 10. 
For example, log 0.01 5 22.

 Common logarithm:  log10 x 5 log x

As with exponential functions, the most widely used logarithmic function 
– and the other logarithmic function supplied on all calculators – is 
the logarithmic function with the base of e. This function is known as 
the natural logarithmic function and it is the inverse of the natural 
exponential function y 5 e x. The natural logarithmic function is denoted 
by the symbol In, and the expression ln x is read as ‘the natural logarithm 
of x’.

 Natural logarithm:  loge x 5 ln x

Example 11 

Evaluate the following expressions:

a) log (   1 __ 10   )  b) log (  √
___

 10   )  c) log 1 d) 10log 47 e) log 50

f) ln e g) ln (   1 __ 
e3   )  h) ln 1 i) e ln 5 j) ln 50

y � x

y

x(1, 0)

(b, 1)
(0, 1)

(1, b)

y � logb x

y � bx; b      1

0

Figure 4.4
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Solution

a) log (   1 __ 10   )  5 log(1021) 5 21 b) log( √
___

 10  ) 5 log(1 0   
1
 _ 2   ) 5   1 _ 2  

c) log 1 5 log(100) 5 0 d) 10log 47 5 47

e) log 50  1.699 (using GDC) f) ln e 5 1

g) ln (   1 __ 
e3   )  5 ln(e23) 5 23 h) ln 1 5 ln(e 0) 5 0

i) e ln    5 5 5 j) ln 50  3.912 (using GDC)

Example 12 

The diagram shows the graph of the line y 5 x and two curves. Curve A is 
the graph of the equation y 5 log  x. Curve B is the reflection of curve A in 
the line y 5 x.
a) Write the equation for curve B.
b) Write the coordinates of the y-intercept of curve B.

Solution

a) Curve A is the graph of y 5 log  x, the common logarithm with base 
10, which could also be written as y 5 log10  x. Curve B is the inverse of 
y 5 log10  x, since it is the reflection of it in the line y 5 x. Hence, the 
equation for curve B is the exponential equation y 5 10x.

b) The y-intercept occurs when x 5 0. For curve B, y 5 100 5 1. Therefore, 
the y-intercept for curve B is (0, 1).

The logarithmic function with base b is the inverse of the exponential 
function with base b. Therefore, it makes sense that the laws of exponents 
(Section 1.3) should have corresponding properties involving logarithms. 
For example, the exponential property b  0 5 1 corresponds to the 
logarithmic property logb 1 5 0. We will state and prove three further 
important logarithmic properties that correspond to the following three 
exponential properties.

1. bm    bn 5 bm 1 n

2.   b
m
 ___ 

bn   5 bm 2 n

3. (bm)n 5 bmn

Properties of logarithms II
Given M . 0, N . 0 and k is any real number, the following properties are true for 
logarithms with b . 0 and b  1.

  Property  Description

1.  logb(MN)  5 logb M 1 logb N  the log of a product is the sum of the logs of its factors

2.  logb (   M __ 
N

   )   5 logb M 2 logb N  the log of a quotient is the log of the numerator 
    minus the log of the denominator

3.  logb(Mk)  5 k logb M  the log of a number raised to an exponent is the 
    exponent times the log of the number

Any of these properties can be applied in either direction.

y � x

y

x

A

B

0
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Proofs
Property 1: Let x 5 logb M and y 5 logb N.

 The corresponding exponential forms of these two equations  
 are
 bx 5 M and b y 5 N

 Then, logb(MN ) 5 logb(b xb y) 5 logb(b x 1 y) 5 x 1 y. 

 It’s given that x 5 logb M and y 5 logb N; hence, 
 x 1 y 5 logb M 1 logb N.

 Therefore, logb(MN ) 5 logb M 1 logb N.

Property 2: Again, let x 5 logb M and y 5 logb N ⇒ b x 5 M and b y 5 N.

 Then, logb (   M __ 
N

   )  5 logb (   bx
 __ 

by   )  5 logb(b x 2 y) 5 x 2 y.

 With x 5 logb M and y 5 logb N, then x 2 y 5 logb M 2 logb N.

 Therefore, logb (   M __ 
N

   )  5 logb M 2 logb N.

Property 3: Let x 5 logb M ⇒ b x 5 M.

 Now, let’s take the logarithm of M k and substitute b x for M:

 logb(M k) 5 logb [ (b x)k ]  5 logb(b kx) 5 kx

 It’s given that x 5 logb M; hence, kx 5 k logb M.

 Therefore, logb(M k) 5 k logb M.

Example 13 

Use the properties of logarithms to write each logarithmic expression 
as a sum, difference, and/or constant multiple of simple logarithms (i.e. 
logarithms without sums, products, quotients or exponents).

a) log2(8x) b) ln (   3 __ y   )  c) log( √
__

 7  )

d) logb (   x 3 __ 
y 2

   )  e) ln(5e 2) f) log (   m 1 n ______ n   ) 

Solution

a) log2(8x) 5 log2 8 1 log2 x 5 3 1 log2 x

b) ln (   3 __ y   )  5 ln 3 2 ln y

c) log( √
__

 7  ) 5 log( 7   
1
 _ 2   ) 5   1 _ 2   log 7

d) logb (   x 3 __ 
y 2

   )  5 logb(x 3) 2 logb(y 2) 5 3  logb x 2 2  logb y

e) ln(5e 2) 5 ln  5 1 ln(e 2) 5 ln  5 1 2 ln  e 5 ln  5 1 2(1) 5 2 1 ln  5 
 (2 1 ln  5  3.609 using GDC)

f) log (   m 1 n ______ m   )  5 log(m 1 n) 2 log m

(remember log(m 1 n)  log m 1 log n)

 Hint:  The notation f (x) 
uses brackets not to indicate 
multiplication but to indicate the 
argument of the function f. The 
symbol f is the name of a function, 
not a variable – it is not multiplying 
the variable x. Therefore, f (x 1 y) is 
NOT equal to f (x) 1 f (y). Likewise, 
the symbol log is also the name of 
a function. Therefore, logb(x 1 y) is 
not equal to logb(x) 1 logb(y). Other 
mistakes to avoid include incorrectly 
simplifying quotients or powers of 
logarithms. Specifically,

  
logb x _____ 
logb y    log (   x __ y   )  and

(logb x)k  k(logb x).
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Example 14 

Write each expression as the logarithm of a single quantity.
a) log 6 1 log x b) log2 5 1 2 log2 3

c) ln y 2 ln  4 d) logb 12 2   1 _ 2   logb 9

e) log3 M 1 log3 N 2 2  log3 P f) log2 80 2 log2 5

Solution

a) log 6 1 log x 5 log(6x)

b) log2 5 1 2 log2  3 5 log2  5 1 log2(32) 5 log2  5 1 log2 9 5 log2(5    9) 
 5 log2 45

c) ln  y 2 ln  4 5 ln (   y __ 4   ) 

d) logb 12 2   1 _ 2    logb  9 5 logb  12 2 logb( 9   
1
 _ 2   ) 5 logb  12 2 logb( √

__
 9  ) 

  5 logb  12 2 logb  3 5 logb  (    12 ___ 
3

   )  5 logb  4

e) log3  M 1 log3  N 2 2  log3P 5 log3(MN) 2 log3(P 2) 5 log3 (    MN ____ 
P 2

   ) 

f) log2  80 2 log2  5 5 log2 (    80 ___ 5   )  5 log2  16 5 4  (because 24 5 16)

Change of base
The answer to part f) of Example 14 was log2  16 which we can compute to 
be exactly 4 because we know that 24 5 16. The answer to part e) of Example 
13 was 2 1 ln  5 which we approximated to 3.609 using the natural logarithm 
function key (ln) on our GDC. But, what if we wanted to compute an 
approximate value for log2  45, the answer to part b) of Example 14? Our GDC 
can only evaluate common logarithms (base 10) and natural logarithms (base 
e). To evaluate logarithmic expressions and graph logarithmic functions to 
other bases we need to apply a change of base formula.

Change of base formula
Let a, b and x be positive real numbers such that a  1 and b  1. Then logb  x can be 
expressed in terms of logarithms to any other base a as follows:

logb  x 5   
loga  x _____ 
loga  b

  

Proof
 y 5 logb  x ⇒ b y 5 x convert from logarithmic form to exponential 
   form

 loga  x 5 loga(b y) if b y 5 x, then log of each with same bases must 
   be equal

 loga  x 5 y loga  b applying the property logb  (M k) 5 k  logb  M

 y 5    
loga  x

 _____ 
loga  b

   divide both sides by loga  b

 logb  x 5   
logax

 _____ 
logab

   substitute logb  x for y
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To apply the change of base formula, let a 5 10 or a 5 e. Then the 
logarithm of any base b can be expressed in terms of either common 
logarithms or natural logarithms. For example:

log2 x 5   
log x

 ____ 
log 2

    or   ln  x ____ 
ln  2

  

log5 x 5   
log x

 ____ 
log 5

   or   ln  x ____ 
ln  5

   

log2 45 5   
log 45

 _____ 
log 2

    5   ln  45 ____ 
ln 2

    5.492 (using GDC)

Example 15 

Use the change of base formula and common or natural logarithms to 
evaluate each logarithmic expression. Start by making a rough mental 
estimate. Approximate your answer to 4 significant figures.

a) log3  30

b) log9  6

Solution

a) The value of log3  30 is the power to which 3 is raised to obtain 30. 
Because 33 5 27 and 34 5 81, the value of log3  30 is between 3 and 4, 
and will be much closer to 3 than 4 – perhaps around 3.1. Using the 
change of base formula and common logarithms, we obtain 

 log3  30 5   
log 30

 _____ 
log 3

    3.096. This agrees well with the mental estimate. 

 After computing the answer on your GDC, use your GDC to also check 
it by raising 3 to the answer and confirming that it gives a result of 30.

b) The value of log9  6 is the power to which 9 is raised to obtain 6. Because  
9   

1
 _ 2    5  √

__
 9   5 3 and 91 5 9, the value of log9  6 is between   1 _ 2   and 1 – 

perhaps around 0.75. Using the change of base formula and natural 

 logarithms, we obtain log9  6 5   ln  6 ____ 
ln  9

    0.815. This agrees well with the 
mental estimate. 

log(30)/log(3)
3.095903274

3ˆAns
30

ln(6)/ln(9)
.8154648768

9ˆAns
6
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In questions 1–9, express each logarithmic equation as an exponential equation.

  1  log2 16 5 4    2  ln 1 5 0    3  log 100 5 2

  4  log 0.01 5 22    5  log7 343 5 3    6  ln (   1 __ e   )  5 21

  7  log 50 5 y    8  ln x 5 12    9  ln(x 1 2) 5 3

In questions10–18, express each exponential equation as a logarithmic equation.

10  210 5 1024  11  1024 5 0.0001  12   4 
2  1 _ 

2
  
  5   1 _ 2  

13  34 5 81  14  100 5 1  15  e x 5 5

16  223 5 0.125  17  e4 5 y  18  10 x 1 1 5 y

In questions 19–34, find the exact value of the expression without using your GDC.

19  log2 64  20  log4 64  21  log2 (   1 __ 
8

   )   22  log3(35)

23  log8 1  24  10log 6  25  log3 (   1 ___ 
27

   )   26  eln √_
 2  

27  log 1000  28  ln( √
_

 e  )  29  ln (   1 __ 
e2   )   30  log 0.001

31  log4 2  32  3 log 
3  18  33  log5 (  3 √

__
 5   )   34  10log p

In questions 35–42, use a GDC to evaluate the expression, correct to 4 significant 
figures.

35  log 50  36  log  √
__

 3    37  ln 50  38  ln  √
__

 3  

39  log 25  40  log (   1 1  √
__

 5   _______ 2    )   41  ln 100  42  ln(1003)

In questions 43–45, find the domain of the logarithmic function.

43  f (x) 5 log(x 2 2)  44  g (x) 5 ln(x2)  45  h (x) 5 log(x) 2 2

For questions 46–49, find the equation of the function that is graphed in the form 
f (x) 5 logb x.

46  47

   
48  49

   

Exercise 4.4
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�1 1 2 3 4 5
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0 x

y
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�1 20 4 6 8 111 3 5 7 9 10

(9, 2)
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Solving exponential equations
At the start of the previous section, we wanted to find a way to determine 
how much time t (in years) it would take for an investment of 1000 euros 
to double, if the investment earns interest at an annual rate of 7.5%. Since 
the interest is compounded continuously, we need to solve this equation:  
2000 5 1000e 0.075t ⇒ 2 5 e 0.075t. The equation has the variable t in the 
exponent. With the properties of logarithms established in the previous 
section, we now have a way to algebraically solve such equations. Along 
with these properties, we need to apply the logic that if two expressions are 
equal then their logarithms must also be equal. That is, if m 5 n, then 
logb m 5 logb n.

Exponential and logarithmic 
equations

4.5

In questions 50–55, use properties of logarithms to write each logarithmic 
expression as a sum, difference and/or constant multiple of simple logarithms (i.e. 
logarithms without sums, products, quotients or exponents).

50  log2(2m)  51  log (   9 __ x   ) 

52  ln (  5 √
__

 x   )   53  log3(ab3)

54  log [ 10x(1 1 r)t ]   55  ln (   m3
 ___ n    ) 

In questions 56–61, write each expression as the logarithm of a single quantity.

56  log(x2) 1 log (   1 __ x   )   57  log3 9 1 3 log3 2

58  4  ln y 2 ln 4  59  logb 12 2   1 _ 2   logb 9

60  log p 2 log q 2 log r  61  2 ln 6 2 1     Hint:   ln(?) 5 1

In questions 62–65, use the change of base formula and common or natural 
logarithms to evaluate each logarithmic expression. Approximate your answer to 3 
significant figures.

62  log2 1000  63  lo g 
  1 _ 2  
  40  64  log6 40  65  log5(0.75)

In questions 66 and 67, use the change of base formula to evaluate f (20).

66  f (x) 5 log2 x  67  f (x) 5 log5 x

68  Use the change of base formula to prove the following statement.

logb a 5    1 _____ 
loga b

  

69  Show that log e 5    1 _____ 
ln 10

  .

70  The relationship between the number of decibels dB (one variable) and the 
intensity I of a sound (in watts per square metre) is given by the formula 

  dB 5 10  log (    I _____ 
10216   ) . Use properties of logarithms to write the formula in simpler 

  form. Then find the number of decibels of a sound with an intensity of 1024 
watts per square metre.
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 Hint:  We could have used natural 
logarithms instead of common 
logarithms to solve the equation 
in Example 17. Using the same 
method but with natural logarithms, 
we get 

x 5   ln 24 _____ 
ln 3

   1 4  6.89.

Example 16 

Solve the equation for the variable t. Give your answer accurate to 3 
significant figures.
 2 5 e 0.075t

Solution

 2 5 e 0.075t

 ln 2 5 1n(e 0.075t) take natural logarithm of both sides
 ln 2 5 0.075t apply the property logb(bx) 5 x and ln e 5 1

 t 5   ln 2 _____ 
0.075

    9.24

With interest compounding continuously at an annual interest rate of 
7.5%, it takes about 9.24 years for the investment to double.

This example serves to illustrate a general strategy for solving exponential 
equations. To solve an exponential equation, first isolate the exponential 
expression and take the logarithm of both sides. Then apply a property of 
logarithms so that the variable is no longer in the exponent and it can be 
isolated on one side of the equation. By taking the logarithm of both sides 
of an exponential equation, we are making use of the inverse relationship 
between exponential and logarithmic functions. Symbolically, this method 
can be represented as follows – solving for x: 

 (i) If b 5 10 or e : y 5 bx ⇒ logb y 5 logb bx ⇒ logb y 5 x

 (ii) If b  10 or e :

  y 5 bx ⇒ loga y 5 loga bx ⇒ loga y 5 x loga b ⇒ x 5   
loga y

 _____ 
loga b

  

Example 17 

Solve for x in the equation 3x 2 4 5 24. Approximate the answer to 3 
significant figures.

Solution

 3x 2 4 5 24
 log(3x 2 4) 5 log 24 take common logarithm of both sides

 (x 2 4)log 3 5 log 24 apply the property logb(Mk) 5 k logb M

 x 2 4 5    
log 24

 _____ 
log 3

    divide both sides by log 3  [ note:   
log 24

 _____ 
log 3

    log 8 ] 
 x 5   

log 24
 _____ 

log 3
    1 4

 x  6.89 using GDC 

Recall Example 10 in Section 3.3 in which we solved an exponential 
equation graphically, because we did not yet have the tools to solve it 
algebraically. Let’s solve it now using logarithms.
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Example 18 

You invested E1000 at 6% compounded quarterly. How long will it take 
this investment to increase to E2000?

Solution

Using the compound interest formula from Section 4.2, A(t)  5 P  ( 1 1   r __ n   ) 
nt

,

with P 5 E1000, r 5 0.06 and n 5 4, we need to solve for t when A(t) 5 2P.

 2P 5 P  ( 1 1   0.06 ____ 4   ) 
4t

 substitute 2P for A(t)

 2 5 1.0154t divide both sides by P

 ln  2 5 ln(1.0154t) take natural logarithm of both sides

 ln  2 5 4t ln 1.015 apply the property logb(M k) 5 k logb M

 t 5   ln 2 ________ 
4  ln 1.015

  

 t  11.6389 evaluated on GDC

The investment will double in 11.64 years –  
about 11 years and 8 months.

Example 19 

The bacteria that cause ‘strep throat’ will grow in number at a rate of about 
2.3% per minute. To the nearest whole minute, how long will it take for 
these bacteria to double in number?

Solution
Let t represent time in minutes and let A0 represent the number of bacteria 
at t 5 0.

Using the exponential growth model from Section 4.2, A(t) 5 A0bt, the 
growth factor, b, is 1 1 0.023 5 1.023 giving A(t) 5 A0(1.023)t. The same 
equation would apply to money earning 2.3% annual interest with the 
money being added (compounded) once per year rather than once per 
minute. So, our mathematical model assumes that the number of bacteria 
increase incrementally, with the number increasing by 2.3% at the end of 
each minute. To find the doubling time, find the value of t so that 
A(t) 5 2A0.

 2A0 5 A0(1.023)t substitute 2A0 for A(t)

 2 5 1.023t divide both sides by A0

 ln  2 5 ln(1.023t) take natural logarithm of both sides

 ln  2 5 t ln 1.023 apply the property logb(M k) 5 k logb M

 t 5   ln 2 _______ 
ln 1.023

    30.482

The number of bacteria will double in about 30 minutes.

 Hint:  Be sure to use brackets 
appropriately when entering the 

expression    ln 2 ________ 
4 ln 1.015

   on your GDC. 

Following the rules for order of 
operations, your GDC will give an 
incorrect result if entered as shown 
here.

ln(2)/4ln(1.015)

.0025799999

missing brackets

ln(2)/(4ln(1.015
)) 11.63888141
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Alternative solution
What if we assumed continuous growth instead of incremental growth? We 
apply the continuous exponential growth model from Section 4.3:  
A(t) 5 Ce rt with initial amount C and r 5 0.023.

 2C 5 Ce 0.023t substitute 2C for A(t)

 2 5 e 0.023t divide both sides by C

 ln 2 5 ln(e 0.023t) take natural logarithm of both sides

 ln 2 5 0.023t apply the property logb(b x) 5 x

 t 5   ln 2 _____ 
0.023

    30.137

Continuous growth has a slightly shorter doubling time, but rounded to 
the nearest minute it also gives an answer of 30 minutes.

Example 20 

$1000 is invested in an investment account that earns interest at an annual 
rate of 10% compounded monthly. Calculate the minimum number of 
years needed for the amount in the account to exceed $4000.

Solution
We use the exponential function associated with compound interest, 

 A(t) 5 P  ( 1 1   r __ n   ) 
nt

 with P 5 1000, r 5 0.1 and n 5 12.

 4000 5 1000 ( 1 1   0.1 ___ 
12

   ) 
12t

 ⇒ 4 5  ( 1.008 
_

 3  ) 12t ⇒ log 4 5 log [ (1.008 
_

 3 )12t ]  ⇒

 log 4 5 12t log(1.008 
_

 3 ) ⇒ t 5   
log 4
 ____________  

12 log(1.008 
_

 3 )
    13.92 years 

The minimum number of years needed for the account to exceed $4000 is 
14 years.

Example 21 

A 20  g sample of radioactive iodine decays so that the mass remaining after 
t days is given by the equation A(t) 5 20e 20.087t, where A(t) is measured 
in grams. After how many days (to the nearest whole day) is there only 5  g 
remaining?

Solution

5 5 20e 20.087t ⇒   5 ___ 
20

   5 e 20.087t ⇒ ln 0.25 5 ln(e 20.087t) ⇒ 

 ln 0.25 5 20.087t ⇒ t 5   ln 0.25 _______ 
20.087

    15.93

After about 16 days there is only 5  g remaining.
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Solving logarithmic equations
A logarithmic equation is an equation where the variable appears within 
the argument of a logarithm. For example, log x 5   1 _ 2   or ln  x 5 4. We 
can solve both of these logarithmic equations directly by applying the 
definition of a logarithmic function (Section 4.4):

 y 5 logb x if and only if x 5 b y

The logarithmic equation log x 5   1 _ 2   is equivalent to the exponential equation

x 5 1 0   
1
 _ 2    5  √

___
 10  , which leads directly to the solution. Likewise, the equation 

ln  x 5 4 is equivalent to x 5 e 4  54.598. Both of these equations could 
have been solved by means of another method that makes use of the 
following two facts:

 (i) if a 5 b then na 5 nb; and (ii) b log
b  

x 5 x

To understand (ii) above, remember that a logarithm is an exponent. 
The value of logb x is the exponent to which b is raised to give x. And b is 
being raised to this value; hence, the expression b log

b
x is equivalent to x. 

Therefore, another method for solving the logarithmic equation ln  x 5 4 
is to exponentiate both sides, i.e. use the expressions on either side of the 
equal sign as exponents for exponential expressions with equal bases. The 
base needs to be the base of the logarithm. 

 ln  x 5 4 ⇒ e ln   x 5 e 4 ⇒ x 5 e 4

Example 22 

Solve for x : log3(2x 2 5) 5 2

Solution

log3(2x 2 5) 5 2 ⇒  3log
3
(2x 2 5) 5 32

 2x 2 5 5 9
 2x 5 14
 x 5 7

Example 23 

Solve for x in terms of k : log2(5x) 5 3 1 k

Solution

 log2(5x) 5 3 1 k ⇒ 2log
2
(5x) 5 23 1 k exponentiate both sides with base 5 2

 5x 5 23    2k law of exponents bm    bn 5 bm 1 n used 
   ‘in reverse’

 x 5   8 __ 5  (2k)

For some logarithmic equations, it is necessary to first apply a property, 
or properties, of logarithms to simplify combinations of logarithmic 
expressions before solving.
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Example 24 

Solve for x : log2 x 1 log2(10 2 x) 5 4

Solution

 log2 x 1 log2(10 2 x) 5 4

 log2 [ x (10 2 x) ]  5 4 property of logarithms: 
   logb M 1 logb N 5 logb(MN)

 10x 2 x 2 5 24 changing from logarithmic form to 
   exponential form

 x 2 2 10x 1 16 5 0

 (x 2 2)(x 2 8) 5 0

 x 5 2 or x 5 8

When solving logarithmic equations, you should be careful to always 
check if the original equation is a true statement when any solutions are 
substituted in for the variable. For Example 24, both of the solutions  
x 5 2 and x 5 8 produce true statements when substituted into the 
original equations. Sometimes ‘extra’ (extraneous) invalid solutions are 
produced, as illustrated in the next example.

Example 25 

Solve for x : ln(x 2 2) 1 ln(2x 2 3) 5 2    ln x

Solution

 ln(x 2 2) 1 ln(2x 2 3) 5 2  ln  x

 ln[(x 2 2)(2x 2 3)] 5 ln  x2 properties of logarithms

 ln(2x 2 2 7x 1 6) 5 ln  x 2

 e ln(2x 2 2 7x 1 6) 5 e ln    x 2 exponentiate both sides

 2x 2 2 7x 1 6 5 x 2

 x 2 2 7x 1 6 5 0

 (x 2 6)(x 2 1) 5 0 factorize

 x 5 6 or x 5 1

Substituting these two possible solutions indicates that x 5 1 is not a valid 
solution. The reason is that if you try to substitute 1 for x into the original 
equation, we are not able to evaluate the expression ln(2x 2 3) because we 
can only take the logarithm of a positive number. Therefore, x 5 6 is the 
only solution. x 5 1 is an extraneous solution that is not valid.

Solving, or checking the solutions to, a logarithmic equation on your GDC 
will help you avoid, or determine, extraneous solutions. To solve Example 
25 on your GDC, a useful approach is to first set the equation equal to zero. 
Then graph the expression (after setting it equal to y) and observe where 
the graph intersects the x-axis (i.e. y 5 0). 
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Graphical solution for Example 25:

ln(x 2 2) 1 ln(2x 2 3) 5 2  ln  x ⇒ ln(x 2 2) 1 ln(2x 2 3) 22  ln  x 5 0

Graph the equation y 5 ln(x 2 2) 1 ln(2x 2 3) 2 2 ln  x on your GDC and 
find x-intercepts.

The graph only intersects the x-axis at x 5 6 and not at x 5 1. Hence, 
x 5 6 is the only valid solution and x 5 1 is an extraneous solution.

In questions 1–12, solve for x in the exponential equation. Give x accurate to 3 
significant figures.

 1  10x 5 5    2  4x 5 32    3  8x 2 6 5 60

  4  2x 1 3 5 100    5   (   1 _ 5   ) 
x
 5 22    6  e x 5 15

  7  10x 5 e    8  32x 2 1 5 35    9  2x 1 1 5 3x 2 1

10  2e10x 5 19  11   6   
x _ 2    5 51 2 x  12   ( 1 1   0.05 ____ 12    ) 

12x
 5 3

13  $5000 is invested in an account that pays 7.5% interest per year, compounded 
quarterly.
a)  Find the amount in the account after three years.
b)  How long will it take for the money in the account to double? Give the 

answer to the nearest quarter of a year.

14  How long will it take for an investment of €500 to triple in value if the interest is 
8.5% per year, compounded continuously. Give the answer in number of years 
accurate to 3 significant figures.

15  A single bacterium begins a colony in a laboratory dish. If the colony doubles 
every hour, after how many hours does the colony first have more than one 
million bacteria?

16  Find the least number of years for an investment to double if interest is 
compounded annually with the following interest rates.
a)  3%  b)  6%  c)  9%

17  A new car purchased in 2005 decreases in value by 11% per year. When is the 
first year that the car is worth less than one-half of its original value?

18  Uranium-235 is a radioactive substance that has a half-life of 2.7 3 105 years.
a)  Find the amount remaining from a 1  g sample after a thousand years.
b)  How long will it take a 1  g sample to decompose until its mass is 700 

milligrams (i.e. 0.7  g)? Give the answer in years accurate to 3 significant 
figures. 

Exercise 4.5

Plot1 WINDOW
Xmin=-1
Xmax=10
Xscl=1
Ymin=-3
Ymax=1
Yscl=1
Xres=1

Y1= ln(X-2)+ln(2
X-3)-2ln(X)

Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

Y1=ln(X-2)+ln(2x-3)-2ln(X _)

Y=0X=6
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19  The stray dog population in a town is growing exponentially with about 18% 
more stray dogs each year. In 2008, there are 16 stray dogs.
a)  Find the projected population of stray dogs after five years.
b)  When is the first year that the number of stray dogs is greater than 70?

20  Initially a water tank contains one thousand litres of water. At the time t 5 0 
minutes, a tap is opened and water flows out of the tank. The volume, V litres, 
which remains in the tank after t minutes is given by the following exponential 
function: V(t) 5 1000(0.925)t.
a)  Find the value of V after 10 minutes.
b)  Find how long, to the nearest second, it takes for half of the initial amount of 

water to flow out of the tank.
c)  The tank is considered ‘empty’ when only 5% of the water remains. From 

when the tap is first opened, how many whole minutes have passed before 
the tank can first be considered empty?

21  The mass m kilograms of a radioactive substance at time t days is given by 
m 5 5e 20.13t. 
a)  What is the initial mass?
b)  How long does it take for the substance to decay to 0.5  kg? Give the answer 

in days accurate to 3 significant figures. 

In questions 22–32, solve for x in the logarithmic equation. Give exact answers and 
be sure to check for extraneous solutions.

22  log2(3x 2 4) 5 4  23  log(x 2 4) 5 2

24  ln  x 5 23  25  log16 x 5   1 _ 2  

26  log  √
_____

 x 1 2   5 1  27  ln(x 2) 5 16

28  log2(x 2 1 8) 5 log2 x 1 log2 6  29  log3(x 2 8) 1 log3 x 5 2

30  log 7 2 log(4x 1 5) 1 log(2x 2 3) 5 0  31  log3 x 1 log3(x 2 2) 5 1

32  log x 8 5 (log x)4

Practice questions

  1	 Solve	for	x	in	each	equation.
a)  logx	16	5	4	 b)  log3	27	5	x
c)  log8	x	5	2  1	_	

3
			 d)  log(x	1	2)	1	log(x	2	2)	5	log	5

  2	 Solve	for	x	in	each	equation.
a)  4x	5	36	 b)  5	3	3x	5	18
c)  82x	5		( 		1	_	4			)	3	 d)  6x	5	0.252x	2	1

  3	 Write	each	expression	as	the	logarithm	of	a	single	quantity.

a)  log2	x	2	2	log2	x	1	2	log2	3	 b)  ln		3	1			1	_	2			ln(x	2	4)	2	ln	x
  4	 If	logb	M	5	5.42	and	logb	N	2	5	3.78,	find	the	following:

a)  logb	N	 b)  logb	( 		N	4	___	
	√

__
	M		
			)	

  5	 Pablo	invested	2000	euros	at	an	annual	rate	of	6.75%,	compounded	annually.
a)  Find	the	value	of	Pablo’s	investment	after	four	years.	Give	your	answer	to	the	nearest	

euro.
b)  How	many	years	will	it	take	for	Pablo’s	investment	to	double	in	value?
c)  What	should	the	interest	rate	be	if	Pablo’s	initial	investment	were	to	double	in	value	

in	10	years?
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  6	 Let	log	P	5	x,	log		Q	5	y	and	log		R	5	z.

	 Express	log		( 		 P	____	
QR		3

			)	
2
	in	terms	of	x,	y	and	z.

  7	 $1000	is	deposited	into	a	bank	account	that	earns	interest	at	an	annual	rate	of	4%	
compounded	annually.	After	three	years,	the	annual	interest	rate	is	increased	to	7%	for	
a	further	four	years.
a)  How	much	money	is	in	the	account	after	the	seven	years?
b)  Find	what	constant	rate	of	annual	interest	compounded	annually	would	have	given	

the	same	amount	of	money	in	the	seven	years.	Give	your	answer	as	a	percentage	to	
1	decimal	place.

  8	 Express	each	of	the	following	expressions	as	simply	as	possible.
a)  log2	5	3	log5	2
b)  log4	8
c)  4log2	6

  9	 At	the	start	of	the	year	2000	there	were	500	elephants	in	a	game	reserve.	After	t	years,	
the	number	of	elephants	E	is	given	by	500(1.032)t.
a)  Find	the	number	of	elephants	at	the	start	of	2006.
b)  After	how	many	full	years	will	the	number	of	elephants	first	become	greater	than	

750?

10	 The	half-life	of	radioactive	radium	is	1620	years.	What	percentage	of	an	initial	amount	
of	radioactive	radium	will	remain	after	100	years?

11	 A	car,	when	purchased	new,	had	an	initial	value	of	$25		000.	After	one	year,	the	car	had	
decreased	in	value	to	$22		000.
a)  After	one	year,	what	percentage	of	the	initial	value	is	the	new	value	of	the	car?
b)  If	the	car	continues	to	decrease	in	value	at	the	same	annual	rate,	what	is	the	car’s	

value	after	six	years?	Give	your	answer	to	the	nearest	dollar.
c)  If	the	car	was	purchased	in	2002	in	which	year	is	the	car	first	worth	less	than	$8000?

12	 Consider	the	function	f		:		x	↦	e	x	2	2.
a)  Write	down	the	domain	and	range	of	f.
b)  Write	down	the	coordinates	of	any	y	-intercept,	and	the	equation	of	any	asymptotes	

for	the	graph	of	f.
c)  Find	f	21.
d)  Write	down	the	domain	and	range	of	f	21.

13	 A	population	of	a	certain	insect	grows	at	a	rate	of	6%	per	month.	Initially	there	are	500
	 insects.

a)  Find	the	size	of	the	population	after	four	months.
b)  Find	the	size	of	the	population	after	sixteen	months.
c)  Let	the	size	of	the	population	after	t	months	be	given	by	the	function	f	(t)	5	A0b	t.	

Write	down	
  (i)	 the	value	A0

  (ii)	 the	value	of	b.
An	alternative	way	of	modelling	the	size	of	the	insect	population	is	given	by	the	
function	g	(t)	5	500e	kt.
d)  By	equating	f	(t)	and	g	(t),	find	the	value	of	k.	Give	your	answer	correct	to	5	decimal	

places.
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14	 State	the	domain	for	each	of	the	following	two	functions.

a)  f	(x)	5	log	( 		 x _____	x	2	2
			)	

b)  g	(x)	5	log	x	2	log(x	2	2)

Solve	each	of	the	following	equations.

c)  log	( 		 x _____	x	2	2
			)		5	22

d)  log	x	2	log(x	2	2)	5	22

15	 An	experiment	is	designed	to	study	a	certain	type	of	bacteria.	The	number	of	bacteria	
after	t	minutes	is	given	by	an	exponential	function	of	the	form	A(t	)	5	Ce	k	t,	where	
C	and	k	are	constants.	At	the	start	of	the	experiment	(when	t	5	0)	there	are	5000	
bacteria.	After	22	minutes,	the	number	of	bacteria	has	increased	to	17		000.
a)  Find	the	exact	value	of	C	and	an	approximate	value	of	k	(to	3	significant	figures).
b)  How	many	bacteria	does	the	exponential	function	predict	there	will	be	after	one	

hour?
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Matrices can be found anywhere and everywhere. If you have ever used a 
spreadsheet such as Excel or Lotus, or have ever created a table, then you 
have used a matrix. Matrices make the presentation of data understandable 
and help make calculations easy to perform. For example, your teacher’s 
grade book may look something like this:

Student Quiz 1 Quiz 2 Test 1 Test 2 Homework Grade

Tim 70 80 86 82 95 A

Maher 89 56 80 60 55 C

… … … … … … …

If we want to know Tim’s grade on Test 2, we simply follow along the row 
‘Tim’ to the column ‘Test 2’ and find that he received a score of 82. Take a 
look at the matrix below about the sale of cameras in a store according to 
location and type.

City Donau Neubau Moedling

Nikon 153 98 74 56

Canon 211 120 57 29

Olympus 82 31 12 5

Other 308 242 183 107

If we want to know how many Canon cameras were sold in the Neubau 
shop, we follow along the row ‘Canon’ to the column ‘Neubau’ and find 
that 57 Canons were sold.

5 Matrix Algebra

Introduction

Although matrix algebra is an interesting and very useful area of 
mathematics, this material is not in the IB Mathematics Standard Level 
syllabus. Thus, this chapter can be skipped without any loss of preparation 
for the Mathematics Standard Level exams.

However, it is highly recommended that you review Sections 5.1 and 5.2 
because of their important applications. In Section 5.3, the information 
about using matrix methods to solve a system of equations may be helpful 
when working through Section 12.3, even though it is not required for 
examination purposes. Remember that in exams, any ‘mathematically 
sound’ method will be accepted.
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What is a matrix?
A matrix is a rectangular array of elements. The elements can be symbolic 
expressions or numbers. 

Matrix [A] is denoted by

  a11 a12 … a1n  ←
  a21 a22 … a2n	  ←
	
A 5

  ⋮ ⋮ ⋮ ⋮		  ⋮	 	m rows

  am1 am2 … amn  ←
	 	 ↑	 ↑	 …	 ↑ 
 n columns

Row i of A has n elements and is (ai1 ai2 … ain).

Column j of A has m elements and is

a1j

a2j

⋮
amj

.

The number of rows and columns of the matrix define its size (order). So, 
a matrix that has m rows and n columns is said to have an m 3 n (m by n) 
size (order). A matrix A with m 3 n order (size) is sometimes denoted as 
[A]m 3 n or [A]mn to show that A is a matrix with m rows and n columns. 
(Some authors use [aij] to represent a matrix.) The sales matrix has a 4 3 4 
order. When m 5 n, the matrix is said to be a square matrix with order n, so 
the sales matrix is a square matrix of order 4.

Every entry in the matrix is called an entry or element of the matrix, and 
is denoted by aij	, where i is the row number and j is the column number 
of that element. The ordered pair (i, j) is also called the address of the 
element. So, in the grades matrix example, the entry (2, 4) is 60, the 
student Maher’s grade on Test 2, while (2, 4) in the sales matrix example is 
29, Canon’s sales in the Moedling shop.

Basic definitions5.1

Arthur Cayley (1821–1895)

Arthur Cayley entered Trinity College, Cambridge in 1838. While still an undergraduate, he 
published three papers in the Cambridge Mathematical Journal. Cayley graduated as Senior 
Wrangler in 1842 and won the first Smith’s prize. Winning a fellowship enabled him to 
teach for four years at Cambridge. He published 28 papers in the Cambridge Mathematical 
Journal during these years. Since a fellowship had limited tenure, Cayley needed to find a 
profession. He spent 14 years as a lawyer but, although very skilled in his legal specialty, 
he always considered it as a means to make money so that he could pursue mathematics. 
During these 14 years as a lawyer he published around 250 mathematical papers.

His published work comprises over 900 papers and notes covering several fields of 
modern mathematics. The most important aspect of his work was in developing the 
algebra of matrices.
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Vectors
A vector is a matrix that has only one row or one column. There are two 
types of vectors – row vectors and column vectors.

Row vector
If a matrix has one row, it is called a row vector.

B 5 (b1 b2 … bm) is a row vector with dimension m.

B 5 (1 2) could represent the position of a point in a plane and is an 
example of a row vector of dimension 2.

Column vector
If a matrix has one column, it is called a column vector.

C 5

c1

c2

⋮
cn

is a column vector with dimension n.

C 5 
1
2

 again could represent the position of a point in a plane and is an 

example of a column vector of dimension 2. 

As you see, vectors can be represented by row or column matrices.

Submatrix
If some row(s) and/or column(s) of a matrix A are deleted, the remaining 
matrix is called a submatrix of A.

For example, if we are interested in the sales of the three main types of 
cameras in the central part of the city, we can represent them with the 
following submatrix of the original matrix:

153  98
211 120
 82  31

Zero matrix
A matrix for which all entries are equal to zero (aij 5 0 for all i and j).

 (0 0), 0 0
0 0

 , 0 0 0
0 0 0

 are zero matrices.

Diagonal
A square matrix where all entries except the diagonal entries are zero is 
called a diagonal matrix.

In a square matrix, the entries a11, a22, …, ann are called the diagonal 
elements of the matrix. Sometimes the diagonal of the matrix is also called 
the principal or main of the matrix.

 

153   0  0   0
  0 120  0   0
  0   0 12   0
  0   0  0 107

What is the diagonal in our sales matrix? Here, a11 5 153, a22 5 120, 
a33 5 12 and a44 5 107.
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Triangular matrix

You can use a matrix to present data showing distances between different 
cities.

Graz Salzburg Innsbruck Linz

Vienna 191 298 478 185

Graz 282 461 220

Salzburg 188 135

Innsbruck 320

The data in Table 5.1 can be represented by a triangular matrix (upper 
triangular in this case).

 

191 298 478 185
  0 282 461 220
  0   0 188 135
  0   0   0 320

In a triangular matrix, the entries on one side of its diagonal are all zero.

Definition of a triangular matrix
A triangular matrix is a square matrix with order n for which aij 5 0 when i . j (upper 
triangular) or, alternatively, when i , j (lower triangular).

When are two matrices considered to be equal?
Two matrices A and B are equal if the size of A and B is the same (number 
of rows and columns are the same for A and B) and aij 5 bij for all i and j.

For example, 2 3
5 7

 and 2  x
x	2 2 4 7

 can only be equal if x 5 3 and 

x 2 2 4 5 5, which can only be true if x 5 3.

How do you add/subtract two matrices?
Two matrices A and B can be added only if they have the same	size. If C is 
the sum of the two matrices, then we write 

C 5 A 1 B
where	cij 5 aij 1 bij, i.e. we add ‘corresponding’ terms, one by one.

For example,

  2 3
5 7

 1 x	 y
a	 b

 5 2 1 x 3 1 y
5 1 a 7 1 b

Subtraction is done similarly:

 2 3 1
5 7 0

 2 
x y 8
a b 2

 5 2 2 x 3 2 y 27
5 2 a 7 2 b 22

The operations of addition and subtraction of matrices obey all rules of 
addition and subtraction of real numbers. That is,

A 1 B 5 B 1 A; A 1 (B 1 C) 5 (A 1 B) 1 C; A 2 (B 1 C) 5 A 2 B 2 C.

Table 5.1

Matrix operations5.2



148

Matrix Algebra5

How do we multiply a scalar by a matrix?
A scalar is any object that is not a matrix. The multiplication by a scalar is 
straightforward. You multiply each term of the matrix by the scalar.

If A is an m	3 n matrix, and c is a scalar, the scalar product of c and A is 
another matrix B 5 cA such that every entry bij of B is a multiple of its 
corresponding A entry, i.e. bij	5 c 3 aij. 

Matrix multiplication
At first glance, the following definition may seem unusual. You will see 
later, however, that this definition of the product of two matrices has many 
practical applications.

Matrix multiplication
If A 5 (aij) is an m 3 n matrix and B (bij) is an n 3 p matrix, the product AB is an m 3 p 
matrix, AB 5 (cij), where

cij 5  ∑ 
k 5 1  

   

n

  aikbkj  5 ai1b1j 1 ai2b2j 1 … 1 ainbnj

For each i5 1, 2, …, m and j 5 1, 2, …, n.

This definition means that each entry with an address ij in the product 
AB is obtained by multiplying the entries in the ith row of A by the 
corresponding entries in the jth column of B and then adding the results. 
The following shows the process in detail:

cij 5 (ai1 ai2 … ain)

b1j

b2j

⋮
bnj

5 ai1b1j 1 ai2b2j 1 … 1 ainbnj

Example 1 

Find C 5 AB if A 5 3 25 2
2 1 7

 and B 5 
3 22 1 5
5 8 24 0

29    10 5 3
.

Solution
A is a 2 3 3 matrix and B is a 3 3 4 matrix, so the product must be a 2 3 4 
matrix. Every entry in the product is the result of multiplying the entries in 
the rows of A and columns of B. For example:

c12 5  ∑ 
k 5 1  

   

3

  a1kbk	2 5  (a11 a12 a13)

b12

b22

b32

5 (3 25 2)

22

8

10

 5 3 3 (22) 2 5 3 8 1 2 3 10 5 226
or

c23 5  ∑ 
k 5 1

   

3

  		a2kbk	3 5  (a21 a22 a23)

b13

b23

b33

5 (2 1 7)

1

24

5

 5 2 3 1 1 1 3 (24) 1 7 3 5 5 33

It is often convenient to rewrite 
the scalar multiple cA by 
factoring c out of every entry in 
the matrix. For instance, in the 
following example, the scalar   1 _ 2   
has been factored out of the 
matrix.

  1 
_ 2   2   3 

_ 2  

  5 _ 2        1 
_ 2  

 5   1 __ 2   1 23
5 1
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The operation is repeated eight times to get

C 5AB 5
234 226 33 21
252 74 33 31

This product can also be found using a GDC.

[A][B]
[[-34 -26 33 21…
[-52 -74 33 31…

 

For the product of two matrices to be defined, the number of columns in 
the first matrix should be the same as the number of rows in the second 
matrix.

 A B 5 AB
	 m	3	n	 n	3	p	 	 m	3	p

 	 ⌊	equal 」 

 
⌊––	order of AB ––」

Examples – matrix multiplication 

a) 5 0 3
22 1 2

 
22  4

1 21
3 22

 5 21 14
 11 213

  2 3 3 3 3 2 2 3 2

b) 4 25
1 7

 1 0
0 1

 5 4 25
1 7

  2 3 2 2 3 2 2 3 2

c) 
5 0 3

22 1 2
2 1 3

 

2  1 _ 
7
      2  3 _ 

7
        

3
 

_
 7  

2  10 __ 
7
   2  9 _ 

7
       

16
 

__
 7  

4 _ 
7
    5 _ 

7
   2  5 _ 

7
  

 5 
1 0 0
0 1 0
0 0 1

  3 3 3 3 3 3 3 3 3

As you see from part b) above, the matrix 1 0
0 1

 does not create a new 

value when it is multiplied by another matrix. This is why it is called the 
identity matrix of order 2.

The identity matrix
A diagonal matrix where aij 5 1 is called the identity matrix of order n.

Examples – identity matrices

a) 
a	 b	 c
d	 e	 f
g	 h	 i

 
1 0 0
0 1 0
0 0 1

 5 
a	 b	 c
d	 e	 f
g	 h	 i
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b) 
1 0 0
0 1 0
0 0 1

 
a	 b	 c
d	 e	 f
g	 h	 i

 5 
a	 b	 c
d	 e	 f
g	 h	 i

 

c) 

a	 b	 c	 m
d	 e	 f	 	n
g	 h	 	i	 	p
j	 	k	 	l	 	q

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 5 

a	 b	 c	 m
d	 e	 f	 	n
g	 h	 	i	 	p
j	 	k	 	l	 	q

Sometimes, the identity matrix is denoted by In, where n is the order. So, in 
parts a) and b) above, the identity is I3, and in c) it is I4.

Examples – comparing AB with BA

a) (2 21 3)
2
5
4

5 (11)

  1 3 3 3 3 1 1 3 1

b)
2
5
4

(2 21 3) 5 
4 22  6

10 25 15
8 24 12

 3 3 1 1 3 3 3 3 3

Notice the difference between the products in parts a) and b). Matrix 
multiplication, in general, is not commutative. It is usually not true that 
AB 5 BA.

 Let A 5 
3 6
5 2  and B 5 

22 3
1 5  , then AB 5 

3 6
5 2  

22 3
1 5  5 

0 39
28 25  

but 

	 BA 5 
22 3

1 5   
3 6
5 2  5 

9 26
28 16  ⇒ AB  BA

However, if we let

	 A 5 
3 6
5 2  and B 5 

2 6
5 1  , then AB 5 

3 6
5 2  

2 6
5 1  5 

36 24
20 32  and 

	 BA 5 
2 6
5 1   

3 6
5 2  5 

36 24
20 32  ⇒ AB 5 BA

Thus, in general, AB  BA. However, for some matrices A and B, it may 
happen that AB 5 BA.

Example 2 

Find the average sales in each of the regions (City, Donau, Neubau and 
Moedling), given the following information.

City Donau Neubau Moedling

Nikon 153 98 74 56

Canon 211 120 57 29

Olympus 82 31 12 5

Other 308 242 183 107

The average selling price for each make of camera is as follows:
Nikon E1200, Canon E1100, Olympus E900, Other E600
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Solution
We set up a matrix multiplication in which the individual camera sales are 
multiplied by the corresponding price. Since the rows represent the sales of 
the different makes of camera, create a row matrix of the different prices 
and perform the multiplication.

(1200 1100 900 600)

153  98  74  56
211 120  57  29

82  31  12   5
308 242 183 107

5 (674  300 422 700 272 100 167 800)

So, the regions’ sales are: 

City Donau Neubau Moedling

Sales 674  300 422  700 272  100 167  800

Remember that we are multiplying a 1 3 4 matrix with a 4 3 4 matrix and 
hence we get a 1 3 4 matrix.

 1 Consider the following matrices

A 5
22  x
y 2 1 3

, B 5
x 1 1 23
   4  y 2 2

a) Evaluate each of the following
 (i) A 1 B (ii) 3A – B.

b) Find x and y such that A 5 B.
c) Find x and y such that A 1 B is a diagonal matrix.
d) Find AB and BA.

 2 Solve for the variables.

b)
2 p
3 q

4
5

5
  18
28a)

3 0
4 2

x
y 5

    6
212

 3 The diagram on the right shows the 
major highways connecting some 
European cities: Vienna (V  ), Munich 
(M ), Frankfurt (F ), Stuttgart (S ), 
Zurich (Z ), Milano (L) and Paris (P ).

a) Write the number of direct 
routes between each pair of 
cities into a matrix as started 
below:

V M F S Z L P
V
M
F
S
Z
L
P

0 1 0 0 1 2 0

b) Multiply the matrix from part a) by itself and interpret what it signifies.

Exercise 5.1 and 5.2

Frankfurt

Stuttgart
Munich

Vienna

Milano

Zurich

Paris
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 4 Consider the following matrices

A 5
2  5 1
0 23 2
7  0 21

, B 5 
m 22

3m 21
2 3

, C 5
 x 2 1 5 y
0 2x y 1 1
 2x 1 y x 2 3y 2y 2 x

a) Find A 1 C. b) Find AB. c) Find BA.

d) Solve for x and y if A 5 C. e) Find B 1 C.

f ) Solve for m if 3B 1 2
21 m2

25 2
1 21

5
 7 12
 17 1
 2m 1 2 7

.

 5 Find a, b and c so that the following equation is true:

2 
 a 2 1 b
c 1 2 3 1

 3 21
 0 5 5

 25 5
 8 c 1 9

 6 Find x and y such that:

 2 23
25 7

 x 2 11 1 2 x
 25 x 1 2y 5

1 0
0 1

 7 Find m and n if

 m2 2 1 m 1 2
 5 22

5
3 n 1 1
5 n 2 5

 .

 8 There are two supermarkets in your area. Your shopping list consists of 2 kg of 
tomatoes, 500 g of meat and 3 litres of milk. Prices differ between the different 
shops, and it is difficult to switch between stores to make certain you are paying 
the least amount of money. A better strategy is to check and see where you pay 
less on average! The prices of the different items are given below. Which shop 
should you go to?

Product Price in shop A Price in shop B

Tomato €1.66/kg €1.58/kg

Meat €2.55/100 g €2.6/100  g

Milk €0.90/litre €0.95/litre

 9 Consider the matrices

A 5
2 0

25 1
, B 5

3 21
1 4

 and C 5
23 5

2 7
 .

a) Find A 1 (B 1 C) and (A 1 B) 1 C.
b) Make a conjecture about the addition of 2 × 2 matrices observed in a) above 

and prove it.
c) Find A(BC) and (AB)C.
d) Make a conjecture about the multiplication of 2 × 2 matrices observed in c) 

above and prove it.

10 A company stores and sells air conditioning units, electric heaters and 
humidifiers. Row matrix A represents the number of each unit sold last year, and 
matrix B represents the profit margin for each unit. Find AB and describe what 
the product represents.

A 5 (235 562 117), B 5
€120

€95
€56
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There is a wide range of applications of matrices in solving systems of 
equations. Recall from your algebra that the equation of a straight line can 
take the form
 ax 1 by 5 c

where a, b and c are constants and x and y are variables. We call this 
equation a linear equation in two variables. Similarly, the equation of a 
plane in three-dimensional space has the form

 ax 1 by 1 cz 5 d 

where a, b, c and d are constants. We call this equation a linear equation in 
three variables.

A solution of a linear equation in n variables (in this case two or three) is 
an ordered set of real numbers (x0, y0, z0) so that the equation in question is 
satisfied when these values are substituted for the corresponding variables. 
For example, the equation

 x 1 2y 5 4

is satisfied when x 5 2 and y 5 1. Some other solutions are x 5 24 and y 5 4,
x 5 0 and y 5 2, and x 5 22 and y 5 3.

The set of all solutions of a linear equation is its solution set, and when this 
set is found, the equation is said to have been solved. To describe the entire 
solution set we often use a parametric representation as illustrated in the 
following examples.

Example 3 

Solve the linear equation x 1 2y 5 4.

Solution
To find the solution set of an equation in two variables, we solve for one 
variable in terms of the other. For instance, if we solve for x, we obtain

 x 5 4 2 2y.

Applications to systems5.3

11 Find r and s such that the following equation is true: r A 1 B 5 A, where

A 5
2 3
5 7

and B 5
24  26

s 2 8 214
 .

12 Let A 5
1 1
0 1

 .

a) Find:
 (i) A2 (ii) A3 (iii) A4 (iv) An

Let B 5
3 3
0 3

 .

b) Find:
 (i) B2 (ii) B3 (iii) B4 (iv) Bn
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In this form, y is free, in the sense that it can take on any real value, while 
x is not free, since its value depends on that of y. To represent this solution 
set in general terms, we introduce a third variable, for example, t, called a 
parameter, and by letting y 5 t we represent the solution set as

 x 5 4 2 2t, y 5 t, t is any real number.

Particular solutions can then be obtained by assigning values to the 
parameter t. For instance, t 5 1 yields the solution x 5 2 and y 5 1, and 
t 5 3 yields the solution x 5 22 and y 5 3.

Note that the solution set of a linear equation can be represented 
parametrically in several ways. For instance, in this example, if we solve 
for y in terms of x, the parametric representation would take the following 
form

 x 5 m, y 5 2 2   1 _ 2    m, m is a real number.

Also, by choosing m 5 2, one particular solution would be (x, y) 5 (2, 1), 
and by choosing m 5 22, another particular solution would be (22, 3).

Example 4 

Solve the linear equation 3x 1 2y 2 z 5 3.

Solution
Choosing x and y as the free variables, we solve for z.

	 z 5 3x 1 2y 2 3

Letting x 5 p and y 5 q, we obtain the parametric representation:

	 x 5 p, y 5 q, z 5 3x 1 2y 2 3, p and q any real numbers.

A particular solution (x, y, z) 5 (1, 1, 2).

Parametric representation is very important when we study vectors and 
lines later on in the book.

Systems of linear equations – refresher
A system of k equations in n variables is a set of k linear equations in the 
same n variables. For example,

 2x 1 3y 5 3
 x 2 y 5 4

is a system of two linear equations in two variables, while

 x 2 2y 1 3z	 5 9
 x 2 3y 5 4

is a system with two equations and three variables, and

 x 2 2y 1 3z	 5 9
 x 2 3y 5 4
 2x 2 5y 1 5z	 5 17

is a system with three equations and three variables.
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A solution of a system of equations is an ordered set of numbers x0, y0, 
… which satisfy every equation in the system. For example, (3, 21) is a 
solution of 

 2x 1 3y 5 3
 x 2 y 5 4

Both equations in the system are satisfied when x 5 3 and y 5 21 are 
substituted into the equations. On the contrary, (0, 1) is not a solution of 
the system, even though it satisfies the first equation, as it does not satisfy 
the second.

As you already know, there are several ways of finding solutions to systems. 
In this book, we will consider using matrix methods to solve systems of 
equations.

Taking our example above, notice how we can write the system of 
equations in matrix form:

 2x 1 3y 5 3
 x 2 y 5 4

⇒ 2 3
1 21

x
y

5
3
4

The representation of the system of equations in this way enables us to use 
matrix operations in solving systems. This matrix equation can be written 
as

2 3
1 21

x
y

5
3
4

⇒	AX 5 C

where A is the coefficient matrix, X is the variables’ matrix and C is the 
constants’ matrix. However, to solve this equation, the inverse of a matrix 
has to be defined as the solution of the system in the form 

 X 5 A21C

where A21 is the inverse of the matrix A.

Matrix inverse
To solve the equation 2x 5 6 for x, we need to multiply both sides of the 
equation by   1 _ 2  :

  1 _ 2   3 2x 5   1 _ 2   3 6 ⇒ x 5 3. This is so, because   1 _ 2   3 2 5 2 3   1 _ 2   5 1. 

  1 _ 2   is called the multiplicative inverse of 2. The inverse of a matrix is defined 
in a similar manner and plays a similar role in solving a matrix equation, 
such as AX 5 C.

Inverse of a matrix
A square matrix B is the inverse of a square matrix A if AB 5 BA 5 I, where I is the identity 
matrix.

The notation A21 is used to denote the inverse of a matrix A. Thus, 
B 5 A21. Note that only square matrices can have multiplicative inverses.
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Example – matrix inverse

	 A 5
7 5
4 3

 and B 5
3 25

24 7
 are multiplicative inverses since

	AB 5
7 5
4 3

 
3 25

24 7
5

21 2 20 235 1 35
12 2 12 220 1 21

5
1 0
0 1

	BA 5
3 25

24 7
 

7 5
4 3

5
21 2 20 15 2 15

228 1 28 220 1 21
5

1 0
0 1

Finding the inverse can also be achieved using a GDC.

There are a few methods available for finding the inverse of a 2 3 2 matrix. 
We will be using the following method only, since the other methods are 
beyond the scope of this textbook.

Let A 5 a	 b
c	 d

 and assume A21 5 e	 f
g	 h

 and then solve the following 

matrix equation for e, f, g and h in terms of a, b, c and d.

	a	 b
c	 d

e	 f
g	 h 5

1 0
0 1

⇒ ae 1 bg af 1 bh
	ce 1 dg cf 1 dh

5
1 0
0 1

 

Now we can set up two systems to solve for the required variables, i.e.:

ae 1 bg af 1 bh
ce 1 dg cf 1 dh

5
1 0
0 1

 

 
ae 1 bg 5 1

       
ce 1 dg 5 0

    ⇒  
dae 1 dbg 5 d

		        
bce 1 bdg 5 0

    ⇒ e 5   d	_______ 
ad	2	bc

	 ,	g	 5	  2c	_______ 
ad	2	bc

	 

 
af 1 bh 5 0

       
cf 1 dh 5 1

    ⇒  
daf 1 dbh 5 0

          
bcf 1 bdh 5 b

	    ⇒ f 5   2b	_______ 
ad	2	bc

	 ,	h	5	  a	_______ 
ad	2	bc

	 

Therefore, A21 5 
  

d
	_______
 ad	2	bc	 	   

2b
	_______
 ad	2	bc	 

  
2c
	_______
 ad	2	bc	 	   

a
	_______
 ad	2	bc	 
 or A21 5   1 _______ 

ad 2 bc
	   d	 2b

2c	 a
 .

Example 5 

Find the inverse of  4 7
3 5

 .

[A]-1

[A]-1[A]

[[3  -5]
 [-4 7 ]]

[[1 0]
 [0 1]]
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Solution
Here a 5 4, b 5 7, c 5 3 and d 5 5, so ad 2 bc 5 21. Thus,

A21 5   1 _______ 
ad 2 bc

	 
d	 2b

2c	 a  5   1 ___ 
21

  
5 27

23 4
5

25 7
3 24

 .

The determinant

The number ad 2 bc is called the determinant of the 2 3 2 matrix A 5 
a b
c d  .

The notation we will use for this number is det A, so det A 5 ad 2 bc.

The determinant plays an important role in determining whether a matrix 
has an inverse or not.

If the determinant is zero, i.e. ad 2 bc 5 0, the matrix does not have an inverse. If a 
matrix has no inverse, it is called a singular matrix; if it is invertible, it is called non-
singular.

Example 6 

Solve the system of equations.

 2x 1 3y 5 3
 x 2 y 5 4

Solution
In matrix form, the system can be written as

2 3
1 21

x
y

5
3
4

	⇒ x
y

5
2 3
1 21

21 3
4

⇒ x
y

5   1 ___ 
25  

21 23
21 2

3
4

⇒ x
y

5   1 ___ 
25  

215
5

5
3

21

[A]

[A]-1
[[4 7]
 [3 5]]

[[-5 7]
 [3 -4]]

[C][A]-1
[[3 ]
 [-1]]
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Solving systems of equations in three variables follows similar procedures. 
However, finding the inverse of a 3 3 3 matrix will be delegated to the 
GDC at this level. As in the case of a 2 3 2 matrix, the existence of an 
inverse for a 3 3 3 matrix depends on the value of its determinant.

The determinant of a 3 3 3 matrix A	can be achieved in one of two ways:

1. A 5

a	 b	 c
d	 e	 f
g	 h	 i

 ⇒ det A 5 a(ei 2 f	h) 2b(di 2 f	g) 1c(dh 2 eg)  

 For example, if 

 A 5

5 1 24
2 23 25
7 2 26

 ⇒ det A 5 5(18 1 10) 21(212 1 35) 24(4 1 21) 5 17

2. A practical method is to use a ‘special’ set up as follows:

a

d

g

det A �

b

e

h

c

f

i

a

d

g

b

e

h

 5 aei 1 bfg 1 cdh 2 gec 2 hfa 2 idb

This is done by ‘copying’ the first two columns and adding them to the 
end of the matrix, multiplying down the main diagonals and adding the 
products, and then multiplying up the second diagonals and subtracting 
them from the previous product, as shown. In the example above:

5

2

7

1

�3 

2

�4

�5 

�6 

5

2

7

1

�3 

2

5 5(23)(26) 11(25)(7) 1 (24)    2    2 2 7(23)(24) 22(25)    5 2(26)    2    1

5 90 2 35 216 2 84 1 50 1 12

5 152 2 135

5 17

In fact, this arrangement is simply a reordering of the calculations 
involved in the previous method.

Example 7 

Solve the system of equations.

 5x 1 y 2 4z 5 5

 2x 2 3y 2 5z 5 2

 7x 1 2y 2 6z 5 5

[A]
[[5 1  -4]
 [2 -3 -5]
 [7 2  -6]]

det([A])
17
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Solution

We write this system in matrix form:

5 1 24
2 23 25
7 2 26

x
y
z	

5
5
2
5

 

Since det A  0, we can find the solution in the same way we did for the 
2 3 2 matrix, i.e.

5 1 24
2 23 25
7 2 26

x
y
z	

5
5
2
5

⇒
x
y
z	

5
5 1 24
2 23 25
7 2 26

 21
5
2
5

Using a GDC:

 

To check your work, you can store the answer matrix as D and then 
substitute the values into the system:

5 1 24
2 23 25
7 2 26

3
22

2	
5

15 2 2 2  8
 6 1 6 2 10
21 2 4 2 12

5
5
2
5

 , or

 

 1 Consider the matrix M which satisfies the matrix equation 

3 7
24 29

 M 5
2 1
3 5

 .

a) Write out the inverse of matrix  3 7
24 29

 .

b) Hence, write M as a product of two matrices.

c) Evaluate M.

d) Now consider the equation containing the matrix N:

N
3 7

24 29
5

2 1
3 5

 

 (i) Write N as a product of two matrices.
 (ii) Evaluate N.

e) Write a short paragraph describing your work on this problem.

Exercise 5.3

[[3 ]
 [-2]
 [2 ]]

[C][A]-1

[[5]
 [2]
 [5]]

[D][A]
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Matrix Algebra5

 2 Find the matrix E in the following equation:
1 3
3 4

5
1 0
3 1

E
1 0
0 25

 

 3 a) Prove that the matrix A 5 
2 23 1
1 1 23
3 22 23

 should have an inverse.

b) Write out A21.

c) Hence, solve the system of equations:
  2x 2 3y 1 z 5 4.2
  x 1 y 2 3z 5 21.1
  3x 2 2y 2 3z 5 2.9

 4 Find the inverse for each matrix.

a) A 5
   
√

__
 3   ___ 2   2   1 __ 2  

  1 __ 2      
√

__
 3   ___ 2  

b) B 5
a   1

a 1 2   3 __ a   1 1

 5 For what values of x is the following matrix singular?

A 5
 x 1 1  3
3x 2 1 x 1 3

 6 Find n such that  
 2 21 4
 2n 2 0
 2 1 4n

  is the inverse of  
 22 23 4
 1 2 22
 3n 2 25n

  .

 7 Consider the two matrices A 5  4 2
0 23

 and B 5  2 1
3 5

 .

a) Find X such that XA 5 B.
b) Find Y such that AY 5 B.
c) Is X 5 Y? Explain.

 8 Consider the two matrices

 P 5 
 2 0 21
 3 5 4
 1 0 21

  and Q 5 

 3 21 1
 4 0 0
 1 2 21

 .

a) Find PQ and QP.
b) Find P21, Q21, P21Q21, Q21P21 (PQ)21, and (QP)21.
c) Write a few sentences about your observations in parts a) and b).

  1  Solve each system of equations using matrix methods.
	 	   x 1 y 1 3z 5 3	 	   x 1 2y 2 z  5 1
	 a)    x 1 y 1 6z 5 3  b)    y 2 2z  5 23
      x 1 2y 1 4z 5 7      3x 2 y 1 2z  5 6

Practice questions
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  2  For what value(s) of a, if any, is each of the following matrices singular? For all other 
values, find the inverse.

a)    a  a
 2a  a

  b)   3  a
 2a  a2

c)   e 3a  e 2a

 e 22a  ea
  d)   sin a  2cos a

 cos a  sin a

  3  If A 5   3x  x
  2  x 2 1

 and det A 5 2, find the possible values of x.

  4  Let A 5 
 k  3
 3  21

, where k    Z.

a)  Find A2 in terms of k.

b)	 If A2 is equal to 
 13  3
 3  10

 , find the value of k.

c)	 Using the value of k found in b), find A21 and hence solve the system of equations:
   2x 1 3y 5 13
    3x 2 y 5 3

  5  M and N are two 2 3 2 matrices. M 5 
 2  1
3  5

 and MN 5 
 3  3
8  8

 . Find N.

  6  I 5 
 1  0
0  1

 is the identity matrix for 2 3 2 matrix multiplication. Consider matrix 

  A 5   4  21
3  5

 . Find the possible values of the real number k such that the matrix 

  (A – kI) is singular.

  7  Recall that for two matrices A and B to be inverses of each other AB 5 I, where I is the 
identity matrix.
a)  Find the values of m and n so that matrices A and B are inverses of each other:

  A 5 
  1  21  m

2  23  2
21  2  22

 ; B 5 
 2  0  1
2  n  0
1  21  21

 

b)  Hence, for the values of m and n found above, solve the system of equations:
	 	 	 x 2 y 1 z 5 4
	     2x 2 3y 1 2z 5 9
      2x 1 2y 2 2z 5 27

  8  Find all values of m so that the following system is inconsistent.
  (m 2 4)x 1 3y 5 7
  22x 1 (m 1 1)y 5 12

  9  Matrices A and B are given such that AB	5 BA. Find the values of m and n.

A 5 
 m  3
 4  2

 , B 5 
 2  n
8  4
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Matrix Algebra5

10  Find x such that the matrix 
  1  22  2x
 1 1 2x  22  0
 21  2  1

  is singular.

11  Consider the matrices A, B and C which are given by

A 5 
 2  1
7  4

 , B 5 
 m  n
p  q

  and C 5 
  2  9
23  8

 .

  Find the values of m, n, p and q such that AB 1 B 5 C.

12  Consider the matrix M 5 
 6a 1 1  2
  3a  1

 , a  0.

a)	 Find M21.
b)  Additionally, you are given a 5 1, N 5 

  6  5
22  3

  and P 5 
 3  21
2  7

 .

  Solve the equation XM 1 N 5 P for X.

13  Consider the matrix M 5 
  1  3       a

2  2       1
2a  2   22

 .

a)	 Find a such that det M 5 7.

b)  Write down the inverse of M for the values of a found above.

c)  Hence, solve the system of equations:
	 	 	 x 1 3y 2 z  5 7
	    2x 1 2y 1 z  5 35
      x 1 2y 2 2z  5 14

14  If A 5 
  2x  3
 24x  x  and det A 5 14, find x.

15  Let M 5 
 a  2
 2  21 , where a  Z.

a)	 Find M 2 in terms of a.

b)	 If M 2 is equal to 
  5  24
 24  5

 , find the value of a.

  Using this value of a, find M 21 and hence solve the system of equations:
  2x 1 2y 5 23
  2x 2 y 5 3

16  Two matrices are given, where A 5 
5  2
2  0  and BA 5 

11  2
44  8  . Find B.

17  The matrices A, B and X are given, where

A 5
3  1

25  6
, B 5

4  8
0  23

 and X 5
a  b
c  d

 , with a, b, c, d    R.

  Find the values of a, b, c and d such that AX 1 X 5 B.
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18  A 5
5  22
7  1

 is a 2 3 2 matrix.

a)	 Write out A 21.
b)	 (i)  If XA 1 B 5 B, where B, C and X are 2 3 2 matrices, express X in terms of 

A 21, B and C.

  (ii)  Find X if B 5 
6  7
5  22

 and C 5 
25  0
28  7

 .

19  Given A 5
a  b
c  1

 and B 5
1  2
d  c

 ,

a)	 write out A 1 B
b)	 find AB.

20  a)	 Write out the inverse of the matrix A 5 
1  23  1
2  2  21

 .

b)	 Hence, solve the system of simultaneous equations:
  x 2 3y 1 z 5 1
  2x 1 2y 2 z 5 2
  x 2 5y 1 3z 5 3

21  The two matrices C and D are given, where 

C 5
22  4

1  7
 and D 5

5  2
21  a

. 

  The matrix Q is given such that 3Q 5 2C – D.
a)	 Find Q.
b)	 Find CD.
c)	 Find D 21.

Questions 14–18, 20–21: © International Baccalaureate Organization



164

The word trigonometry comes from two Greek words, trigonon and 
metron, meaning ‘triangle measurement’. Trigonometry developed out of 
the use and study of triangles, in surveying, navigation, architecture and 
astronomy, to find relationships between lengths of sides of triangles and 
measurement of angles. As a result, trigonometric functions were initially 
defined as functions of angles – that is, functions with angle measurements 
as their domains. With the development of calculus in the seventeenth 
century and the growth of knowledge in the sciences, the application 
of trigonometric functions grew to include a wide variety of periodic 
(repetitive) phenomena such as wave motion, vibrating strings, oscillating 
pendulums, alternating electrical current and biological cycles. These 
applications of trigonometric functions require their domains to be sets of 
real numbers without reference to angles or triangles. Hence, trigonometry 
can be approached from two different perspectives – functions of angles, 
or functions of real numbers. The first perspective is the focus of the next 
chapter where trigonometric functions will be defined in terms of the 
ratios of sides of a right triangle. The second perspective is the focus of 
this chapter where trigonometric functions will be defined in terms of a 

Introduction

Assessment statements

3.1	 The	circle:	radian	measure	of	angles;	length	of	an	arc;	area	of	a	sector.
3.2	 Definition	of	cos	u and	sin	u	in	terms	of	the	unit	circle.

	 Definition	of	tan	u	as			sin	u _____	
cos	u

 		.

	 Exact	values	of	trigonometric	ratios	of	0,			p __	
6

		,			p __	
4

		,			p __	
3

		,			p __	
2

			and	their	multiples.

3.3	 Pythagorean	identity	cos2	u	1	sin2	u	5	1.
	 Double	angle	indentities	for	sine	and	cosine.
	 The	relationship	between	trigonometric	ratios.

3.4	 The	circular	functions	sin	x,	cos	x	and	tan	x:	their	domains	and	ranges;	
amplitude;	their	periodic	nature;	and	their	graphs.

	 Composite	functions	of	the	form	f	(x)	5	a sin(b(x	1	c))	1	d.
	 Transformations	of	the	graphs	of	trigonometric	functions.

3.5	 Solution	of	trigonometric	functions	in	a	finite	interval,	both	graphically	
and	analytically.

	 Equations	leading	to	quadratic	equations	in,	sin	x,	cos	x	or	tan	x

6 Trigonometric Functions 
and Equations
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real number that is the length of an arc along the unit circle. While it is 
possible to define trigonometric functions in these two different ways, they 
assign the same value (interpreted as an angle, an arc length, or simply a 
real number) to a particular real number. Although this chapter will not 
refer much to triangles, it seems fitting to begin by looking at angles and 
arc lengths – geometric objects indispensable to the two different ways of 
viewing trigonometry.

Angles
An angle in a plane is made by rotating a ray about its endpoint, called the 
vertex of the angle. The starting position of the ray is called the initial side 
and the position of the ray after rotation is called the terminal side of the 
angle (Figure 6.1). An angle having its vertex at the origin and its initial side 
lying on the positive x-axis is said to be in standard position (Figure 6.2). A 
positive angle is produced when a ray is rotated in an anticlockwise 
direction, and a negative angle when a ray is rotated in a clockwise 
direction. Two angles in standard position that have the same terminal sides 
– regardless of the direction or number of rotations – are called coterminal 
angles. Greek letters are often used to represent angles, and the direction of 
rotation is indicated by an arc with an arrow at its endpoint. The x- and 
y-axes divide the coordinate plane into four quadrants (numbered with 
Roman numerals). Figure 6.3 shows a positive angle a (alpha) and a 
negative angle b (beta) that are coterminal in quadrant III. 

Measuring angles: degree measure and radian 
measure
Perhaps the most natural unit for measuring large angles is the revolution. 
For example, most cars have an instrument (a tachometer) that indicates the 
number of revolutions per minute (rpm) at which the engine is operating. 
However, to measure smaller angles, we need a smaller unit. A common unit 

Angles, circles, arcs and sectors6.1

terminal
side

initial
side

x

y

Standard position of an angle.

0

Figure 6.2  Standard position of 
an angle.

α

II I

III IV
β

x

y

Coterminal angles.

0

Figure 6.3  Coterminal angles.

terminal
side

initial
side

vertex

θ

Figure 6.1
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Trigonometric Functions and Equations6

for measuring angles is the degree, of which there are 360 in one revolution. 
Hence, the unit of one degree (1°) is defined to be 1/360 of one anticlockwise 
revolution about the vertex.

There is another method of measuring angles that is more natural. Instead 
of dividing a full revolution into an arbitrary number of equal divisions 
(e.g. 360), consider an angle that has its vertex at the centre of a circle 
(a central angle) and subtends (or intercepts) a part of the circle, called 
an arc of the circle. Figure 6.4 shows three circles with radii of different 
lengths (r1 , r2 , r3) and the same central angle u (theta) subtending 
(intercepting) the arc lengths s1, s2 and s3. Regardless of the size of the circle 
(i.e. length of the radius), the ratio of arc length (s) to radius (r) for a

given circle will be constant. For the angle u in Figure 6.4,   
s1 __ r1

   5   
s2 __ r2

   5   
s3 __ r3

  . 

Because this ratio is an arc length divided by another length (radius), it is 
just an ordinary real number and has no units.

Minor and major arcs
If a central angle is less than 180°, the subtended arc is referred to as a minor arc. If a 
central angle is greater than 180°, the subtended arc is referred to as a major arc.

The ratio   s _ r   indicates how many radius lengths, r, fit into the length of the 
arc s. For example, if   s _ r   5 2, the length of s is equal to two radius lengths. 

The convention of having 360 degrees in one revolution can be traced back around 
4000 years to ancient Babylonian civilizations. The number system most widely used 
today is a base 10, or decimal, system. Babylonian mathematics used a base 60, or 
sexagesimal, number system. Although 60 may seem to be an awkward number to 
have as a base, it does have certain advantages. It is the smallest number that has 2, 
3, 4, 5 and 6 as factors – and it also has factors of 10, 12, 15, 20 and 30. But why 360 
degrees? We’re not certain but it may have to do with the Babylonians assigning 60 
divisions to each angle in an equilateral triangle and exactly six equilateral triangles 
can be arranged around a single point. That makes 6 3 60 5 360 equal divisions in 
one full revolution. There are few numbers as small as 360 that have so many different 
factors. This makes the degree a useful unit for dividing one revolution into an equal 
number of parts. 120 degrees is   1 _ 3   of a revolution, 90 degrees is   1 _ 4   of a revolution, 60 
degrees is   1 _ 6  , 45 degrees is   1 _ 8  , and so on.

Figure 6.4 Different circles 
with the same central angle u 
subtending different arcs, but the 
ratio of arc length to radius remains 
constant.

θ

s1

r1 θ

s2

r2

s3

r3

θ
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When the measure of an angle 
is, for example, 5 radians, 
the word ‘radians’ does not 
indicate units (as when 
writing centimetres, seconds 
or degrees) but indicates the 
method of angle measurement. 
If the measure of an angle 
is in units of degrees, we 
must indicate this by word or 
symbol. For example,  
u 5 5 degrees or u 5 5°. 
However, when radian measure 
is used it is customary to 
write no units or symbol. For 
example, a central angle u 
that subtends an arc equal to 
five radius lengths (radians) is 
simply given as u 5 5.

This accounts for the name radian and leads to the following definition.

Radian measure
One radian is the measure of a central angle u of a circle that subtends an arc s of the 
circle that is exactly the same length as the radius r of the circle. That is, when u 5 1 
radian, arc length 5 radius.

The unit circle
When an angle is measured in radians it makes sense to draw it, or 
visualize it, so that it is in standard position. It follows that the angle will 
be a central angle of a circle whose centre is at the origin, as shown above. 
As Figure 6.4 illustrated, it makes no difference what size circle is used. 
The most practical circle to use is the circle with a radius of one unit so 
the radian measure of an angle will simply be equal to the length of the 
subtended arc.

Radian measure: u 5   s _ r     If r 5 1, then u 5   s __ 
1

   5 s.

The circle with a radius of one unit and centre at the origin (0, 0) is called 
the unit circle (Figure 6.5). The equation for the unit circle is x 2 1 y 2 5 1. 
Because the circumference of a circle with radius r is 2pr, a central angle 
of one full anticlockwise revolution (360°) subtends an arc on the unit 
circle equal to 2p units. Hence, if an angle has a degree measure of 360°, 
its radian measure is exactly 2p. It follows that an angle of 180° has a 
radian measure of exactly p. This fact can be used to convert between 
degree measure and radian measure, and vice versa.

Conversion between degrees and radians

Because 180° 5 p radians, 1° 5    p ____ 180   radians, and 1 radian 5   180° ____ p   . An angle with a radian 

measure of 1 has a degree measure of approximately 57.3° (to 3 significant figures).

Example 1 

The angles of 30° and 45°, and their multiples, are often encountered in 
trigonometry. Convert 30° and 45° to radian measure and sketch the 
corresponding arc on the unit circle. Use these results to convert 60° and 
90° to radian measure.

r � 1

(0, 1)

(0, �1)

(1, 0)(�1, 0) x

y

0

Figure 6.5  The unit circle.

θ

r

r

s

s � r

θ � 1 radian

x

y

0
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Solution

(Note that the ‘degree’ units cancel.)

30° 5 30° (   p ____ 
180°

   )  5   30° ____ 
180°

   p 5   p __ 
6

  

 

45° 5 45° (   p ____ 
180°

   )  5   45° ____ 
180°

   p 5   p __ 4  

 

Since 60° 5 2(30°) and 30° 5   p __ 
6

  , then 60° 5 2 (   p __ 
6

   )  5   p __ 
3

  . Similarly, 

90° 5 2(45°) and 45° 5   p __ 4  , so 90° 5 2 (   p __ 4   )  5   p __ 
2

  . 

Example 2 

a) Convert the following radian measures to degrees. Express exactly, if 
possible. Otherwise, express accurate to 3 significant figures.

 (i)   4p ___ 
3

   (ii) 2   3p ___ 
2

   (iii) 5 (iv) 1.38

b) Convert the following degree measures to radians. Express exactly, if 
possible. Otherwise, express accurate to 3 significant figures.

 (i) 135° (ii) 2150° (iii) 175° (iv) 10°

Solution

a) (i)   4p ___ 
3

   5 4 (   p __ 
3

   )  5 4(60°) 5 240°

 (ii) 2   3p ___ 
2

   5 2   3 __ 
2

  (p) 5 2   3 __ 
2

  (180°) 5 2270°

 (iii) 5 (   180° ____ p    )  < 286.479° < 286°

 (iv) 1.38 (   180° ____ p    )  < 79.068° < 79.1°

 Hint:  All GDCs will have a 
degree mode and a radian mode. 
Before doing any calculations with 
angles on your GDC, be certain 
that the mode setting for angle 
measurement is set correctly. 
Although you may be more familiar 
with degree measure, as you 
progress further in mathematics 
– and especially in calculus – radian 
measure is far more useful.

 Hint:  It is very helpful to be able 
to quickly recall the results from 
Example 1:

30° 5   p __ 6  , 45° 5   p __ 4  , 60° 5   p __ 3   

and 90° 5   p __ 2  . Of course, not all 

angles are multiples of 30° or 45° 
when expressed in degrees, and not 
all angles are multiples of   p __ 6   or    p __ 4   
when expressed in radians.
However, these ‘special’ angles 
often appear in problems and 
applications. Knowing these four 
facts can help you to quickly 
convert mentally between degrees 
and radians for many common 
angles. For example, to convert 
225° to radians, apply the fact that 

225° 5 5(45°). Since 45° 5   p __ 4  , then 

225° 5 5(45°) 5 5 (   p __ 4   )  5   5p ___ 4   . And 

another example, convert   11p ____ 6    to 

degrees:   11p ____ 6     5 11 (   p __ 6   )  

5 11(30°) 5 330°.

(0, 1)

30° �

(0, �1)

(1, 0)(�1, 0) x

y

π
6

π
6

0

(0, 1)

(0, �1)

(1, 0)

45° �

(�1, 0) x

y

π
4

π
4

0
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b) (i) 135° 5 3(45°) 5 3 (   p __ 4   )  5   3p ___ 4  

 (ii) 2150° 5 25(30°) 5 25 (   p __ 
6

   )  5 2   5p ___ 
6

  

 (iii) 175° (   p ____ 
180°

   )  < 3.0543 < 3.05

 (iv) 10° (   p ____ 
180°

   )  < 0.174  53 < 0.175

Because 2p is approximately 6.28 (3 significant figures), there are a little 
more than six radius lengths in one revolution, as shown in Figure 6.6.

Arc length
For any angle u, its radian measure is given by u 5   s _ r   . Simple rearrangement 
of this formula leads to another formula for computing arc length.

Arc length
For a circle of radius r, a central angle u subtends an arc of the circle of length s given by

s 5 ru
where u is in radian measure.

Example 3 

A circle has a radius of 10  cm. Find the length of the arc of the circle 
subtended by a central angle of 150°.

Solution

To use the formula s 5 ru, we must first convert 150° 
to radian measure.

150° 5 150° (   p ____ 
180°

   )  5   150p _____ 
180

   5   5p ___ 
6

  

Given that the radius, r, is 10  cm, substituting into 
the formula gives 

s 5 ru ⇒ s 5 10  (   5p ___ 
6

   )  5   25p ____ 
3

   < 26.179  94

The length of the arc is approximately 26.18  cm (4 significant figures). 

Note that the units of the product ru are the same as the units of r because 
in radian measure u has no units.

150°

r � 10

s

Figure 6.6

6 radians

5 radians
4 radians

3 radians

2 radians 1 radian

r

r

r

r

r

r

x

y

0
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Example 4 

The diagram shows a circle of centre O with 
radius r 5 6  cm. Angle AOB subtends the minor 
arc AB such that the length of the arc is 10  cm. 
Find the measure of angle AOB in degrees to 3 
significant figures.

Solution

From the arc length formula, s 5 ru, we can state that 

u 5   s _ r   . Remember that the result for u will be in radian measure. Therefore,

angle AOB 5   10 ___ 
6

   5   5 __ 
3

   or 1. 
_

 6  radians. Now, we convert to degrees:   5 __ 
3

   (   180° ____ p    )  
< 95.492  97°. The degree measure of angle AOB is approximately 95.5°.

Geometry of a circle
It is helpful to recall some fundamental properties of a circle (Figure 6.7).

Sector of a circle
A sector of a circle is the region bounded by an arc of the circle and the 
two sides of a central angle (Figure 6.8). The ratio of the area of a sector 
to the area of the circle (pr 2) is equal to the ratio of the length of the 
subtended arc to the circumference of the circle (2pr). If s is the arc length 
and A is the area of the sector, we can write the following proportion:

  A ____ 
pr 2

   5   s ____ 
2pr

  . Solving for A gives A 5   pr 2s ____ 
2pr

   5   1 __ 
2

  rs. From the formula for 

arc length we have s 5 r u, with u the radian measure of the central angle. 

Substituting r u for s gives the area of a sector to be A 5   1 __ 
2

  rs 5   1 __ 
2

  r(r u) 5   1 __ 
2

  r 2u.

This result makes sense because, if the sector is the entire circle, u 5 2p 

and area A 5   1 __ 
2

  r 2u 5   1 __ 
2

  r 2(2p) 5 pr 2, which is the formula for the area of a 
circle.

The angle inscribed in a
semicircle is a right angle.

The line segment from the centre
perpendicular to a chord also
bisects the chord.

A tangent to a circle is perpendicular to the
radius drawn to the point of tangency.

If two tangents share an external point,
the distances from the external point
to the point of tangency are equal.

Figure 6.7

θ
A

s

r

Figure 6.8 Sector of a circle.
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Area of a sector
In a circle of radius r, the area of a sector with a central angle u measured in radians is

A 5   1 __ 2  r 2u

Example 5 

A circle of radius 9  cm has a sector whose central angle has radian measure

  2p ___ 
3

  . Find the exact values of the following: a) the length of the arc subtended 

by the central angle, and b) the area of the sector.

Solution

a) s 5 r u ⇒ s 5 9 (   2p ___ 
3

   )  5 6p

The length of the arc is exactly 6p  cm.

b) A 5   1 __ 
2

  r 2u ⇒ A 5   1 __ 
2

  (9)2 (   2p ___ 
3

   )  5 27p 

 The area of the sector is exactly 27p  cm2. 

9 cm

2π
3  Hint:  The formula for arc length, 

s 5 r u, and the formula for area of a 

sector, A 5   1 __ 2  r 2 u, are true only when 
u is in radians.

In questions 1–9, find the exact radian measure of the angle given in degree measure.

 1  60°    2  150°    3  2270°

  4  36°    5  135°    6  50°

  7  245°    8  400°    9  2480°

In questions 10–18, find the degree measure of the angle given in radian measure. If 
possible, express exactly. Otherwise, express accurate to 3 significant figures.

10    3p ___ 4     11  2   7p ___ 2     12  2

13    7p ___ 6     14  22.5  15    5p ___ 3   

16    p ___ 12    17  1.57  18    8p ___ 3   

In questions 19–24, the measure of an angle in standard position is given. Find two 
angles – one positive and one negative – that are coterminal with the given angle. If 
no units are given, assume the angle is in radian measure.

19  30°  20    3p ___ 2     21  175°

22  2   p __ 6    23    5p ___ 3     24  3.25

In questions 25 and 26, find the length of the arc s in the figure.

25    26 

Exercise 6.1

r � 6 cm

s

120°

r � 12 cm

s

70°
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Several important functions can be described by mapping the coordinates 
of points on the real number line onto the points of the unit circle. Recall 
from the previous section that the unit circle has its centre at (0, 0), it has a 
radius of one unit and its equation is x 2 1 y 2 5 1. 

A wrapping function: the real number line and 
the unit circle
Suppose that the real number line is tangent to the unit circle at the point 
(1, 0) – and that zero on the number line matches with (1, 0) on the circle, 
as shown in Figure 6.9. Because of the properties of circles, the real number 
line in this position will be perpendicular to the x-axis. The scales on the 
number line and the  x- and y-axes need to be the same. Imagine that the 
real number line is flexible like a string and can wrap around the circle, 
with zero on the number line remaining fixed to the point (1, 0) on the 

The unit circle and trigonometric 
functions

6.2

27  Find the angle u in the figure in both 
radian measure and degree measure.

 

28  Find the radius r of the circle in the figure.

In questions 29 and 30, find the area of the sector in each figure.
29    30

     

31  An arc of length 60  cm subtends a central angle a in a circle of radius 20  cm. 
Find the measure of a in both degrees and radians, approximate to 3 significant 
figures.

32  Find the length of an arc that subtends a central angle with radian measure of 2 
in a circle of radius 16  cm.

33  The area of a sector of a circle with a central angle of 60° is 24  cm2. Find the 
radius of the circle.

100°

r � 4 cm

r � 10 cm

5π
6

r

15

2π
3

θ

12 8
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unit circle. When the top portion of the string moves along the circle, the 
wrapping is anticlockwise (t . 0), and when the bottom portion of the 
string moves along the circle, the wrapping is clockwise (t , 0). As the 
string wraps around the unit circle, each real number t on the string is 
mapped onto a point (x, y) on the circle. Hence, the real number line from 
0 to t makes an arc of length t starting on the circle at (1, 0) and ending at 
the point (x, y) on the circle. For example, since the circumference of the 
unit circle is 2p, the number t 5 2p will be wrapped anticlockwise around 
the circle to the point (1, 0). Similarly, the number t 5 p will be wrapped 
anticlockwise halfway around the circle to the point (21, 0) on the circle. 

And the number t 5 2   p __ 
2

   will be wrapped clockwise one-quarter of the 

way around the circle to the point (0, 21) on the circle. Note that each 
number t on the real number line is mapped (corresponds) to exactly one 
point on the unit circle, thereby satisfying the definition of a function 
(Section 2.1) – consequently this mapping is called a wrapping function. 

Before we leave our mental picture of the string (representing the real 
number line) wrapping around the unit circle, consider any pair of points 
on the string that are exactly 2p units from each other. Let these two points 
represent the real numbers t1 and t1 1 2p. Because the circumference of 
the unit circle is 2p, these two numbers will be mapped to the same point 
on the unit circle. Furthermore, consider the infinite number of points 
whose distance from t1 is any integer multiple of 2p, i.e. t1 1 k    2p, k    Z, 
and again all of these numbers will be mapped to the same point on the 
unit circle. Consequently, the wrapping function is not a one-to-one 
function as defined in Section 2.3. Output for the function (points on the 
unit circle) are unchanged by the addition of any integer multiple of 2p to 
any input value (a real number). Functions that behave in such a repetitive 
(or cyclic) manner are called periodic.

Definition of a periodic function
A function f such that f (x) 5 f (x 1 p) is a periodic function. If p is the least positive 
constant for which f (x) 5 f (x 1 p) is true, p is called the period of the function.

Trigonometric functions
From our discussions about functions in Chapter 2, it is customary for a 
function to have a domain (input) and range (output) that are sets having 
individual numbers as elements. We use the individual coordinates x and 
y of the points on the unit circle to define a certain set of functions called 
trigonometric functions. For this course, we define three trigonometric 
functions: the sine function, the cosine function and the tangent function. 
The names of these functions are often abbreviated in writing (but not 
speaking) as sin, cos and tan, respectively. When the real number t is 
wrapped to a point (x, y) on the unit circle, the value of the y-coordinate is 
assigned to the sine function; the x-coordinate is assigned to the cosine 

function; and the ratio of the two coordinates   
y
 __ x   is assigned to the tangent 

function.

x
t

t

t

y

�1

�2

�3

1

(1, 0)

(x, y)

2

3

0

Figure 6.9

We are surrounded by periodic 
functions. A few examples 
include: the average daily 
temperature variation during 
the year; sunrise and the day 
of the year; animal populations 
over many years; the height of 
tides and the position of the 
Moon; and your height above 
ground when riding a Ferris 
wheel and the rotation of the 
wheel. 
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The trigonometric functions: sine, cosine and tangent
Let t be any real number and (x, y) a point on the unit circle to which t is mapped. Then 
the function definitions are:

sin  t 5 y      cos  t 5 x      tan  t 5   sin  t ____ cos  t   5   
y
 __ x  , x  0

Signs of the trigonometric functions depend on the quadrant where the arc t 
terminates.

Because the definitions for the sine, cosine and tangent functions given here 
do not refer to triangles or angles, but rather to a real number representing 
an arc length on the unit circle, the name circular functions is also given 
to them. In fact, from this chapter’s perspective that these functions are 
functions of real numbers rather than functions of angles, ‘circular’ is a more 
appropriate adjective than ‘trigonometric’. Nevertheless, trigonometric is 
the more common label and will be used throughout the book.

Let’s use the definitions for these three trigonometric, or circular, functions 
to evaluate them for some ‘easy’ values of t. 

Example 6 

Evaluate the sine, cosine and tangent functions for the following values of t.

a) t 5 0 b) t 5   p __ 
2

   c) t 5 p

d) t 5   3p ___ 
2

   e) t 5 2p

Solution

Evaluating the sin, cos and tan functions for any value of t involves finding 
the coordinates of the point on the unit circle where the arc of length t will 
‘wrap to’ (or terminate), starting at the point (1, 0). It is useful to remember 
that an arc of length p is equal to one-half of the circumference of the unit 
circle. All of the values for t in this example are positive, so the arc length 
will wrap along the unit circle in an anticlockwise direction.

a) An arc of length t 5 0 has no length so it ‘terminates’ at the point (1, 0). 
Therefore, by definition

 sin  0 5 y 5 0

 cos  0 5 x 5 1

 tan  0 5   
y
 __ x   5   0 __ 

1
   5 0

 Hint:  When sine, cosine and 
tangent are defined as circular 
functions based on the unit 
circle, radian measure is used. 
The values for the domain of the 
sine and cosine functions are real 
numbers that are arc lengths on 
the unit circle. As we know from the 
previous section, the arc length on 
the unit circle subtends an angle 
in standard position, whose radian 
measure is equivalent to the arc 
length (see definition box above).

θ

x

y

sine�
cosine�
tangent�

On the unit circle: x � cos t, y � sin t.

sine�
cosine�
tangent�

sine�
cosine�
tangent�

(cos t, sin t)

(1, 0)

t

sine�
cosine�
tangent�

II I

III IV

0
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b) An arc of length t 5   p __ 
2

   is equivalent to 
one-quarter of the circumference of 

 the unit circle (Figure 6.10), so it 
terminates at the point (0, 1). By 
definition:

 sin    p __ 
2

   5 y 5 1

 cos    p __ 
2

   5 x 5 0

 tan    p __ 
2

   5   
y
 __ x   5   1 __ 

0
   which is undefined

c) An arc of length t 5 p is equivalent 
to one-half of the circumference of 
the unit circle (Figure 6.11), so it 
terminates at the point (21, 0). By 
definition:

 sin  p 5 y 5 0

 cos  p 5 x 5 21

 tan  p 5   
y
 __ x   5   0 ___ 

21
   5 0

d) An arc of length t 5   3p ___ 
2

   is 
equivalent to three-quarters of the 
circumference of the unit circle 
(Figure 6.12), so it terminates at the 
point (0, 21). 
By definition:

 sin   3p ___ 
2

   5 y 5 21

 cos   3p ___ 
2

   5 x 5 0

 tan   3p ___ 
2

   5   
y
 __ x   5   21 ___ 

0
   which is undefined

e) An arc of length t 5 2p is 
equivalent to the circumference of 
the unit circle (Figure 6.13), so it 
terminates at the point (1, 0). By 
definition:

 sin  2p 5 y 5 0

 cos  2p 5 x 5 1

 tan  2p 5   
y
 __ x   5   0 __ 

1
   5 0

x

y

(1, 0)

(0, 1)

t � π
2

π
2

0

x

y

(1, 0)(�1, 0)

t � π

π

0

x

y

(1, 0)

(0, �1)

t � 3π
2

3π
2

0

x

y

(1, 0)

t � 2π

2π

0

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13
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Domain and range of trigonometric functions
Because every real number t corresponds to exactly one point on the unit 
circle, the domain for both the sine function and the cosine function is the 
set of all real numbers. From Example 6, parts b) and d), where the value 
of tan  t is undefined, it is clear that the domain for the tangent function is 

not all real numbers. Given the definitions tan  t 5   
y
 __ x   , x  0, and cos  t 5 x, 

it is clear that any value of t that corresponds to a point on the unit circle 
with an x-coordinate equal to zero cannot be in the domain of the tangent 
function (division by zero is undefined). From Example 6, we can see that 

cos  t 5 0 for t 5   p __ 
2

  , t 5   3p ___ 
2

   and then for t 5   5p ___ 
2

  , and for t 5   7p ___ 
2

  , and so 

on. What about negative values for t (arc lengths wrapped in a clockwise 

direction)? Clearly an arc length of t 52   p __ 
2

   will terminate at (0, 21), the 

same as when t 5   3p ___ 
2

  , as shown in Figure 6.14. And cos  t 5 0 also for 

t 5 2   3p ___ 
2

  , t 5 2   5p ___ 
2

  , and so on. Therefore, the domain of the tangent 

function is all real numbers but not including the infinite set of numbers 

generated by adding any integer multiple of p to   p __ 
2

  . 

To determine the range of the sine and cosine functions, 
consider the unit circle shown in Figure 6.15. Because  
sin  t 5 y and cos  t 5 x and (x, y) is on the unit circle, we 
can see that 21 < y < 1 and 21 < x < 1. Therefore,
21 < sin  t < 1 and 21 < cos  t < 1. The range for the 
tangent function will not be bounded as for sine and 
cosine. As t approaches values where x 5 cos  t 5 0, the 

value of   
y
 __ x   5 tan  t will become very large – either negative 

or positive, depending on which quadrant t is in. 
Therefore, 2 , tan  t , ; or, in other words, tan  t can be 
any real number.

Domain and range of sine, cosine and tangent functions
f (t) 5 sin  t  domain: {t  :  t    R}  range: 21 < f  (t) < 1

f (t) 5 cos  t  domain: {t  :  t    R}  range: 21 < f  (t) < 1

f (t) 5 tan  t  domain:  { t  :  t    R, t    p __ 2   1 kp, k    Z }   range: f  (t)    R

From our previous discussion of periodic functions, we can conclude that 
all three of these trigonometric functions are periodic. Given that the sine 
and cosine functions are generated directly from the wrapping function, 
the period of each of these functions is 2p. That is,

sin  t 5 sin(t 1 k    2p), k     Z and cos  t 5 cos(t 1 k    2p), k     Z

Initial evidence from Example 6 indicates that the period of the tangent 
function is p. That is, 

tan  t 5 tan(t 1 k    p), k     Z

We will establish these results graphically in the next section. Also note that 
since these functions are periodic then they are not one-to-one functions.
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�1 � y � 10
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Evaluating trigonometric functions
In Example 6, the unit circle was divided into four equal arcs corresponding 

to t  values of 0,   p __ 
2

  , p,   3p ___ 
2

   and 2p. Let’s evaluate the sine, cosine and tangent 

functions for further values of t that would correspond to dividing the 
unit circle into eight equal arcs. Let’s also make use of the symmetry of the 
unit circle. That is, any points on the unit circle which are reflections about 
the x-axis will have the same x -coordinate (same value of cosine), and any 
points on the unit circle which are reflections about the y-axis will have the 
same y-coordinate (same value of sine), as shown in Figure 6.16.

Example 7 

Evaluate the sine, cosine and tangent functions for t 5   p __ 4  , and then use that 

result to evaluate the same functions for t 5   3p ___ 4  , t 5   5p ___ 4   and t 5   7p ___ 4  .

Solution

When an arc of length t 5   p __ 4   is wrapped along the unit circle starting at 

(1, 0), it will terminate at a point (x1, y1) in quadrant I that is equidistant 
from (1, 0) and (0, 1). Since the line y 5 x is a line of symmetry for the 
unit circle, (x1, y1) is on this line. Hence, the point (x1, y1) is the point of 
intersection of the unit circle x 2 1 y 2 5 1 with the line y 5 x. Let’s find the 
coordinates of the intersection point by solving this pair of simultaneous 
equations by substituting x for y into the equation x 2 1 y 2 5 1.

x 2 1 y 2 5 1 ⇒ x 2 1 x 2 5 1 ⇒ 2x 2 5 1 ⇒ x 2 5   1 _ 2   ⇒  x 5 6 √
__

   1 __ 
2

     5 6    1 ___ 
 √

__
 2  
  

Rationalising the denominator gives x 5 6    
√

__
 2   ___ 

2
   and, since the 

point is in the first quadrant, x 5    
√

__
 2   ___ 

2
  . Given that the point is on 

the line y 5 x then y 5    
√

__
 2   ___ 

2
   . Therefore, the arc of length t 5   p __ 4   

will terminate at the point  (    √
__

 2   ___ 
2

  ,    
√

__
 2   ___ 

2
   )  on the unit circle. Using 

the symmetry of the unit circle, we can also determine the points 

on the unit circle where arcs of length t 5   3p ___ 4  ,t 5   5p ___ 4   and t 5   7p ___ 4   

terminate. These arcs and the coordinates of their terminal points 
are given in Figure 6.17.

Using the coordinates of these points, we can now evaluate the 

trigonometric functions for t 5   p __ 4  ,    3p ___ 4  ,    5p ___ 4   and   7p ___ 4  . By definition:

t 5   p __ 4  : sin   p __ 4   5 y 5    
√

__
 2   ___ 

2
   cos   p __ 4   5 x 5    

√
__

 2   ___ 
2

   tan   p __ 4   5   
y
 __ x   5   

    
√

__
 2  
 ___ 2   
 ____ 

    
√

__
 2  
 ___ 2   
   5 1

t 5   3p ___ 4  : sin   3p ___ 4   5 y 5    
√

__
 2   ___ 

2
   cos   3p ___ 4   5 x 5 2   √

__
 2   ___ 

2
   tan   3p ___ 4   5   

y
 __ x   5   

   
√

__
 2  
 ___ 2   
 _____ 

2    
√

__
 2  
 ___ 2   
   5 21

x

y

(1, 0)

(x1, y1)
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Figure 6.16

x

y

(1, 0)

π
4

3π
4

5π
4

7π
4

   2
2( ,� )

   2
2(�

   2
2    2

2( , )   2
2

   2
2( , )   2

2�

, )   2
2�

0

Figure 6.17



178

Trigonometric Functions and Equations6

t 5   5p ___ 4  : sin   5p ___ 4   5 y 5 2    
√

__
 2   ___ 

2
   cos   5p ___ 4   5 x 5 2    

√
__

 2   ___ 
2

   tan   5p ___ 4   5   
y
 __ x   5   

2    
√

__
 2   ___ 

2
   
 ______ 

 2    
√

__
 2   ___ 

2
   

   5 1

t 5   7p ___ 4  : sin   7p ___ 4   5 y 52    
√

__
 2   ___ 

2
   cos   7p ___ 4   5 x 5    

√
__

 2   ___ 
2

   tan   7p ___ 4   5   
y
 __ x   5   

2    
√

__
 2   ___ 

2
   
 _____ 

   
√

__
 2   ___ 

2
  
    5 21

We can use a method similar to that of Example 7 to find the point on the 

unit circle where an arc of length t 5   p __ 
6

   terminates in the first quadrant. 

Then we can again apply symmetry about the line y 5 x and the y- and 
x-axes to find points on the circle corresponding to arcs whose lengths are 

multiples of   p __ 
6

  , e.g.   2p ___ 
6

   5   p __ 
3

  ,   4p ___ 
6

   5   2p ___ 
3

  , etc. Arcs whose lengths are multiples 

of   p __ 4   and   p __ 
6

   correspond to eight equally spaced points and twelve equally 

spaced points, respectively, around the unit circle, as shown in Figures 
6.18 and 6.19. The coordinates of these points give us the sine, cosine and 
tangent values for common values of t.

You will find it very helpful to know from memory the exact values of sine

and cosine for numbers that are multiples of    p __ 
6

    and    p __ 4   . Use the unit circle 

diagrams shown in Figures 6.18 and 6.19 as a guide to help you do this and 
to visualize the location of the terminal points of different arc lengths. With 
the symmetry of the unit circle and a point’s location in the coordinate plane 
telling us the sign of x and y (see definition box page 174), we only need to 
remember the sine and cosine of common values of t in the first quadrant 
and on the positive x- and y-axes. These are organized in Table 6.1.

x

y

(1, 0)(�1, 0)
π

(0, �1)

(0, 1)

0

3π
4

5π
4

7π
4

3π
2

π
4

π
2

   2
2( ,� )

   2
2(�

   2
2

   2
2( , )   2

2

   2
2( , )   2

2�, )   2
2�

0 x

y

(1, 0)0(�1, 0)
π

(0, �1)

(0, 1)

2π
3

5π
6

7π
6

4π
3

3π
2

5π
3

11π
6

π
2 π

3

π
6

1
2(   , �    )   3

2
1
2(�   , �    )   3

2

1
2(�   ,     )   3

2

1
2(    , �   )   3

2
1
2(�    , �   )   3

2

1
2(�    ,    )   3

2
1
2(    ,    )   3

2

1
2(   ,     )   3

2

0

Figure 6.19 Arc lengths that are multiples of   p __ 6   

divide the unit circle into twelve equally spaced 
points.

Figure 6.18 Arc lengths that are multiples of    p __ 4   

divide the unit circle into eight equally spaced 
points.
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t sin t cos t tan t

0 0 1 0

  p __ 
6

     1 __ 2      
√

__
 3   ___ 2       

√
__

 3   ___ 3   

  p __ 
4

      
√

__
 2   ___ 2       

√
__

 2   ___ 2    1

  p __ 
3

      
√

__
 3   ___ 2      1 __ 2    √

__
 3  

  p __ 
2

   1 0 undefined

If t is not a multiple of one of these common values, the values of the 
trigonometric functions for that number can be found using your GDC.

Example 8 

Find the following function values. Find the exact value, if possible. 
Otherwise, find the approximate value accurate to 3 significant figures.

a) sin   2p ___ 
3

    b) cos   5p ___ 4    c) tan   11p ____ 
6

   d) sin   13p ____ 
6

    e) cos 3.75

Solution
a) The terminal point for   2p ___ 

3
   is in the second quadrant and is the 

 reflection in  the y-axis of the terminal point for   p __ 
3

  , whose 

 y-coordinate is   
 √

__
 3  
 ___ 

2
  . Therefore, sin    2p ___ 

3
   5   

 √
__

 3  
 ___ 

2
  .

b)   5p ___ 4   is in the third quadrant. Hence, its x-coordinate and 

 cosine must be negative. All of the odd multiples of   p __ 4   

 have terminal points with x- and y-coordinates of 6    
√

__
 2   ___ 

2
  . 

 Therefore, cos   5p ___ 4   5 2    
√

__
 2   ___ 

2
  .
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c)    11p ____ 
6

   is in the fourth quadrant, so its tangent will be negative. Its 

 terminal point is the reflection in the x-axis of the terminal point for   p __ 
6

  , 

 whose coordinates are  (    √
__

 3  
 ___ 

2
  ,   1 __ 

2
   ) . Therefore, 

 tan   11p ____ 
6

   5   
y
 __ x    5   

 2  1 _ 
2
   
 ____ 

    
√

__
 3  
 ___ 2   
   5 2   1 ___ 

 √
__

 3  
   5 2   

 √
__

 3  
 ___ 

3
  .

d)   13p ____ 
6

   is more than one revolution. Because   13p ____ 
6

   5   p __ 
6

   1 2p and the 

 period of the sine function is 2p [i.e. sin t 5 sin(t 1 k    2p), k    Z] then

 sin   13p ____ 
6

   5 sin   p __ 
6

   5   1 __ 
2

  .

e) An arc of length 3.75 will have its terminal point in the third quadrant 

 since p < 3.14 and   3p ___ 
2

   < 4.71, meaning p , 3.75 ,   3p ___ 
2

  . Hence, 
cos 3.75 must be negative. To evaluate cos 3.75 you must use your 
GDC. Be certain that it is set to radian mode. To an accuracy of 3 
significant figures, cos 3.75 < 20.821. 

NORMAL
FLOAT
RADIAN
FUNC
CONNECTED  DOT
SEQUENTIAL
REAL
FULL HORIZ G-T
SET CLOCK 13/09/07 12:13

a+bi reˆ0i
SIHUL

PAR POL SEQ
DEGREE
0 1 2 3 4 5 6 7 8 9
SCI ENG cos(3.75)

-.8205593573

In questions 1–9, t is the length of an arc on the unit circle starting from (1, 0) 
a) State the quadrant in which the terminal point of the arc lies. b) Find the 
coordinates of the terminal point (x, y) on the unit circle. Give exact values for x and 
y, if possible. Otherwise, approximate values to 3 significant figures.

  1  t 5   p __ 6    2  t 5   5p ___ 3     3  t 5   7p ___ 4   

  4  t 5   3p ___ 2     5  t 5 2  6  t 5 2  p __ 4  

  7  t 5 21  8  t 5 2  5p ___ 4     9  t 5 3.52

In questions 10–18, state the exact value (if possible) of the sine, cosine and tangent 
of the given real number.

10    p __ 3    11    5p ___ 6     12  2   3p ___ 4   

13    p __ 2    14  2   4p ___ 3     15  3p

16    3p ___ 2     17 2  7p ___ 6     18  t 5 1.25p

In questions 19–22, use the periodic properties of the sine and cosine functions to 
find the exact value of sin x and cos x.

19  x 5   13p ____ 6     20  x 5   10p ____ 3   

21  x 5   15p ____ 4     22  x 5   17p ____ 6   

Exercise 6.2
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The graph of a function provides a useful visual image of its behaviour. For 
example, from the previous section we know that trigonometric functions 
are periodic, i.e. their values repeat in a regular manner. The graphs of the 
trigonometric functions should provide a picture of this periodic behaviour. 
In this section, we will graph the sine, cosine and tangent functions and 
transformations of the sine and cosine functions.

Graphs of the sine and cosine functions
Since the period of the sine function is 2p, we know that two values of t 

(domain) that differ by 2p (e.g.   p __ 
6

   and   13p ____ 
6

   in Example 8) will produce 

the same value for y (range). This means that any portion of the graph of 
y 5 sin t with a t-interval of length 2p (called one period or cycle of the 
graph) will repeat. Remember that the domain of the sine function is all real 
numbers, so one period of the graph of y 5 sin t will repeat indefinitely in the 
positive and negative direction. Therefore, in order to construct a complete 
graph of y 5 sin t, we need to graph just one period of the function, that is, 
from t 5 0 to t 5 2p, and then repeat the pattern in both directions.

We know from the previous section that sin t is the y-coordinate of the 
terminal point on the unit circle corresponding to the real number t 
(Figure 6.23). In order to generate one period of the graph of y 5 sin t, we 
need to record the y-coordinates of a point on the unit circle and the 
corresponding value of t as the point travels anticlockwise one revolution, 
starting from the point (1, 0). These values are then plotted on a graph 
with t on the horizontal axis and y (i.e. sin t) on the vertical axis. Figure 
6.24 illustrates this process in a sequence of diagrams.

Graphs of trigonometric functions6.3

sin(2.53)
.5741721484

sin(2.53+2π)
.5741721484

sin(2.53+4π)
.5741721484

The period of y 5 sin x is 2p.
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Figure 6.23

Figure 6.24 Graph of the sine 
function for 0 < t < 2p generated 
from a point travelling along the 
unit circle.
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As the point (cos t, sin t) travels along the unit circle, the x-coordinate (i.e. 
cos t) goes through the same cycle of values as the y-coordinate (sin t) does. 
The only difference is that the x-coordinate begins at a different value in the 
cycle – when t 5 0, y 5 0, but x 5 1. The result is that the graph of y 5 cos t 

is the exact same shape as y 5 sin t but it has been shifted to the left   p __ 
2

   units. 
The graph of y 5 cos t for 0 < t < 2p is shown in Figure 6.25.

The convention is to use the letter x to denote the variable in the domain 
of the function. Hence, we will use the letter x rather than t and write the 
trigonometric functions as y 5 sin x, y 5 cos x and y 5 tan x.

Because the period for both the sine function and cosine function is 2p, 
to graph y 5 sin x and y 5 cos x for wider intervals of x we simply need to 
repeat the shape of the graph that we generated from the unit circle for  
0 < x < 2p (Figures 6.24 and 6.25). Figure 6.26 shows the graphs of 
y 5 sin x and y 5 cos x for 24p < x < 4p. 

Aside from their periodic behaviour, these graphs reveal further properties 
of the graphs of y 5 sin x and y 5 cos x. Note that the sine function has a

maximum value of y 5 1 for all x 5   p __ 
2

   1 k    2p, k    Z, and has a minimum

value of y 5 21 for all x 5 2   p __ 
2

   1 k    2p, k    Z. The cosine function has 
a maximum value of y 5 1 for all x 5 k    2p, k    Z, and has a minimum 
value of y 5 21 for all x 5 p 1 k    2p, k    Z. This also confirms – as 
established in the previous section – that both functions have a domain of all 
real numbers and a range of 21 < y < 1.

Closer inspection of the graphs, in Figure 6.26, shows that the graph of  
y 5 sin x has rotational symmetry about the origin – that is, it can be rotated 
one-half of a revolution about (0, 0) and it remains the same. This graph 
symmetry can be expressed with the identity: sin(2x) 5 2sin x. For example,

sin ( 2   p __ 
6

   )  5 2   1 __ 
2

   and 2 [ sin (   p __ 
6

   )  ]  5 2  [   1 __ 
2

   ]  5 2   1 __ 
2

   . A function that is 

Figure 6.25
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symmetric about the origin is called an odd function. The graph of y 5 cos x 
has line symmetry in the y-axis – that is, it can be reflected in the line x 5 0 
and it remains the same. This graph symmetry can be expressed with the 

identity: cos(2x) 5 cos x. For example, cos ( 2   p __ 
6

   )  5   
 √

__
 3  
 ___ 

2
   and cos   p __ 

6
   5   

 √
__

 3  
 ___ 

2
  . 

A function that is symmetric about the y-axis is called an even function.

Odd and even functions
A function is odd if, for each x in the domain of f, f (2x) 5 2f (x). 

The graph of an odd function is symmetric with respect to the origin (rotational 
symmetry).

A function is even if, for each x in the domain of f, f (2x) 5 f (x). 

The graph of an even function is symmetric with respect to the y-axis (line symmetry).

Graphs of transformations of the sine and 
cosine functions
In Section 2.4, we learned how to transform the graph of a function 
by horizontal and vertical translations, by reflections in the coordinate 
axes, and by stretching and shrinking – both horizontal and vertical. The 
following is a review of these transformations.

Review of transformations of graphs of functions
Assume that a, b, c and d are real numbers.

To obtain the graph of: From the graph of y 5 f (x):
y 5 f (x) 1 d  Translate d units up for d . 0, d units down for d , 0.

y 5 f (x 1 c)  Translate c units left for c . 0, c units right for c , 0.

y 5 2f (x)  Reflect in the x-axis.

y 5 af (x)  Vertical stretch (a . 1) or shrink (0 , a , 1) of factor a.

y 5 f (2x)  Reflect in the y-axis.

y 5 f (bx)  Horizontal stretch (0 , b , 1) or shrink (b . 1) of factor   1 __ 
b

  .

In this section, we will look at the composition of sine and cosine functions 
of the form 

f (x) 5 a sin[b(x 1 c)] 1 d and f (x) 5 a cos[b(x 1 c)] 1 d

Example 9 

Sketch the graph of each function on the interval 2p < x < 3p.

a) f (x) 5 2  cos x

b) g (x) 5 cos x 1 3

c) h(x) 5 2  cos x 1 3

d) p (x) 5   1 _ 2    sin x 2 2
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Solution

a) Since a 5 2, the graph of y 5 2 cos x is obtained by vertically stretching 
the graph of y 5 cos x by a factor of 2.

b) Since d 5 3, the graph of y 5 cos x 1 3 is obtained by translating the 
graph of y 5 cos x three units up.

c) We can obtain the graph of y 5 2 cos x 1 3 by combining both of the 
transformations to the graph of y 5 cos x performed in parts a) and b) 
– namely, a vertical stretch of factor 2 and a translation 3 units up.
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d) The graph of y 5   1 _ 2   sin x 2 2 can be obtained by vertically shrinking the 
graph of y 5 sin x by a factor of   1 _ 2   and then translating it down 2 units.

In part a), the graph of y 5 2 cos x has many of the same properties as the 
graph of y 5 cos x : same period, and the maximum and minimum values 
occur at the same values of x. However, the graph ranges between 22 and 
2 instead of 21 and 1. This difference is best described by referring to the 
amplitude of each graph. The amplitude of y 5 cos x is 1 and the amplitude 
of y 5 2 cos x is 2. The amplitude of a sine or cosine graph is not always 
equal to its maximum value. In part b), the amplitude of y 5 cos x 1 3
is 1; in part c), the amplitude of y 5 2 cos x 1 3 is 2; and the amplitude 
of y 5   1 _ 2   sin x 2 2 is   1 _ 2  . For all three of these, the graphs oscillate about 
the horizontal line y 5 d. How high and low the graph oscillates with 
respect to the mid-line, y 5 d, is the graph’s amplitude. With respect to the 
general form y 5 af (x), changing the amplitude is equivalent to a vertical 
stretching or shrinking. Thus, we can give a more precise definition of 
amplitude in terms of the parameter a.

Amplitude of the graph of sine and cosine functions
The graphs of f (x) 5 a sin [ b(x 1 c) ]  1 d and f (x) 5 a cos [ b(x 1 c) ]  1 d have an 
amplitude equal to |a|.

Example 10 

Waves are produced in a long tank of water. 
The depth of the water, d metres, at t seconds, 
at a fixed location in the tank, is modelled by 
the function d(t) 5 M cos (   p __ 

2
  t )  1 K, where M 

and K are positive constants. On the right is 
the graph of d(t) for 0 < t < 12 indicating 
that the point (2, 5.1) is a minimum and the 
point (8, 9.7) is a maximum.

a) Find the value of K and the value of M.

b) After t 5 0, find the first time when the 
depth of the water is 9.7 metres.

d
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Solution

a) The constant K is equivalent to the constant d in the general form of a 
cosine function: f (x) 5 a cos [ b(x 1 c) ]  1 d. To find the value of K and 
the equation of the horizontal mid-line, y 5 K, find the average of 

 the function’s maximum and minimum value: K 5   9.7 1 5.1 ________ 
2

   5 7.4. 

 The constant M is equivalent to the constant a whose absolute value is 
the amplitude. The amplitude is the  difference between the function’s 
maximum value and the mid-line: | M | 5 9.7 2 7.4 5 2.3. Thus, 

 M 5 2.3 or M 5 22.3. Try M 5 2.3 by evaluating the function at one 
of the known values: 

 d(2) 5 2.3 cos (   p __ 
2

  (2) )  1 7.4 5 2.3 cos p 1 7.4 5 2.3(21) 1 7.4 5 5.1. 

 This agrees with the point (2, 5.1) on the graph. Therefore, M 5 2.3.

b) Maximum values of the function (d(8) 5 9.7) occur at values of t that 
differ by a value equal to the period. From the graph, we can see that 
the difference in t values from the minimum (2, 5.1) to the maximum 
(8, 9.7) is equivalent to one-and-a-half periods. Therefore, the period is 
4 and the first time after t 5 0 at which d 5 9.7 is t 5 4.

All four of the functions in Example 9 had the same period of 2p, but the 
function in Example 10 had a period of 4. Because y 5 sin x completes 
one period from x 5 0 to x 5 2p, it follows that y 5 sin bx completes one 
period from bx 5 0 to bx 5 2p. This implies that y 5 sin bx completes one 

period from x 5 0 to x 5   2p ___ 
b

   . This agrees with the period for the function 

d(t) 5 2.3 cos (    p __ 
2

  t )  1 7.4 in Example 10: period 5   2p ___ 
b

    5   2p ___ 
  p __ 2  

   5   2p ___ 
1

        2 __ p   5 4.

Note that the change in amplitude and vertical translation had no effect 
on the period. We should also expect that a horizontal translation of a sine 
or cosine curve should not affect the period. The next example looks at a 
function that is horizontally translated (shifted) and has a period different 
from 2p.

Example 11 

Sketch the function f (x) 5 sin ( 2x 1   2p ___ 
3

   ) .

Solution

To determine how to transform the graph of y 5 sin x to obtain the graph 

of y 5 sin ( 2x 1   2p ___ 
3

   ) , we need to make sure the function is written in the 

form f (x) 5 a sin[b(x 1 c)] 1 d. Clearly, a 5 1 and d 5 0, but we will need 

to factorize a 2 from the expression 2x 1   2p ___ 
3

   to get f (x) 5 sin [ 2 ( x 1   p __ 
3

   )  ] .
According to our general transformations from Chapter 2, we expect that 
the graph of f is obtained by first performing a horizontal shrinking of 

factor   1 __ 
2

   to the graph of y 5 sin x and then a translation to the left   p __ 
3

   units 

(see Section 2.4). 
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The graphs below illustrate the two-stage sequence of transforming 

y 5 sin x to y 5 sin [ 2 ( x 1   p __ 
3

   )  ] .

Note: A horizontal translation of a sine or cosine curve is often referred to 

as a phase shift. The equations y 5 sin ( x 1   p __ 
3

   )  and y 5 sin [ 2 ( x 1   p __ 
3

   )  ]  
both underwent a phase shift of 2   p __ 

3
  .

Period and horizontal translation (phase shift) of sine and cosine functions
Given that b is a positive real number, y 5 a sin [ b(x 1 c) ]  1 d and y 5 a cos [ b(x 1 c) ]  1 d

have a period of   2p ___ 
b

    and a horizontal translation (phase shift) of 2c. 

Example 12 

The graph of a function in the form  
y 5 a cos bx is given in the diagram right. 

a) Write down the value of a.

b) Calculate the value of b.

Solution
a) The amplitude of the graph is 14. 

Therefore, a 5 14.

b) From inspecting the graph we can 

 see that the period is   p __ 4  . 

 Period 5   2p ___ 
b

    5   p __ 4   

  bp 5 8p ⇒ b 5 8.
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Example 13 

For the function f (x) 5 2 cos (   x __ 
2

   )  2   3 __ 
2

  :

a) Sketch the function for the interval 2p < x < 5p. Write down its 
amplitude and period.

b) Determine the domain and range for f (x).

c) Write f (x) as a trigonometric function in terms of sine rather than 
cosine.

Solution
a) a 5 2 ⇒ amplitude 5 2; b 5   1 __ 

2
   ⇒ period 5    2p  ____ 

   1 _ 2   
   5 4p. To obtain the 

 graph of y 5 2 cos (   x __ 
2

   )  2   3 __ 
2

  , we perform the following transformations 

 on y 5 cos x : (i) a horizontal stretch by factor    1  __ 
   1 _ 2   

   5 2, (ii) a vertical 

 stretch by factor 2, and (iii) a vertical translation down   3 __ 
2

   units.

b) The domain is all real numbers. The function will reach a maximum 

 value of d 1 a 5 2   3 __ 
2

   1 2 5   1 __ 
2

  , and a minimum value of 

 d 2 a 5 2   3 __ 
2

   2 2 5 2   7 __ 
2

  . 

 Hence, the range is 2   7 __ 
2

   < y <   1 __ 
2

  .

c) The graph of y 5 cos x can be obtained by translating the graph of 

 y 5 sin x to the left   p __ 
2

   units. Thus, cos x 5 sin ( x 1   p __ 
2

   ) , or, in other 

 words, any cosine function can be written as a sine function with a 

 phase shift 5 2   p __ 
2

  . Therefore, f (x) 5 2  cos (   x __ 
2

   )  2   3 __ 
2

   5 2 sin (   x __ 
2

   1   p __ 
2

   )  2   3 __ 
2

  .
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Horizontal translation (phase shift) identities
The following are true for all values of x:

  cos x 5 sin ( x 1   p __ 2   )   sin x 5 cos ( x 2   p __ 2   ) 

  cos x 5 sin (   p __ 2   2 x )   sin x 5 cos (   p __ 2   2 x )

Graph of the tangent function
From work done earlier in this chapter, we expect that the behaviour of the 
tangent function will be significantly different from that of the sine and
cosine functions. In Section 6.2, we concluded that the function f (x) 5 tan x

has a domain of all real numbers such that x    p __ 
2

   1 kp, k    Z, and that its

range is all real numbers. Also, the results for Example 6 in Section 6.2 led 
us to speculate that the period of the tangent function is p. This makes 

sense since the identity tan x 5   sin x ____ cos x   informs us that tan x will be zero 

whenever sin  x 5 0, which occurs at values of x that differ by p (visualize 
arcs on the unit circle whose terminal points are either (1, 0) or (21, 0)). 
The values of x for which cos x 5 0 cause tan x to be undefined (‘gaps’ 
in the domain) also differ by p (the points (0, 1) or (0, 21) on the unit 
circle). As x approaches these values where cos x 5 0, the value of tan x will 
become very large – either very large negative or very large positive. 

Thus, the graph of y 5 tan x has vertical asymptotes at x 5   p __ 
2

   1 kp, k    Z. 

Consequently, the graphical behaviour of the tangent function will not 
be a wave pattern such as that produced by the sine and cosine functions, 
but rather a series of separate curves that repeat every p units. Figure 6.27 
shows the graph of y 5 tan x for 22p < x < 2p.

The identity cos x 5 sin ( x 1   p __ 2   )  is equivalent to the identity 

cos x 5 sin (    p __ 2   2 x )  because sin (    p __ 2   2 x )  5 sin [ 2  ( x 2   p __ 2   )  ]  
and the graph of y 5 sin [ 2  ( x 2   p __ 2   )  ]  can be obtained by first 

translating y 5 sin x to the right   p __ 2   units, and then reflecting 

the graph in the y-axis. This produces the same graph as 
y 5 cos x. This can be confirmed nicely on your GDC as shown.

Therefore, cos x 5 sin (   p __ 2   2 x ) . In fact, it is also true that 

sin x  5 cos (   p __ 2   2 x ) . Clearly, x  1  (   p __ 2   2 x )  5   p __ 2  . If the domain 

(x) values were being treated as angles, then x and   p __ 2   2 x 
would be complementary angles. 

This is why cosine is considered the co-function of sine. 
Two trigonometric functions f and g are co-functions if the 

following are true for all x: f (x) 5 g  (   p __ 2   2 x )  and

f  (   p __ 2   2 x )  5 g(x).

Plot1

Y1= cos(X)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-3.141592…
Xmax=3π
Xscl=1.5707963…
Ymin=-1.5
Ymax=1.5
Yscl=1
Xres=1

Plot1

Y1= 
Plot2 Plot3

Y2= sin(-(X-π/2)
Y3=
Y4=
Y5=
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The graph gives clear 
confirmation that the period 
of the tangent function is p, 
that is, tan x 5 tan(x 1 k    p), 
k    Z. 

The graph of y 5 tan x has 
rotational symmetry about 
the origin – that is, it can 
be rotated one-half of a 
revolution about (0, 0) and it 
remains the same. Hence, like 
the sine function, tangent is an 
odd function and  
tan(2x) 5 2tan x.

Although the graph of y 5 tan x can undergo a vertical stretch or shrink, it 
is meaningless to consider its amplitude since the tangent function has no 
maximum or minimum value. However, other transformations can affect 
the period of the tangent function.

Example 14 

Sketch each function.

a) f (x) 5 tan 2x b) g (x) 5 tan [ 2 ( x 2   p __ 4   )  ] 

Solution

a) An equation in the form y 5 f (bx) indicates a horizontal shrinking of 

 f (x) by a factor of   1 __ 
b

  . Hence, the period of y 5 tan 2x is   1 __ 
2

      p 5   p __ 
2

  .
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b) The graph of y 5 tan [ 2 ( x 2   p __ 4   )  ]  is obtained by performing a horizontal 

 shrinking of the graph of  y 5 tan x by a factor of   1 __ 
2

   and then translating

 the graph to the right   p __ 4   units. As for f (x) 5 tan 2x in part a), the period 

 of   g(x) 5 tan [ 2 ( x 2   p __ 4   )  ]  is    p __ 
2

   .

In questions 1–9, without using your GDC, sketch a graph of each equation on the 
interval 2p < x < 3p.

  1  y 5 2 sin x    2  y 5 cos x 2 2

  3  y 5   1 _ 2    cos x    4  y 5 sin ( x 2   p __ 2   ) 

  5  y 5 cos(2x)    6  y 5 1 1 tan x

  7  y 5 sin (   x __ 
2

   )     8  y 5 tan ( x 1   p __ 2   ) 

  9  y 5 cos ( 2x 2   p __ 4   ) 

For each function in questions 10–12:

a)  Sketch the function for the interval 2p < x < 5p. Write down its amplitude and 
period.

b)  Determine the domain and range for f (x).

10  f (x) 5   1 _ 2    cos x 2 3  11  g(x) 5 3 sin(3x) 2   1 _ 2  

12  g(x) 5 1.2 sin (   x __ 
2

   )  1 4.3

Exercise 6.3
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In questions 13 and 14, a graph of a trigonometric equation is shown, on the interval 
0 < x < 12 that can be written in the form y 5 A sin (   p __ 4   x )  1 B. Two points – one a 

minimum and the other a maximum – are indicated on the graph. Find the value of 
A and B for each.

13

 
14

 

15 A graph of a trigonometric equation is shown below, on the interval 
0 < x < 12, that can be written in the form y = A cos (   p __ 4   x )  1 B. Two points – 
one a minimum and the other a maximum – are indicated on the graph. Find 
the value of A and B for each.
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The primary focus of this section is to examine methods for solving 
equations that contain the sine, cosine and tangent functions. For example, 
the following are trigonometric equations: 

sin x 5   1 _ 
2

   3 cos x 5 5 sin x tan x 5   sin x ____ cos x   1 1 sin x 5 3 cos2 x  sin2 x 1 cos2 x 5 1

The equations tan x 5   sin x ____ cos x   and sin2 x 1 cos2 x 5 1 are examples of special 

equations called identities. As we learned in Section 1.6, an identity is an 
equation that is true for all possible values of the variable. The other 
equations are true for only certain values of x. Identities can be helpful in 
solving trigonometric equations by allowing us to simplify some 
trigonometric expressions. Equations that contain trigonometric functions 
often can be solved using the same graphical and algebraic methods that 
solve other equations.

The unit circle and exact solutions to 
trigonometric equations
When you are asked to solve a trigonometric equation, there are two 
important questions you need to consider: 

1. Is it possible, or required, to express any solution(s) exactly?

2. For what interval of the variable (usually x) are all solutions to be found?

With regard to the first question, exact solutions are only attainable, in

most cases, if they are an integer multiple of   p __ 
6

   or   p __ 4  . The variable for 

Solving trigonometric equations 
and trigonometric identities

6.4

16  The graph of a function in the form y 5 p  cos qx is given in the diagram below. 
a)  Write down the value of p.  b)  Calculate the value of q.
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which we are trying to solve in trigonometric equations is a real number 
that can be interpreted as the length of an arc on the unit circle. As 

explained in Section 6.2, arc lengths that are multiples of   p __ 
6

   or   p __ 4   

commonly occur and it is important to be familiar with the sine, cosine 
and tangent of these numbers.

Concerning the second question, for most trigonometric equations there 
are infinitely many values of the variable that satisfy the equation. In order 
to restrict the number of solutions, we are asked for the solutions to be 
contained within a suitable interval. For example, we may search for all 
the values of x that solve an equation such that 0 < x < 2p. Although it is 
certainly possible to write a general expression using a parameter (i.e. the 
general solution) that specifies the infinite values that solve a trigonometric 
equation, it is not required for this course. A solution interval will always 
be given, as in the example below.

Example 15 

Find the exact solution(s) to the equation sin x 5   1 _ 2   for 0 < x < 2p.

Solution

Recalling the definition of the sine function, this equation can be interpreted 
as asking for the length, x, of arcs along the unit circle that have a terminal 

point with a y-coordinate equal to   1 __ 
2

  . We know, from Section 6.2, that arc 

lengths of   p __ 
6

   and   5p ___ 
6

    have terminal points with  y -coordinates of   1 __ 
2

  . There 

are clearly an infinite number of arcs – both positive and negative – that 

will terminate at the same points which can be written as x 5   p __ 
6

   1 k    2p 

and x 5   5p ___ 
6

   1 k    2p, k    Z. However, we are only  asked for the solutions in 

the interval 0 < x < 2p. Therefore, x 5   p __ 
6

   or x 5   5p ___ 
6

  .

Another way to see that the equation sin x 5   1 _ 2   has infinitely many solutions 
is to graph the equations y 5 sin x and y 5   1 _ 2   (Figure 6.28) and search for 
intersection points, i.e. where the two equations are equal.

x

y

(1, 0)

unit circle

5π
6

π
6

1
2(�    ,    )   3

2
1
2(    ,    )   3

2
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The graphs of the two equations will intersect repeatedly as they extend 
indefinitely in both directions. 

Your GDC can be a very effective tool for searching for solutions 
graphically. However, it can be limited when exact solutions are requested. 
The sequence of GDC images below show a graphical solution for the 
equation in Example 15.

The GDC gives two solutions in the interval 0 < x < 2p as x 5 0.523  598  78 
and x 5 2.617  9939. These values are approximations (to 8 significant 

figures) of two irrational numbers: x 5   p __ 
6

   and x 5   5p ___ 
6

   . Therefore, if you 

wish, or need, to find exact solutions, you will need to remember the 

trigonometric function values for the multiples of   p __ 
6

   and   p __ 4   (see Figures 
6.18 and 6.19 in Section 6.2).

Example 16 

Find the exact solution(s) to the equation tan(x) 1 1 5 0 for 2p < x , p.

Solution

It’s important to note that the solution interval is different than for 
Example 15. The possible values of x include negative values (from 0 to 
2p) and positive values (from 0 to p). With respect to the unit circle, the 
solutions will correspond to points in any of the quadrants (as for Example 
15) but points in quadrants III and IV will correspond to arcs rotating 
clockwise (negative direction). Solutions to this equation are values of x such 

 Hint:  The expression tan x 1 1 
is not equivalent to tan(x 1 1). In 
the first expression, x alone is the 
argument of the function, and in 
the second expression, x 1 1 is 
the argument of the function. It 
is a good habit to use brackets to 
make it absolutely clear what is, or 
is not, the argument of a function. 
For example, there is no ambiguity if 
tan x 1 1 is written as tan(x) 1 1, or 
as 1 1 tan x.
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Y1= sin(X)
Plot2 Plot3

Y2= 1/2
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=0
Xmax=6.2831853…
Xscl=π/2
Ymin=-1.5
Ymax=1.5
Yscl=1
Xres=1

CALCULATE
1:value
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6:dy/dx
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that tan x 5 21. Given tan x 5   sin x ____ cos x    and since sin  x and cos  x  correspond 

to the y-coordinate and x-coordinate, respectively, on the unit circle, then 
any solutions will be in quadrants II and IV where the x- and y-coordinates 
have opposite signs. The arcs terminating midway in the quadrants will 
terminate at points having opposite values for x and y. Therefore, as shown 

in the figure, the solutions are exactly x 5 2   p __ 4   or x 5   3p ___ 4  .

It is possible to arrive at exact answers that are not multiples of   p __ 
6

    or   p __ 4  , as 
the next example illustrates.

Example 17 

Find the exact solution(s) to the equation cos2 ( x 2   p __ 
3

   )  5   1 __ 
2

   for 0 < x < 2p.

Solution

The expression cos2 ( x 2   p __ 
3

   )  can also be written as  [ cos ( x 2   p __ 
3

   )  ] 2. The

first step is to take the square root of both sides – remembering that every 

positive number has two square roots – which gives 

cos ( x 2   p __ 
3

   )  5 6 √
__

   1 __ 
2

     5 6   1 ___ 
 √

__
 2  
   5 6    

√
__

 2   ___ 
2 

  . All of the odd integer multiples of

  p __ 4   … 2  3p ___ 
4

  , 2   p __ 4  ,   p __ 4  ,   3p ___ 4  , … have a cosine equal to either    
√

__
 2   ___ 

2
   or 2    

√
__

 2   ___ 
2

  . 

That is, x 2   p __ 
3

   5   p __ 4   1 k      p __ 
2

  . Now, solve for x. 

x 5   p __ 4   1   p __ 
3

   1 k      p __ 
2

   5   7p ___ 
12

   1 k      6p ___ 
12

  . The last step is to substitute in different

integer values for k to generate all the possible values for x so that 0 < x < 2p.

When k 5 0: x 5   7p ___ 
12

  ; when k 5 1: x 5   7p ___ 
12

   1   6p ___ 
12

   5   13p ____ 
12

  ; 

when k 5 2: x 5   7p ___ 
12

   1   12p ____ 
12

   5   19p ____ 
12

   ;

when k 5 3: x 5   7p ___ 
12

   1   18p ____ 
12

   5   25p ____ 
12

  ; … however,   25p ____ 
12

   . 2p…but 

when k 5 21: x 5   7p ___ 
12

   2   6p ___ 
12

   5   p ___ 
12

  . There are four exact solutions in the 

interval 0 < x < 2p and they are: x 5   p ___ 
12

  ,    7p ___ 
12

  ,    13p ____ 
12

   or   19p ____ 
12

  .
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unit circle

3π
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π
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 Hint:  Check the solutions to trigonometric equations with your GDC. The sequence of GDC images here verifies that x 5   p ___ 12   is the 
first solution to the equation in Example 17. 

When entering the equation y 5 cos2  ( x 2   p __ 3   )  into your GDC (as shown in the first GDC image), you will have to enter it in the form 

y 5  [ cos  ( x 2   p __ 3   )  ] 2. Be aware that cos2  ( x 2   p __ 3   )  is not equivalent to cos  ( x 2   p __ 3   ) 2. The expression cos ( x 2   p __ 3   ) 2 indicates that the 

quantity x 2   p __ 3   is squared first and then the cosine of the resulting value is found. However, the expression y 5 cos2  ( x 2   p __ 3   )  indicates 

that the cosine of x 2   p __ 3    is found first and then that value is squared.

Graphical solutions to trigonometric equations
If exact solutions are not required then a graphical solution using your 
GDC is a very effective way to find approximate solutions to trigonometric 
equations. Unless instructed to do otherwise, you should give approximate 
solutions to an accuracy of 3 significant figures.

Let’s solve the equation in Example 16 again. If the instructions do not 
explicitly ask for exact solutions, approximate solutions are acceptable.

Example 18 

Find the solution(s) to the equation tan(x) 1 1 5 0 for 2p < x , p.

Solution

Graph the equation y 5 tan(x) 1 1 and find all of its zeros (x-intercepts) 
in the interval 2p < x , p.

This sequence of GDC images indicates an approximate solution x < 20.785 
between 0 and 2p. Since we know that the period of y 5 tan x 1 1 is p 
(same as for y 5 tan x ), we can simply add p to this first solution to find 
the one between 0 and p, as shown in the final GDC image. Therefore, two 
solutions for x in the interval 2p < x , p are x < 20.785 and x < 2.36 
(accuracy to 3 significant figures).
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A graphical approach is effective and appropriate when it is not possible, or 
very difficult, to find exact solutions.

Example 19 

The peak height, h metres, of ocean waves during a storm is given by the 

equation h 5 9 1 4 sin (   t __ 
2

   ) , where t is the number of hours after midnight.

A tsunami alarm is triggered when the peak height goes above 12.5 metres. 
Find the value of t when the alarm first sounds.

Solution
Graph the equations y 5 9 1 4 sin (   x __ 

2
   )  and y 5 12.5 and find the first point 

of intersection for x . 0.

Using the Intersect command on the GDC indicates that the first point 
of intersection has an x-coordinate of approximately 2.13. Therefore, the 
alarm will first sound when t < 2.13 hours. 

Analytic solutions to trigonometric equations
In this section, we will see how general algebraic techniques and 
trigonometric identities can be applied to solve trigonometric equations. 
An analytical approach requires you to devise a solution strategy utilizing 
algebraic methods that you have applied to other types of equations – such 
as quadratic equations. Often, trigonometric equations that demand an 
analytic approach will result in exact solutions, but not always. Although 
our approach for equations in this section focuses on algebraic techniques, 
it is important to use graphical methods to support or confirm our 
analytical solutions.
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Example 20 

Solve 2 sin2 x 2 sin x 5 0 for 2p < x < p.

Solution

We can factorize and apply the rule that if a    b 5 0 then either a 5 0 or b 5 0.

2 sin2 x 2 sin x 5 0 ⇒ sin x (2 sin x 2 1) 5 0 ⇒ sin x 5 0 or sin x 5   1 _ 2  

For sin x 5 0: x 5 2p, 0, p; for sin x 5   1 _ 2  : x 5   p __ 
6

  ,   5p ___ 
6

   .

Therefore, x 5 2p, 0,   p __ 
6

  ,   5p ___ 
6

  , p.

The next example illustrates how the application of a trigonometric 
identity can be helpful to rewrite an equation in a way that allows us to 
solve it algebraically.

Example 21 

Solve 3 sin x 1 tan x 5 0 for 0 < x < 2p.

Solution

Since the structure of this equation is such that an expression is set equal 
to zero, it would be nice to be able to use the same algebraic technique as 
the previous example – that is, factorize and solve for when each factor is 
zero. However, it is not possible to factorize the expression 3 sin x 1 tan x, 
and rewriting the equation as 3 sin x 5 2tan x does not help. Are there 
any expressions in the equation for which we can substitute an equivalent 
expression that will make the equation accessible to an algebraic solution? 
We do not have any equivalent expressions for sin x, but we do have an 

identity for tan x. From the definition of tan x, we know that tan x 5    sin x ____ cos x  . 

Let’s see what happens when we substitute    sin x ____ cos x   for tan x.

 3 sin x 1 tan x 5 0 ⇒ 3 sin x 1   sin x ____ cos x   5 0

Now, multiply both sides by cos x while recognising that cos x  0 

(x    p __ 
2

   1 k    p, k    Z).

 3 sin x 1   sin x ____ cos x   5 0 ⇒ 3 sin x cos x 1 sin x 5 0 ⇒ sin x (3 cos x 1 1) 5 0 ⇒

 sin x 5 0 or cos x 5 2   1 __ 
3

  

For sin x 5 0: x 5 0, p, 2p.

We know that (1, 0) and (21, 0) are the points on the unit circle that 
correspond to sin x 5 0 giving the three exact solutions above. Although 

 Hint:  Although exact answers were not demanded in Example 20, 
given our knowledge of the unit circle and familiarity with 

the sine of common values (i.e. multiples of   p __ 6   and   p __ 4  ), we are 

able to give exact answers without any difficulty. It would have 
been acceptable to give approximate solutions, but it is worth 
recognizing that this would have required considerable more effort 
than providing exact solutions. Entering and graphing the equation 
y 5 2 sin2 x 2 sin x on your GDC (see GDC images) would not be the most efficient or appropriate solution method, but, if sufficient 
time is available, it is an effective way to confirm your exact solutions.

Plot1

Y1= 2(sin(X))2-s
Plot2 Plot3

Y2=
Y3=
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Y5=
Y6=

in(X)
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we know that the points on the unit circle that correspond to 

cos x 5 2   1 __ 
3

   will be in the second and third quadrants, we do not know 

their exact coordinates. So, we will need to use  our GDC to find 

approximate solutions to cos x 5 2   1 __ 
3

   for 0 < x < 2p.

Thus, for cos x 5 2   1 __ 
3

   : x < 1.91 or x < 4.37 (three significant figures).

Therefore, the full solution set for the equation is x 5 0, p, 2p ; x < 1.91, 
4.37.

Trigonometric identities
As Example 21 illustrated, sometimes an analytical method for solving a 
trigonometric equation relies on a trigonometric identity providing a 
useful substitution. There are a few trigonometric identities, other than 

tan  x 5   sin x ____ cos x    , required for this course which can be used to help simplify 

trigonometric expressions and solve equations. 

At the start of this section, it was stated that the equation sin2 x 1 cos2 x 5 1
is an identity; that is, it’s true for all possible values of x. Let’s prove that 
this is the case.

Recall from Section 6.1 that the equation for the unit circle is  
x 2 1 y 2 5 1. That is, the coordinates (x, y) of any point on the 
circle will satisfy the equation x 2 1 y 2 5 1. Also, in Section 6.2, we 
learned that the sine and cosine functions are defined in terms of 
the coordinates of the terminal point of an arc on the unit circle 
starting at (1, 0), as shown in Figure 6.29. If t is any real number 
that is the length of an arc on the unit circle that terminates at (x, y), 
then x 5 cos t and y 5 sin t. Substituting directly into the equation 
for the circle gives sin2 t 1 cos2 t 5 1. As mentioned in Section 6.3, 
the convention is to use x to denote the domain variable rather than 
t. Therefore, the equation sin2 x 1 cos2 x 5 1 is true for any real 
number x.

 Hint:  A strategy that often 
proves fruitful is to try and rewrite a 
trigonometric equation in terms of 
just one trigonometric function. If 
that is not possible, try and rewrite it 
in terms of only the sine and cosine 
functions. This strategy was used in 
Example 21.

Figure 6.29 
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The Pythagorean identities for sine and cosine
The following equations are true for all real numbers x:

sin2 x 1 cos2 x 5 1      sin2 x 5 1 2 cos2 x      cos2 x 5 1 2 sin2 x

Another useful set of trigonometric identities are referred to as the double 
angle identities because they are equations involving sin 2x and cos 2x. As 
discussed back in Section 6.1, the argument of a trigonometric function (x 
in sin  x, u in cos u) can be interpreted as an angle (in degrees or radians), or 
as just a real number. Even though these identities are called double angle 
identities they apply for either interpretation.

Double angle identities for sine and cosine
The following equations are true for all real numbers x:
  sin 2x 5 2 sin x cos x
        cos2 x 2 sin2 x
  cos 2x  5   2 cos2 x 2 1
        1 2 2 sin2 x

It is quite easy to verify the double 
angle identities by means of graphical 
analysis on your GDC. 

The GDC screen images shown here illustrate that sin 2x is equivalent 
to 2 sin x cos x. Use your GDC to verify that cos 2x is equivalent to 
cos2 x 2 sin2 x. Once the identity cos 2x 5 cos2 x 2 sin2  x is established we 
can use one of the Pythagorean identities to rewrite it in terms of only sine 
or cosine; thus, establishing the other two double angle identities for cosine.

cos 2x 5 cos2 x 2 sin2 x
cos 2x 5 cos2 x 2 (1 2 cos2 x)   substitute 1 2 cos2 x  for sin2 x
cos 2x 5 2 cos2 x 2 1

Similar steps can be performed to show that cos 2x 5 1 2 2 sin2 x. 
Now let’s see how these identities can help us with algebraic solutions of 
trigonometric equations.

The identity sin2 x 1 cos2 x 5 1 
is often referred to as a 
Pythagorean identity because, 
as we will see in the other 
chapter on trigonometry, sin x 
and cos x can represent the legs 
of a right-angled triangle with a 
hypotenuse equal to one. 
Substituting into the 
Pythagorean theorem gives 
sin2 x 1 cos2 x 5 1.
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)
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Example 22 

Solve the equation cos 2x 1 cos x 5 0 for 0 < x < 2p.

Solution

    

Taking an initial look at the graph of y 5 cos 2x 1 cos x suggests that 
there are possibly three solutions in the interval x  [0, 2p]. Although the 
expression cos 2x 1 cos x contains terms with only the cosine function, it 
is not possible to perform any algebraic operations on them because they 
have different arguments. In order to solve algebraically, we need both cosine 
functions to have arguments of x (rather than 2x). There are three different 
double angle identities for cos 2x. It is best to have the equation in terms of
one trigonometric function, so we choose to substitute 2 cos2 x 2 1 for cos 2x.

cos 2x 1 cos x 5 0 ⇒ 2 cos2  x 2 1 1 cos x 5 0 ⇒ 2 cos2  x 1 cos x 2 1 5 0

(2 cos x 2 1)(cos x 1 1) 5 0 ⇒ cos x 5   1 __ 
2

   or cos x 5 21

For cos x 5   1 __ 
2

  : x 5   p __ 
3

  ,   5p ___ 
3

   ; for cos x 5 21: x 5 p.

Therefore, all of the solutions in the interval 0 < x < 2p are: x 5   p __ 
3

  , p,   5p ___ 
3

   .

Example 23 

a) Express 2 cos2  x 1 sin x in terms of sin x only.
b) Solve the equation 2 cos2  x 1 sin x 5 21 for x in the interval 0 < x < 2p, 

expressing your answer(s) exactly.

Solution

a) 2 cos2  x 1 sin x 5 2(12sin2  x) 1 sin  x using Pythagorean identity 
   cos2 x  5 1 2 sin2  x 
  5 2 2 2 sin2  x 1 sin x
b) 2 cos2  x 1 sin x 5 21

 2 2 2 sin2  x 1 sin x 5 21 substitute result from a)

 2 sin2 x 2 sin x 2 3 5 0 [alternatively: let sin x 5 y, 
   then 2y 2 2 y 2 3 5 0]

 (2 sin x 2 3)(sin x 1 1) 5 0 factorize [alt: (2y 2 3)(y 1 1) 5 0]

 sin x 5   3 __ 
2

   or sin x 5 21 [alt: y 5   3 __ 
2

   or y 5 21 ⇒ sin x 5   3 __ 
2

   or 

   sin x 5 21]

x

y

π 2π
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For sin x 5   3 __ 
2

  : no solution because   3 __ 
2

   is not in the range of the sine function.

For sin x 5 21: x 5   3p ___ 
2

   . Therefore, only one solution in 0 < x < 2p : x 5   3p ___ 
2

   .

Use your GDC to check this result by rewriting 2 cos2  x 1 sin x 5 21 as 
2 cos2 x 1 sin x 1 1 5 0 and then graph y 5 2 cos2 x 1 sin x 1 1; 

confirming a single zero at  x 5   3p ___ 
2

    in the interval x    [0, 2p].

Example 24 

Solve the equation 2 sin 2x 5 3 cos x for 0 < x < p.

Solution

 2 sin 2x 5 3 cos x
 2(2 sin x cos x) 5 3 cos x using double angle identity for sine
 4 sin x cos x 5 3 cos x do not divide by cos x as solution(s) may 
    be eliminated 
 4 sin x cos x 2 3 cos x  5 0 set equal to zero to prepare for solving by 
    factorization
 cos x(4  sin  x 2 3) 5 0 factorize

 cos x 5 0 or sin x 5   3 __ 4  

For cos x 5 0: x 5   p __ 
2

   .

For sin x 5   3 __ 4  : x < 0.848 or 2.29.

Approximate solutions found using Intersect command on GDC. All 
solutions in the interval 0 < x < p are: x 5   p __ 

2
   and x < 0.848, 2.29.
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The final example illustrates how trigonometric identities can be applied to 
find exact values for trigonometric expressions.

Example 25 

Given that cos x 5   1 __ 4   and 0 , x ,   p __ 
2

  , find the exact values of

a) sin x b) sin 2x.

Solution

a) Given 0 , x ,   p __ 
2

   it follows that sin x . 0, because the arc with length x 
will terminate in the first quadrant. The Pythagorean identity is useful 
when relating sin x and cos x.

 sin2 x 5 1 2 cos2 x ⇒ sin x 5  √
_________

 1 2 cos2 x   ⇒ sin x 5  √
_______

 1 2 (   1 __ 
4

   ) 2  

  5  √
___

   15 ___ 
16

     5   
 √

___
 15  
 ____ 4  

b) sin 2x 5 2 sin x cos x 5 2 (    √
___

 15  
 ____ 4   )  (   1 __ 4   )  5   

 √
___

 15  
 ____ 

8
  

Summary of fundamental trigonometric identities

Definition of tangent function:  tan x 5   sin x _____ cos x   
Odd/even function identities:  sin(2x) 5 2sin x  cos(2x) 5 cos x
  tan(2x) 5 2tan x
Co-function identities:  sin (   p __ 2   2 x )  5 cos x  cos (   p __ 2   2 x )  5 sin x
Pythagorean identities:  sin2 x 1 cos2 x 5 1 
  sin 2 x 5 1 2 cos2 x  cos2 x 5 1 2 sin2 x
Double angle identities:  sin 2x 5 2 sin x cos x
  cos 2x 5 cos2 x 2 sin2 x
  cos 2x 5 2 cos2 x 2 1  cos 2x 5 1 2 2 sin2 x

In questions 1–10, find the exact solution(s) for 0 < x < 2p. Verify your solution(s) 
with your GDC.

  1  cos x 5   1 _ 2      2  2 sin x 1 1 5 0

  3  1 2 tan x 5 0    4   √
__

 3   5 2 sin x

  5  2 sin2 x 5 1    6  4 cos2 x 5 3

  7  tan2 x 2 1 5 0    8  4 cos2 x 5 1

  9  tan x(tan x 1 1) 5 0  10  sin x cos x 5 0

In questions 11–16, use your GDC to find approximate solution(s) for 0 < x < 2p. 
Express solutions accurate to 3 significant figures.

11  sin x 5 0.4  12  3 cos x 1 1 5 0

13  tan x 5 2  14  sin 2x 5 0.85

15  cos(x 2 1) 5 20.38  16  3 tan x 5 10

Exercise 6.4
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In questions 17–20, given that k is any integer, list all of the possible values for x that 
are in the specified interval.

17  x 5   p __ 2   1 k    p, 23p < x < 3p

18  x 5   p __ 6   1 k    2p, 22p < x < 2p

19  x 5   7p ___ 12   1 k    p, 0 < x < 2p

20  x 5   p __ 4   1 k      p __ 4   , 0 < x < 2p

In questions 21–24, find the exact solutions for 0 < x < 2p.

21  cos ( x 2   p __ 6   )  5 2   1 __ 2  

22  tan(x 1 p) 5 1

23  sin 2x 5    
√

__
 3   ___ 2   

24  sin2 ( x 1   p __ 2   )  5   3 __ 4  

25  The number, N, of empty birds’ nests in a park is approximated by the function 

  N 5 74 1 42 sin (   p ___ 12  t ) , where t is the number of hours after midnight.

  Find the value of t when the number of empty nests first equals 90. 
Approximate the answer to 1 decimal place.

26  In Edinburgh, the number of hours of daylight on day D is modelled by the 

  function H 5 12 1 7.26 sin [    2p ____ 365  (D 2 80) ] , where D is the number of days after 

  December 31 (e.g. January 1 is D 5 1, January 2 is D 5 2, and so on). 
Do not use your GDC on part a).

a)  Which days of the year have 12 hours of daylight?

b)  Which days of the year have about 15 hours of daylight?

c)  How many days of the year have more than 17 hours of daylight?

In questions 27–34, solve the equation for the stated solution interval. Find exact 
solutions, if possible. Otherwise, give solutions to 3 significant figures. Verify solutions 
with your GDC.

27  2 cos2 x 1 cos x 5 0; 0 < x < 2p 

28 2 sin2 x 2 sin x 2 1 5 0; 0 < x < 2p

29  2 cos x 1 sin 2x 5 0; 2p < x < p 

30  2 sin x 5 cos 2x; 2p < x < p

31  tan2 x 2 tan x 5 2; 2   p __ 2   < x <   p __ 2    

32  sin2 x 5 cos2 x; 0 < x < p

33  2 sin2 x 1 3 cos x 2 3 5 0; 0 < x < 2p 

34  2 sin x 5 3 cos x; 0 < x < 2p

35  Given that sin  x 5   3 __ 5   and 0 , x ,   p __ 2   , find the exact values of

a)  cos x  b)  cos 2x  c)  sin 2x.

36  Given that cos  x 5 2   2 __ 3   and   p __ 2   , x , p, find the exact values of

a)  sin x  b)  sin 2x  c)  cos 2x.
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  1	 A	toy	on	an	elastic	string	is	attached	to	the	top	of	a	doorway.	It	is	pulled	down	and	
released,	allowing	it	to	bounce	up	and	down.	The	length	of	the	elastic	string,	L	
centimetres,	is	modelled	by	the	function	L	5	110	1	25	cos(2p t	),	where	t	is	time	in	
seconds	after	release.
a)  Find	the	length	of	the	elastic	string	after	2	seconds.
b)  Find	the	minimum	length	of	the	string.
c)  Find	the	first	time	after	release	that	the	string	is	85		cm.
d)  What	is	the	period	of	the	motion?

  2	 Find	the	exact	solution(s)	to	the	equation	2	sin2	x	2	cos	x	1	1	5	0	for	0	<	x	<	2p.

  3	 The	diagram	shows	a	circle	of	radius	6		cm.
	 The	perimeter	of	the	shaded	sector	is	25		cm.	

Find	the	radian	measure	of	the	angle	u.

  4	 Consider	the	two	functions	f	(x	)	5	cos	4x	and	g	(x	)	5	cos	( 		x __	
2
			)	.

a)  Write	down:	 (i)	the	minimum	value	of	the	function	f
	 	 (ii)	the	period	of	g.
b)  For	the	equation	f	(x	)	5	g	(x	),	find	the	number	of	solutions	in	the	interval	0	<	x	<	p.

  5	 A	reflector	is	attached	to	the	spoke	of	a	bicycle	wheel.	As	the	wheel	rolls	along	the	
ground,	the	distance,	d	centimetres,	that	the	reflector	is	above	the	ground	after	t	
seconds	is	modelled	by	the	function	

d	5	p	1	q	cos2p\mt,	where	p,	q	and	m	are	constants.

	 The	distance	d	is	at	a	maximum	of	64		cm	at	t	5	0	seconds	and	at	t	5	0.5	seconds,	and	
is	at	a	minimum	of	6		cm	at	t	5	0.25	seconds	and	at	t	5	0.75	seconds.	Write	down	the	
value	of:
a)  p	 b)  q	 c)  m.

  6	 Find	all	solutions	to	1	1	sin	3x	5	cos(0.25x)	such	that	x		[0,	p].

  7	 Find	all	solutions	to	both	trigonometric	equations	in	the	interval	x		[0,	2p].	Express	
the	solutions	exactly.
a)  2	cos2		x	1	5	cos	x	1	2	5	0	 b)  sin	2x	2	cos	x	5	0

  8	 The	value	of	x	is	in	the	interval			p __	
2
			,	x	,	p	and	cos2	x	5			8	__	

9
		.	Without	using	your	GDC,	

	 find	the	exact	values	for	the	following:
a)  sin	x	 b)  cos	2x	 c)  sin	2x

  9	 The	depth,	d	metres,	of	water	in	a	harbour	varies	with	the	tides	during	each	day.	The	
first	high	(maximum)	tide	after	midnight	occurs	at	5:00		a.m.	with	a	depth	of	5.8		m.	The	
first	low	(minimum)	tide	occurs	at	10:30		a.m.	with	a	depth	of	2.6		m.
a)  Find	a	trigonometric	function	that	models	the	depth,	d,	of	the	water	t	hours	after	

midnight.
b)  Find	the	depth	of	the	water	at	12	noon.
c)  A	large	boat	needs	at	least	3.5		m	of	water	to	dock	in	the	harbour.	During	what	time	

interval	after	12	noon	can	the	boat	dock	safely?

Practice questions

θ
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10	 Solve	the	equation	tan2	x	1	2	tan	x	2	3	5	0	for	0	<	x	<	p.	Give	solutions	exactly,	if	
possible.	Otherwise,	give	solutions	to	3	significant	figures.

11	 The	following	diagram	shows	a	circle	of	centre	O	and	radius	10		cm.	The	arc	ABC	
subtends	an	angle	of			3	_	2			radians	at	the	centre	O.
a)  Find	the	length	of	the	arc	ACB.
b)  Find	the	area	of	the	shaded	region.

12	 	Consider	the	function	f	(x	)	5			5	__	
2
			cos	( 2x	2			p __	

2
			)	.	For	what	values	of	k	will	the	equation	

f	(x	)	5	k	have	no	solutions?

13	 A	portion	of	the	graph	of	y	5	k	1	a	sin	x	is	shown	below.	The	graph	passes	through	the

	 points	(0,	1)	and		( 		3p ___	
2
	 	,	3	)	.	Find	the	value	of	k	and	a.

A B

rad
10 cm C

3
2

O

x

y

π 2π�π �

3

2

1

�1

0

f(x)

π
2

π
2

3π
2
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In this chapter, we approach trigonometry from a right triangle 
perspective where trigonometric functions will be defined in terms of 
the ratios of sides of a right triangle. Over two thousand years ago, the 
Greeks developed trigonometry to make helpful calculations for surveying, 
navigating, building and other practical pursuits. Their calculations were 
based on the angles and lengths of sides of a right triangle. The modern 
development of trigonometry, based on the length of an arc on the unit 
circle, was covered in the previous chapter. We begin a more classical 
approach by introducing some terminology regarding right triangles.

Right triangles
The conventional notation for triangles is to label the three vertices with 
capital letters, for example A, B and C. The same capital letters can be used 
to represent the measure of the angles at these vertices. However, we will 
often use a Greek letter, such as a (alpha), b (beta) or u (theta) to do so. 
The corresponding lower-case letters, a, b and c, represent the lengths of 
the sides opposite the vertices. For example, b represents the length of the 
side opposite angle B, that is, the line segment AC, or [AC ] (Figure 7.1).

In a right triangle, the longest side is opposite the right angle (i.e. measure 
of 90°) and is called the hypotenuse, and the two shorter sides adjacent to 
the right angle are often called the legs (Figure 7.2). Because the sum of the 
three angles in any triangle in plane geometry is 180°, then the two non-
right angles are both acute angles (i.e. measure between 0 and 90 degrees). 
It also follows that the two acute angles in a right triangle are a pair of 
complementary angles (i.e. have a sum of 90°).

Introduction

7 Triangle Trigonometry

Right triangles and trigonometric 
functions

7.1

Assessment statements
3.6	 Solution	of	triangles.
	 The	cosine	rule:	c2	5	a2	1	b2	22ab	cos	C.

	 The	sine	rule:	5			 a _____	
sin	A

 		5			 b ____	
sin	B

 		5			 c ____	
sin	C

 		,	including	the	ambiguous	case.

	 Area	of	a	triangle	as			1	_	2			ab	sin	C.

Figure  7.1

A Cb

ac

B

 Hint:  In IB notation, [AC ] denotes 
the line segment connecting points 
A and C. The notation AC represents 
the length of this line segment. 
Also, the notation AB

^

C denotes the 
angle with its vertex at point B, with 
one side of the angle containing 
the point A and the other side 
containing point C.

Figure  7.2

leg

leg

hyp
ote

nuse
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Trigonometric functions of an acute angle
We can use properties of similar triangles and the definitions of the sine, 
cosine and tangent functions from Chapter 6 to define these functions in 
terms of the sides of a right triangle.

The right triangles shown in Figure 7.3 are similar triangles because 
corresponding angles have equal measure – each has a right angle and an 
acute angle of measure u. It follows that the ratios of corresponding sides 
are equal, allowing us to write the following three proportions involving 
the sine, cosine and tangent of the acute angle u.

  sin u ____ 
1

   5   
opposite

 __________ 
hypotenuse

      cos u ____ 
1

   5   
adjacent

 __________ 
hypotenuse

      tan u ____ 
1

   5   sin u ____ 
cos u

   5   
opposite

 _______ 
adjacent

  

The definitions of the trigonometric functions in terms of the sides of a 
right triangle follow directly from these three equations. 

Right triangle definition of the trigonometric functions
Let u be an acute angle of a right triangle, then the sine, cosine and tangent functions 
of the angle u are defined as the following ratios in the right triangle:

  sin u 5   
side opposite angle u

  __________________  
hypotenuse

   

  cos u 5   
side adjacent angle u

  __________________  
hypotenuse

   

  tan u 5   
side opposite angle u

  __________________  
side adjacent angle u

  

It follows that the sine, cosine and tangent of an acute angle are positive.

It is important to understand that properties of similar triangles are the 
foundation of right triangle trigonometry. Regardless of the size (i.e. 
lengths of sides) of a right triangle, so long as the angles do not change, the 
ratio of any two sides in the right triangle will remain constant. All the right 
triangles in Figure 7.4 have an acute angle with a measure of 30° (thus, the 
other acute angle is 60°). For each triangle, the ratio of the side opposite 
the 30° angle to the hypotenuse is exactly   1 _ 2  . In other words, the sine of 30° 
is always   1 _ 2   . This agrees with results from the previous chapter knowing 
that an angle of 30° is equivalent to   p __ 

6
   in radian measure.

Figure 7.3

Thales of Miletus (circa 624–547) 
was the first of the Seven 
Sages, or wise men of ancient 
Greece, and is considered by 
many to be the first Greek 
scientist, mathematician and 
philosopher. Thales visited 
Egypt and brought back 
knowledge of astronomy 
and geometry. According 
to several accounts, Thales, 
with no special instruments, 
determined the height of 
Egyptian pyramids. He applied 
formal geometric reasoning. 
Diogenes Laertius, a 3rd-
century biographer of ancient 
Greek philosophers, wrote: 
‘Hieronymus says that [Thales] 
even succeeded in measuring 
the pyramids by observation 
of the length of their shadow 
at the moment when our 
shadows are equal to our 
own height.’  Thales used the 
geometric principle that the 
ratios of corresponding sides of 
similar triangles are equal.

θ
side adjacent θ

side opposite θ

hyp
ote

nuse

x

y

O (1, 0)
θ
cos θ

(cos θ, sin θ)

1
sin θ

θ
cos θ

1 sin θ



210

Triangle Trigonometry7

For any right triangle, the sine ratio for 30° is always   1 _ 2  : sin 30° 5   1 _ 2   .

The trigonometric functions of acute angles are not always rational 
numbers such as   1 _ 2  . We will see in upcoming examples that the sine of 60° 

is exactly   
 √

__
 3  
 ___ 

2
  .

Evaluating trigonometric functions for 30°, 45° 
and 60°
We can use Pythagoras’ theorem and properties of triangles to find the 
exact values for the most common acute angles: 30°, 45° and 60°.

Example 1 

Find the values of sin 45°, cos 45° and tan 45°.

Solution

Consider a square with each side equal to one unit. Draw a diagonal of 
the square, forming two isosceles right triangles. From geometry, we know 
that the diagonal will bisect each of the two right angles forming two 
isosceles right triangles, each with two acute angles of 45°. The isosceles 
right triangles have legs of length one unit and, from Pythagoras’ theorem, 
a hypotenuse of exactly  √

__
 2   units. The trigonometric functions are then 

calculated as follows:

 sin 45° 5   
opposite

 __________ 
hypotenuse

   5   1 ___ 
 √

__
 2  
   5    

√
__

 2   ___ 
2

    [multiplying by    
√

__
 2   ___ 

 √
__

 2  
    to rationalize

   the denominator]

 cos 45° 5   
adjacent

 __________ 
hypotenuse

   5   1 ___ 
 √

__
 2  
   5    

√
__

 2   ___ 
2

   

 tan 45° 5   
opposite

 _______ 
adjacent

   5   1 __ 
1

   5 1

Example 2 

Find the values of the sine, cosine and tangent functions for 30° and 60°.

Figure 7.4

30° 30° 30° 30°
12 16 20

26 13
1086

1

1

11

1

2hypotenuse �   12 � 12 �

45°

45°
1
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Solution

   

Start with a line segment of length two units. Using each endpoint as a 
centre and the segment as a radius, construct two circles. The endpoints of 
the original line segment and the point of intersection of the two circles are 
the vertices of an equilateral triangle. Each side has a length of two units 
and the measure of each angle is 60°. From geometry, the altitude drawn 
from one of the vertices bisects the angle at that vertex and also bisects the 
opposite side to which it is perpendicular. Two right triangles are formed 
that have acute angles of 30° and 60°, a hypotenuse of two units, and a 
short leg of one unit. Using Pythagoras’ theorem, the long leg is  √

__
 3   units. 

The trigonometric functions of 30° and 60° are then calculated as follows:

 sin 60° 5   
opposite

 __________ 
hypotenuse

   5   
 √

__
 3  
 ___ 

2
   sin 30° 5   

opposite
 __________ 

hypotenuse
   5   1 __ 

2
  

 cos 60° 5   
adjacent

 __________ 
hypotenuse

   5   1 __ 
2

   cos 30° 5   
adjacent

 __________ 
hypotenuse

   5   
 √

__
 3  
 ___ 

2
  

 tan 60° 5   
opposite

 _______ 
adjacent

   5   
 √

__
 3  
 ___ 

1
   5  √

__
 3   tan 30° 5   

opposite
 _______ 

adjacent
   5   1 ___ 

 √
__

 3  
   5   

 √
__

 3  
 ___ 

3
   

The geometric derivation of the values of the sine, cosine and tangent 
functions for the ‘special’ acute angles 30°, 45° and 60°, in Examples 1 and 
2, agree with the results from the previous chapter. The results for these 
angles – in both degree and radian measure – are summarised in the box 
below.

Values of sine, cosine and tangent for common acute angles

  sin 30° 5 sin   p __ 6   5   1 __ 2    cos 30° 5 cos   p __ 6   5    
√

__
 3   ___ 2     tan 30° 5 tan   p __ 6   5    

√
__

 3   ___ 3   

  sin 45° 5 sin   p __ 4   5    
√

__
 2   ___ 2     cos 45° 5 cos   p __ 4   5    

√
__

 2   ___ 2     tan 45° 5 tan   p __ 4   5 1

  sin 60° 5 sin   p __ 3   5    
√

__
 3   ___ 2     cos 60° 5 cos   p __ 3   5   1 __ 2    tan 60° 5 tan   p __ 3   5  √

__
 3  

rationalizing the
denominator

 Hint:  It is important that you are 
able to recall – without a calculator 
– the exact trigonometric values for 
these common angles.

60° 60°

22

2

60°

60°
1

60°

22
30° 30°

1
60°

230°

1

3long leg �   22 � 12 �
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Observe that sin 30° 5 cos 60° 5   1 __ 
2

  , sin 60° 5 cos 30° 5   
 √

__
 3  
 ___ 

2
   and 

sin 45° 5 cos 45° 5    
√

__
 2   ___ 

2
  . Complementary angles (sum of 90°) have equal 

function values for sine and cosine. That is, for all angles x measured in 
degrees, sin x 5 cos(90° 2 x) or sin(90° 2 x) 5 cos x. As noted in Chapter 
6, it is for this reason that sine and cosine are called co-functions.

Solution of right triangles
Every triangle has three sides and three angles – six different parts. The 
ancient Greeks knew how to solve for all of the unknown angles and sides 
in a right triangle given that either the length of two sides, or the length 
of one side and the measure of one angle, were known. To solve a right 
triangle means to find the measure of any unknown sides or angles. We 
can accomplish this by applying Pythagoras’ theorem and trigonometric 
functions. We will utilize trigonometric functions in two different ways 
when solving for missing parts in right triangles – to find the length of 
a side, and to find the measure of an angle. Solving right triangles using 
the sine, cosine and tangent functions is essential to finding solutions 
to problems in fields such as astronomy, navigation, engineering and 
architecture. In Sections 7.3 and 7.4, we will see how trigonometry can also 
be used to solve for missing parts in triangles that are not right triangles.

Angles of depression and elevation

An imaginary line segment from an observation point O to a point P 
(representing the location of an object) is called the line of sight of P. If P 
is above O, the acute angle between the line of sight of P and a horizontal 
line passing through O is called the angle of elevation of P. If P is below O, 
the angle between the line of sight and the horizontal is called the angle of 
depression of P. This is illustrated in Figure 7.5.

Example 3 

Solve triangle ABC given c 5 8.76  cm and angle A 5 30°, where the right 
angle is at C. Give exact answers when possible, otherwise give to an 
accuracy of 3 significant figures.

Figure 7.5

angle of
elevation

P

O

lin
e of si

ght
angle of

depression

O

P

line of sight
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Solution
Knowing that the conventional notation is to use a lower-case letter 
to represent the length of a side opposite the vertex denoted with the 
corresponding upper-case letter, we sketch triangle ABC indicating the 
known measurements.

From the definition of sine and cosine functions, we have 

Therefore, a 5 4.38  cm, b < 7.59  cm, and it’s clear that angle B 5 60°.

We can use Pythagoras’ theorem to check our results for a and b. 

a 2 1 b 2 5 c 2 ⇒  √
_______

 a 2 1 b 2   5 8.76

Be aware that the result for a is exactly 4.38  cm (assuming measurements 
given for angle A and side c are exact), but the result for b can only be 
approximated. To reduce error when performing the check, we should use 
the most accurate value (i.e. most significant figures) for b possible. The 
most effective way to do this on our GDC is to use results that are stored to 
several significant figures, as shown in the GDC screen image.

Example 4 

A scientist involved in forest management wants to measure the height of a 
tree without climbing it. From a point 34.5  m from the base of a large tree, 
the scientist determines that the angle of elevation from horizontal ground 
to the top of the tree is 52.4°. What is the height of the tree, approximated 
to the nearest tenth of a metre?

Solution
 tan 52.4° 5   

opposite
 _______ 

adjacent
   5   h ____ 

34.5
   ⇒ h 5 34.5 tan 52.4°

 h < 34.5(1.2985)
 h < 44.799  16
The height of the tree is approximately 44.8 m.

In both Examples 3 and 4, one of the acute angles of a right triangle was 
given so the third angle is easily determined from the fact that the sum of 
the angles is 180°. Let’s look at how we can use trigonometric functions to 
solve a right triangle for which the lengths of two of the sides are known, 
but the measure of both acute angles are unknown.

52.4°

34.5 m

h

30°
A Cb

a
c � 8.76 cm

B

 sin 30° 5   
opposite

 __________ 
hypotenuse

   5   a ____ 
8.76

   cos 30° 5   
adjacent

 __________ 
hypotenuse

   5   b ____ 
8.76

  

 a 5 8.76 sin 30° b 5 8.76 cos 30°

 a 5 8.76 (   1 __ 
2

   )  5 4.38 b 5 8.76 (     √
__

 3  
 ___ 

2
   )  < 7.586  382  537 < 7.59

8.76(√(3)/2)

√(4.38 2+B 2)

Ans B
7.586382537

7.586382537

8.76
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Example 5 

Solve triangle PQR given QR 5 9  cm and PQ 5 12  cm, where the right 
angle is at R. Give exact answers when possible, otherwise give to an 
accuracy of 3 s.f.

Solution
Using Pythagoras’ theorem: PR 5  √

_______

 122 2 92   5  √
___

 63   5 3 √
__

 7   < 7.94.

Both of the acute angles, P and Q, are unknown. We know the lengths of 
all three sides, so it is possible to evaluate any of the trigonometric functions 
for either of these angles. For example, it is clear that sin P 5   9 __ 12   5 0.75. To 
determine the acute angle that has a sine ratio of 0.75, we need to perform 
the inverse of the sine function (written as sin21). We can do this by 
solving the equation sin x 5 0.75 graphically, as we did in Section 6.4. 
(See GDC screen images at bottom of page.) Using a graphical method 
is particularly suitable if x represents a real number, or perhaps an angle 
in radian measure, and there is more than one solution for x. For triangle 
PQR, there is only one solution for P in the equation sin P 5 0.75 and it 
must be between 0° and 90°. Your GDC (in ‘degree’ mode) can be used 
to find the acute angle P, either graphically or by directly computing 
the inverse sine of 0.75. Although, as we will realize, there are an infinite 
number of angles with a sine ratio of 0.75, your GDC is programmed so 
that the inverse sine (sin21) computation gives only the one acute angle 
with a sine ratio of 0.75. The GDC screen images illustrate that having your 
GDC compute an inverse trigonometric value is the most efficient method 
for finding an acute angle.

Thus, P < 48.6° from which it follows that Q < 90° 2 48.6° < 41.4°.

Therefore, the missing parts of triangle PQR are PR < 7.94  cm, P < 48.6° 
and Q < 41.4°.

Graphical solution:
 Hint:  As mentioned in Section 

2.3, the notation for indicating the 
inverse of a function is a superscript 
of negative one. For example, the 
inverse of the cosine function is 
written as cos21. The negative one 
is not an exponent, so it does not 
denote reciprocal. Do not make 

this error: cos21 x     1 _____ cos x  . And as 

stated in Section 2.3, if f (a) 5 b then 
f 21(b) 5 a. For example, for the sine 

function, if sin 60° 5    
√

__
 3   ___ 2    then 

sin21 (    √
__

 3   ___ 
2

    )  5 60°.

9 cm 12 cm

Q

R P

NORMAL
FLOAT
RADIAN
FUNC
CONNECTED  DOT
SEQUENTIAL
REAL
FULL HORIZ G-T
SET CLOCK 13/09/06 13:12

a+bi reˆ0i
SIHUL

PAR POL SEQ
DEGREE
0 1 2 3 4 5 6 7 8 9
SCI ENG sin-1(.75)

48.59037789

Plot1

Y1= sin(X)
Plot2 Plot3

Y2=.75
Y3=
Y4=
Y5=
Y6=
Y7=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

WINDOW
Xmin=-90
Xmax=180
Xscl=45
Ymin=-1.5
Ymax=1.5
Yscl=1
Xres=1

Intersection
X=48.590378 Y=.75
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Example 6 

From the top of a perpendicular cliff 93  m high, the angle of depression 
of a boat is 26.5°. How far is the boat from the foot of the cliff? Give your 
answer accurate to 3 s.f.

Solution

If the angle of depression of the boat from the top of the cliff is 26.5°, the 
angle of elevation of the top of the cliff from the boat is also 26.5°. Thus, 
we can use the right triangle below to solve for d.

 tan 26.5° 5   93 ___ 
d

   ⇒ d 5   93 _______ 
tan 26.5

   ⇒ d <   93 _______ 
0.498  58

   < 186.53

The boat is approximately 187 m from the foot of the cliff.

Example 7 

A man who is 183  cm tall casts a 72  cm long shadow on the horizontal 
ground. What is the angle of elevation of the sun to the nearest tenth of a 
degree?

Solution
In the diagram, the angle of 
elevation of the sun is labelled u.

 tan u 5   183 ___ 
72

  

 u 5 tan21 (   183 ___ 
72

   )  

 u < 68.5° 
  
 GDC computation

The angle of elevation of the sun is approximately 68.5°.

183 cm

72 cm

θ

93 m

26.5°

26.5°
d

93 m

tan-1(183/72)
68.52320902
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In questions 1– 6, find the exact value of the trigonometric function for the specified 
acute angle in triangle  ABC.

  1  sin A  2  cos A  3  tan A
  4  sin B  5  cos B  6  tan B

  7  Using your GDC, find (accurate to 3 s.f.) the degree measure of BÂC and AB̂C in 
right triangle ABC above. 

In questions 8–13, sketch a right triangle corresponding to the given trigonometric 
function of the acute angle u. Use Pythagoras’ theorem to determine the third side, 
and then find the value of the other two trigonometric functions of u.

  8  sin u 5   3 __ 5    9  cos u 5   5 __ 8    10  tan u 5 2

11  cos u 5   7 ___ 10    12  tan u 5   1 __ 3    13  cos u 5    
√

__
 7   ___ 4   

In questions 14–19, find the exact value of the trigonometric function.

14  sin 45°  15  cos   p __ 6    16  tan 45°

17  sin   p __ 3    18  tan   p __ 6    19  cos 60°

In questions 20–25, find the exact value of u in degree measure (0 , u , 90°) and in 

radian measure  ( 0 , u ,   p __ 2   )  without using your GDC.

20  cos u 5   1 __ 2    21  sin u 5    
√

__
 2   ___ 2     22  tan u 5  √

__
 3  

23  sin u 5    
√

__
 3   ___ 2     24  tan u 5 1  25  cos u 5    

√
__

 3   ___ 2   

In questions 26–31, find the approximate value (to 3 s.f.) of u in degree measure 

(0 , u , 90°) and in radian measure  ( 0 , u ,   p __ 2   )  by using the inverse key on your 
GDC.

26  sin u 5 0.7258  27  cos u 5 0.7258  28  tan u 5 1.2953

29  cos u 5 0.1638  30  sin u 5 0.4721  31  tan u 5 0.6507

In questions 32–37, solve for x. Give your answer to 3 s.f.
32   33    34 

35    36    37 

Exercise 7.1

A
8

5

C

B

x

50
60°

55°
x

15

40°

x
32

x 225
53°

x
18

45°

30°

100

x
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In questions 38 and 39, solve for all of the unknown sides and angles.

38    39 

40  The tallest tree in the world is reputed to be a giant redwood named Hyperion 
located in Redwood National Park in California, USA. At a point 41.5  m from the 
centre of its base and on the same elevation, the angle of elevation of the top of 
the tree is 70°. How tall is the tree? Give your answer to 3 s.f.

41  The top of the Eiffel Tower in Paris (not including the antenna) is 300  m high. 
What will be the angle of elevation of the top of the tower from a point on the 
ground (assumed level) that is 125  m from the centre of the tower’s base?

42  A woman, 1.62  m tall, standing 3  m 
from a street light casts a 2  m long 
shadow (see diagram). What is the 
height of the street light?

43  A 6 m ladder leaning against the side of a building makes 
a 72° angle with the ground (see diagram). How far up the 
side of the house does the ladder reach?

 

44  An isosceles triangle has sides of length 8  cm, 
8  cm and 6  cm (see diagram). Find the angle 
between the two equal sides.

   

45  From a 50  m observation tower on the shoreline, a coastguard sights a boat in 
difficulty. The angle of depression of the boat is 5° (see diagram). How far is the 
boat from the shoreline?

15°
20

q
P

Q R

r 15

39

36

B A

C

3 m 2 m

1.62 m

h

72°

6 m

8 cm8 cm

6 cm

5°

50 m
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In this section, we will extend the trigonometric ratios to all angles 
allowing us to solve problems involving any size angle.

Functions of an angle related to functions of a 
real number
It is useful to pause for a moment in our consideration of the 
trigonometric functions as functions of an acute angle in a right triangle, 
and take a look at how this approach relates to the one taken in Chapter 6, 
where the trigonometric functions were functions of a real number. 

Figure 7.6 shows a right triangle, ABC, where the angle at vertex A is 
labelled u. Side BC is opposite to angle u and side AC is adjacent to angle u. 
Place ABC in the coordinate plane so that angle u is in standard position 
(A is the centre of the unit circle) as shown in Figure 7.7. The point 
labelled B9, with coordinates (x, y) on the unit circle, is the point where the 
arc of length t terminates. Note that ABC is similar to the smaller right 
triangle, AB9C9, and the two legs of AB9C9 are x and y (Figure 7.8).

 

From the definitions of the trigonometric functions of an acute angle in 
Section 7.1 and properties of similar triangles, we can write the following:

 sin u 5   
opposite

 __________ 
hypotenuse

   5   BC ___ 
AB

   5   B9C9 ____ 
AB9

   5   
y
 __ 

1
   5 y

 cos u 5   
adjacent

 __________ 
hypotenuse

   5   AC ___ 
AB

   5   AC9 ____ 
AB9

   5   x __ 
1

   5 x

Trigonometric functions of any angle7.2

Figure 7.6

adjacent to θ

opposite
to θhypotenuse

A C

B

θ

Figure 7.7  The radian measure of 
angle u is t.

x

y

A C

t

B

C�

B�(x, y)

(0, 1)

θ

Figure 7.8
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B
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From the definitions of the trigonometric functions for the real number 
t in Section 6.2, we know that sin t 5 y and cos t 5 x. Furthermore, if 
u is given in radian measure, then u 5 t. Therefore, the trigonometric 
functions of the angle with radian measure u are precisely the same as the 
trigonometric functions of the real number t . One of the reasons why 
trigonometric functions are so useful in a range of applications is because 
they can be applied in these two different ways.

Now let’s consider angles other than acute angles. 

Defining trigonometric functions for any angle 
in standard position
Consider the point P (x, y) on the terminal side of an angle u in standard 
position (Figure 7.9) such that r is the distance from the origin O to P. 
If u is an acute angle then we can construct a right triangle POQ (Figure 
7.10) by dropping a perpendicular from P to a point Q on the x-axis, and it 
follows that: 

sin u 5   
y
 _ r  , cos u 5   x __ r   and tan u 5   

y
 __ x   (x  0).

Extending this to angles other than acute angles allows us to define the 
trigonometric functions for any angle – positive or negative. It is important 
to note that the values of the trigonometric ratios do not depend on the 
choice of the point P (x, y). If P9(x 9, y 9) is any other point on the terminal 
side of angle u, as in Figure 7.11, then triangles POQ and P9OQ9 are similar 
and the trigonometric ratios for corresponding angles are equal.

Figure 7.9
P(x, y)

O
θ

x

y

r

Figure 7.10
P(x, y)

O
θ

x

y

r

x

y

Q

Figure 7.11
P(x, y)

P�(x�, y�)

O
θ

x

y

QQ�
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Definition of basic trigonometric functions
Let u be any angle (in degree or radian measure) in standard position, with (x, y) any 
point on the terminal side of u, and r 5  √

_______

 x 2 1 y 2  , the distance from the origin to the 
point (x, y), as shown below.

Then the trigonometric functions are defined as follows:

sin u 5   
y
 __ r      cos u 5   x __ r      tan u 5   

y
 __ x   (x  0)

Example 8 

Find the sine, cosine and tangent of an angle a that contains the point (23, 4) 
on its terminal side when in standard position.

Solution
 r 5  √

_______

 x 2 1 y 2   5  √
__________

 (23)2 1 42   5  √
___

 25   5 5

 Then, sin a  5   
y
 _ r   5   4 __ 5  

 cos a 5   x __ r   5   23 ___ 5   5 2   3 __ 5  

 tan a 5    
y
 __ x   5   4 ___ 

23
   5 2   4 __ 

3
  

Note that for the angle a in Example 8, we can form a right triangle by 
constructing a line segment from the point (23, 4) perpendicular to the 
x-axis, as shown in Figure 7.12. Clearly, u 5 180° 2 a. Furthermore, the 
values of the sine, cosine and tangent of the angle u are the same as that for 
the angle a, except that the sign may be different.

  

Figure 7.12

(x, y)

O

θ
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y

r
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O
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O
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5
4

3
θ



221

Whether the trigonometric functions are defined in terms of the length of 
an arc or in terms of an angle, the signs of trigonometric function values 
are determined by the quadrant in which the arc or angle lies, when in 
standard position (Figure 7.13). 

Example 9 

Find the sine, cosine and tangent of the obtuse angle that measures 150°.

Solution
The terminal side of the angle forms a 30° angle with the x-axis. The sine 
values for 150° and 30° will be exactly the same, and the cosine and tangent 
values will be the same but of opposite sign. We know that 

sin 30° 5   1 __ 
2

  , cos 30° 5   
 √

__
 3  
 ___ 

2
   and tan 30° 5   

 √
__

 3  
 ___ 

3
   .

Therefore, sin 150° 5   1 __ 
2

  , cos 150° 5 2   
 √

__
 3  
 ___ 

2
   and tan 150° 5 2   

 √
__

 3  
 ___ 

3
  .

Example 10 

Given that sin u 5   5 ___ 
13

   and 90° , u , 180°, find the exact values of cos u 
and tan u.

Solution
u is an angle in the second quadrant. It follows from the definition sin u 5   

y
 _ r   

that with u in standard position there must be a point on the terminal side 
of the angle that is 13 units from the origin (i.e. r 5 13) and which has a 
y-coordinate of 5, as shown in the diagram. 

Using Pythagoras’ theorem, |x | 5  √
_______

 132 2 52   5  √
____

 144   5 12. Because u is in 
the second quadrant, the x-coordinate of the point must be negative, thus 
x 5 212. 

Therefore, cos u 5   212 ____ 
13

   5 2   12 ___ 
13

  , and tan u 5   5 ____ 
212

   5 2   5 ___ 
12

  .

Figure 7.13  Sign of trigonometric 
function values depends on the 
quadrant in which the terminal side 
of the angle lies.

Example 9 illustrates three 
trigonometric identities for 
angles whose sum is 180° (i.e. a 
pair of supplementary angles). 
The following are true for any 
acute angle u:

sin(180° 2 u) 5 sin u

cos(180° 2 u) 5 2cos u

tan(180° 2 u) 5 2tan u

xx�x

y

y

O
30° 30°150°

(�x, y) (x, y)

θ

x

y

sine �
cosine �
tangent �

sine �
cosine �
tangent �

sine �
cosine �
tangent �

O sine �
cosine �
tangent �

(x, y)
II I

III IV

xx

y

O
θ

5
13

(x, 5)
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Example 11 

a) Find the acute angle with the same sine ratio as (i) 135°, and (ii) 117°.
b) Find the acute angle with the same cosine ratio as (i) 300°, and (ii) 342°.

Solution
a) (i)  Angles in the first and second quadrants have the same sine ratio. 

Hence, the identity sin(180° 2 u) 5 sin u. Since 180° 2 135° 5 45°, 
then sin 135° 5 sin 45°.

 (ii) Since 180° 2 117° 5 63°, then sin 117° 5 sin 63°

b) (i)  Angles in the first and fourth quadrants have the same cosine ratio. 
Hence, the identity cos(360° 2 u) 5 cos u. Since 360° 2 300° 5 60°, 
then cos 300° 5 cos 60° .

 (ii) Since 360° 2 342° 5 18°, then cos 342° 5 cos 18°.

Areas of triangles
You are familiar with the standard formula for the area of a triangle,  
area 5   1 _ 2   3 base 3 height (or area 5   1 _ 2  bh), where the base, b, is a side of the 
triangle and the height, h, (or altitude) is a line segment perpendicular to 
the base (or the line containing it) and drawn to the vertex opposite to the 
base, as shown in Figure 7.14.

     

If the lengths of two sides of a triangle and the measure of the angle 
between these sides (often called the included angle) are known, then 
the triangle is unique and has a fixed area. Hence, we should be able to 
calculate the area from just these measurements, i.e. from knowing two 

x

y

O

(�x, y) (x, y)

117° 63°

x

y

O

(x, �y)

(x, y)

18°342°

Figure 7.14

b

h

b

h
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sides and the included angle. This calculation is quite straightforward if the 
triangle is a right triangle (Figure 7.15) and we know the lengths of the two 
legs on either side of the right angle.

Let’s develop a general area formula that will apply to any triangle – right, 
acute or obtuse. For triangle ABC shown in Figure 7.16, suppose we know 
the lengths of the two sides a and b and the included angle C. If the length 
of the height from B is h, the area of the triangle is   1 _ 2  bh. From right triangle 

trigonometry, we know that sin C 5   h __ a  , or h 5 a sin C. Substituting a sin C 
for h, area 5   1 _ 2  bh 5   1 _ 2  b(a sin C) 5   1 _ 2  ab sin C.

If the angle C is obtuse, then from Figure 7.17 we see that sin(180° 2 C) 5   h __ a  . 
So, the height is h 5 a sin(180° 2 C). However, sin(180° 2 C) 5 sin C . 
Thus, h 5 a sin C and, again, area 5   1 _ 2   ab sin C.

Area of a triangle

For a triangle with sides of lengths a and b and included angle C,

Area of  5   1 _ 2   ab sin C

Example 12 

Find the area of each triangle. Express the area exactly, or, if not possible, 
express it accurate to 3 s.f.

a)  b)  c) 

Solution

a) Area 5   1 _ 2  (12)(14) sin 30° 5 84(0.5) 5 42  cm2

b) Area 5   1 _ 2  (8)(13) sin 110° < 52(0.939  69) < 48.9  cm2

c) Area 5   1 _ 2  (15)(17) sin 55° < 127.5(0.819  152) < 104  cm2

Figure 7.15

 Hint:  Note that the procedure for 
finding the area of a triangle from a 
pair of sides and the included angle 
can be performed three different 
ways. For any triangle labelled in the 
manner of the triangles in Figures 
7.16 and 7.17, its area is expressed 
by any of the following three 
expressions.

Area of  5   1 _ 2   ab sin C 

  5   1 _ 2   ac sin B 

  5   1 _ 2   bc sin A

These three equivalent expressions 
will prove to be helpful for 
developing an important formula 
for solving non-right triangles in the 
next section.

b

h

Figure 7.16

Figure 7.17

b

ca h

C

B

A

b

h a

B

c

A
C

180° � C

30°

14 cm

12 cm

110°13 cm 8 cm

55°
17 cm

15 cm
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Example 13 

The circle shown has a radius of 1  cm and the 

central angle u subtends an arc of length of   2p ___ 
3

    cm. 
Find the area of the shaded region.

Solution
The formula for the area of a sector is A 5   1 _ 2   r 2u 
(Section 6.1), where u is the central angle in radian 
measure. Since the radius of the circle is one, the 
length of the arc subtended by u is the same as the 
radian measure of u. Thus, area of sector

5   1 __ 
2

   (1)2  (   2p ___ 
3

   )  5   p __ 
3

   cm2. The area of the triangle 

formed by the two radii and the chord is equal to

   1 __ 
2

  (1)(1) sin  (   2p ___ 
3

   )  5   1 __ 
2

   (    √
__

 3  
 ___ 

2
   )  5   

 √
__

 3  
 ___ 4    cm2. 

 [ sin   2p ___ 
3

   5 sin  ( p 2   2p ___ 
3

   )  5 sin   p __ 
3

   5   
 √

__
 3  
 ___ 

2
   ] 

The area of the shaded region is found by subtracting the area of the triangle 

from the area of the sector. Area 5   p __ 
3

   2   
 √

__
 3  
 ___ 4   or   

4p 2 3 √
__

 3  
 _________ 

12
   or approximately 

0.614  cm2 (3 s.f.).

Example 14 

Show that it is possible to construct two different triangles with an area of 
35  cm2 that have sides measuring 8  cm and 13  cm. For each triangle, find 
the measure of the (included) angle between the sides of 8  cm and 13  cm to 
the nearest tenth of a degree.

Solution
We can visualize the two different triangles with equal areas – one with an 
acute included angle (a) and the other with an obtuse included angle (b). 

 Area 5   1 _ 2  (side)(side)(sine of included angle) 5 35  cm2

  5   1 _ 2   (8)(13)(sin a) 5 35

 52 sin a 5 35

 sin a 5   35 ___ 
52

  

 a 5 sin21  (   35 ___ 
52

   )  recall that the GDC will only give the acute angle  

   with sine ratio of   35 ___ 
52

  

 a < 42.3° rounded to the nearest tenth

Knowing that sin(180° 2 a) 5 sin a, the obtuse angle b is equal to 
180° 2 42.3° 5 137.7°.

θ

2π
3

11

2π
3 11

α

13

8

β

13

8

θ

2π
3 cm

1 cm1 cm
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Check this answer by computing on your GDC:

  1 _ 2   (8)(13)(sin 137.7°) < 34.997 < 35  cm2.

Therefore, there are two different triangles with sides 8  cm and 13  cm and 
area of 35  cm2 – one with an included angle of 42.3° and the other with an 
included angle of 137.7°.

In questions 1–6, find the exact value of the sine, cosine and tangent functions of the 
angle u.

  1      2 

  3      4 

  5      6 

  7  By using the symmetry of the unit circle, or otherwise, determine the exact sine, 
cosine and tangent function values for the following common obtuse angles.
a)  120°  b)  135°  c)  150°

  8  Evaluate the sine, cosine and tangent of each angle without using your GDC.

a)  225°  b)  330°  c)    7p ___ 6   

d)  260°  e)  270°  f )    5p ___ 3   

g)  2120°  h)  2   p __ 4    i)  p

Exercise 7.2
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In Section 7.1 we used techniques from right triangle trigonometry to 
solve right triangles when an acute angle and one side are known, or 
when two sides are known. In this section and the next, we will study 
methods for finding unknown lengths and angles in triangles that are not 
right triangles. These general methods are effective for solving problems 
involving any kind of triangle – right, acute or obtuse.

Possible triangles constructed from  
three given parts
As mentioned in the previous paragraph, we’ve solved right triangles by 
either knowing an acute angle and one side, or knowing two sides. Since 
the triangles also have a right angle, each of those two cases actually 

  9  Given that cos u 5   3 __ 5   and 290° , u , 0°, find the exact values of sin u and tan u.

10  Given that sin u 5   8 ___ 17   and 90° , u , 180°, find the exact values of cos u and 
tan u.

11  Given that tan u 5 2   12 ___ 5   and sin u , 0°, find the exact values of sin u and cos u.

12  Given that sin u 5 0 and cos u , 0°, find the exact values of cos u and tan u.

13  a)  Find the  acute angle with the same sine ratio as (i) 150°, and (ii) 95°.
b)  Find the acute angle with the same cosine ratio as (i) 315°, and (ii) 353°.
c)  Find the acute angle with the same tangent ratio as (i) 240°, and (ii) 200°.

14  Find the area of each triangle. Express the area exactly, or, if not possible, express 
it accurate to 3 s.f.
a)    b)    c) 

15  A chord AB subtends an angle of 120° at O, the centre of a circle with radius 
15  cm. Find the area of a) the sector AOB, and b) the triangle AOB.

16  Find the area of the shaded region (called a segment) in each circle.
a)    b) 

17  Find the area of a parallelogram with two 
sides of length 15  cm and 10  cm, if the angle 
between these sides has a measure of 54° 
(see diagram).

The law of sines7.3

60°

4

6

105°8
23 45°

30

90

π
3

10 cm
135°12 cm

54°

10 cm

15 cm
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involved knowing three different parts of the triangle – either two angles 
and a side, or two sides and an angle. We need to know at least three 
parts of a triangle in order to solve for other unknown parts. Different 
arrangements of the three known parts can be given. Before solving for 
unknown parts, it is helpful to know whether the three known parts 
determine a unique triangle, or possibly more than one triangle. The table 
below summarizes the five different arrangements of three parts and the 
number of possible triangles for each. You are encouraged to confirm these 
results on your own with manual or computer generated sketches.

Possible triangles formed with three known parts

Known parts Number of possible triangles

Three angles (AAA) Infinite triangles (not possible to 
solve)

Three sides (SSS) 
(sum of any two must be greater than the 
third)

One unique triangle

Two sides and their included angle (SAS) One unique triangle

Two angles and any side (ASA or AAS) One unique triangle

Two sides and a non-included angle (SSA) No triangle, one triangle or two 
triangles (ambiguous case).

ASA, AAS and SSA can be solved using the law of sines, whereas SSS and 
SAS can be solved using the law of cosines (next section). 

The law of sines (or sine rule)
In the previous section, we showed that we can write three equivalent 
expressions for the area of any triangle for which we know two sides and 
the included angle.

Area of  5   1 _ 2   ab sin C 5   1 _ 2   ac sin B 5   1 _ 2   bc sin A

If each of these expressions is divided by    1 _ 2   abc,

   
  1 _ 2   ab sin C

 ________ 
  1 _ 2   abc

   5   
   1 _ 2   ac sin B

 ________ 
  1 _ 2   abc

   5   
   1 _ 2   bc sin A

 ________ 
  1 _ 2   abc

   

we obtain three equivalent ratios – each containing the sine of an angle 
divided by the length of the side opposite the angle.

The law of sines
If A, B and C are the angle measures of any triangle and a, b and c are, respectively, the 
lengths of the sides opposite these angles, then

  sin A ____ a    5   sin B ____ 
b

    5   sin C ____ c   

Alternatively, the law of sines can also be written as    a ____ 
sin A

   5    b ____ 
sin B

   5    c ____ 
sin C

   .

ca

bC

B

A
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Solving triangles given two angles and any side 
(ASA or AAS)
If we know two angles and any side of a triangle, we can use the law of 
sines to find any of the other angles or sides of the triangle.

Example 15 

Find all of the unknown angles and sides of 
triangle DEF shown in the diagram. Approximate 
all measurements to 1 decimal place.

Solution
The third angle of the triangle is

D 5 180° 2 E 2 F 5 180° 2 103.4° 2 22.3° 5 54.3°
Using the law of sines, we can write the following proportion to solve for 
the length e:

  sin 22.3° _______ 
11.9

   5   sin 103.4° ________ e  

e 5   11.9 sin 103.4°  ____________ 
sin 22.3°

   < 30.507  cm

We can write another proportion from the law of sines to solve for d:

  sin 22.3° _______ 
11.9

   5   sin 54.3° _______ 
d

  

d 5   11.9 sin 54.3° ___________ 
sin 22.3°

   < 25.467  cm

Therefore, the other parts of the triangle are D 5 54.3°, e < 30.5  cm and 
d < 25.5  cm.

Example 16 

A tree on a sloping hill casts a shadow 45  m along the side of the hill. The 
gradient of the hill is   1 _ 5   (or 20%) and the angle of elevation of the sun is 
35°. How tall is the tree to the nearest tenth of a metre?

Solution
a is the angle that the hill makes with the horizontal. Its measure 
can be found by computing the inverse tangent of   1 _ 5  .

a 5 tan21 (   1 __ 
5

   )  < 11.3099°

 Hint:  When using your GDC to 
find angles and lengths with the 
law of sines (or the law of cosines), 
remember to store intermediate 
answers on the GDC for greater 
accuracy. By not rounding until 
the final answer, you reduce the 
amount of round-off error.

5
α

β 1
45 m

h

11.9 cm

22.3°

103.4°d

eF

E

D
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The height of the tree is labelled h. The angle of elevation of the sun is the 
angle between the sun’s rays and the horizontal. In the diagram, this angle 
of elevation is the sum of a and b. Thus, b < 35° 2 11.3099° < 23.6901°. 
For the larger right triangle with a 1 b 5 35° as one of its acute angles, the 
other acute angle – and the angle in the obtuse triangle opposite the side 
of 45  m – must be 55°. Now we can apply the law of sines for the obtuse 
triangle to solve for h.

  sin 23.7° _______ 
h

   5   sin 55° ______ 45   ⇒ h 5   45 sin 23.7° _________ 
sin 55°

   < 22.0809

Therefore, the tree is approximately 22.1  m tall.

Two sides and a non-included angle (SSA) – the 
ambiguous case
The arrangement where we are given the lengths of two sides of a triangle 
and the measure of an angle not between those two sides can produce three 
different results: no triangle, one unique triangle or two different triangles. 
Let’s explore these possibilities with the following example.

Example 17 

Find all of the unknown angles and sides of triangle ABC where a 5 35  cm, 
b 5 50  cm and A 5 30°. Approximate all measurements to 1 decimal place.

Solution
Figure 7.18 shows the three parts we have from which to try and construct 
a triangle.

We attempt to construct the triangle, as shown in Figure 7.19. We first draw 
angle A with its initial side (or base line of the triangle) extended. We then 
measure off the known side b 5 AC 5 50. To construct side a (opposite 
angle A), we take point C as the centre and with radius a 5 35 we draw an 
arc of a circle. The points on this arc are all possible positions for vertex B 
– one of the endpoints of side a, or BC. Point B must be on the base line, 
so B can be located at any point of intersection of the circular arc and the 
base line. In this instance, with these particular measurements for the two 
sides and non-included angle, there are two points of intersection, which 
we label B1 and B2.

45 m

55°

23.7°
11.3°

h

Figure 7.18a � 35 cmB C

A C
A 30°b � 50 cm
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Therefore, we can construct two different triangles, triangle AB1C (Figure 
7.20) and triangle AB2C (Figure 7.21). Angle B1 will be acute and angle B2 
will be obtuse. To complete the solution of this problem, we need to solve 
each of these triangles.

•  Solve triangle AB1C:

 We can solve for acute angle B1 using the law of sines:

   sin 30° ______ 
35

   5   
sin B1 _____ 

50
  

 sin B1 5   50 sin 30° ________ 
35

   5   
50(0.5)

 ______ 
35

  

 B1 5 sin21  (   5 __ 7   )  < 45.5847°

Then, C < 180° 2 30° 2 45.5847° < 104.4153°.

With another application of the law of sines, we can solve for side c1:

   sin 30° ______ 
35

   5   sin 104.4153° ___________ c1
  

 c1 5   35 sin 104.4153°  _____________ 
sin 30°

   <   
35(0.96852)

 __________ 
0.5

   < 67.7964  cm

Therefore, for triangle AB1C, B1 < 45.6°, C < 104.4° and c1 < 67.8  cm.

•  Solve triangle AB2C:

Solving for obtuse angle B2 using the law of sines gives the same 
result as above, except we know that 90° , B2 , 180°.

We also know that sin (180° 2 u) 5 sin u. 

Thus, B2 5 180° 2 B1 < 180° 2 45.5847° < 134.4153°.

Then, C < 180° 2 30° 2 134.4153° < 15.5847°.

Figure 7.19

Figure 7.20

Figure 7.21

a � 35 cm
b � 50 cm

30°
base lineB1B2c2

A

C

c1

a � 35 cm
b � 50 cm

30°
B1A

C

c1

a � 35 cm
b � 50 cm

30°
B2c2

A

C
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With another application of the law of sines, we can solve for side c2:

   sin 30° ______ 
35

   5   sin 15.5847° __________ c2
  

 c2 <   35 sin 15.5847°  ____________ 
sin 30°

   <   
35(0.26866)

 __________ 
0.5

   < 18.8062  cm

Therefore, for triangle AB2C, B2 < 134.4°, C < 15.6° and 
c2 < 18.8  cm.

Now that we have solved this specific example, let’s take a more general 
look and examine all the possible conditions and outcomes for the SSA 
arrangement. In general, we are given the lengths of two sides – call 
them a and b – and a non-included angle – for example, angle A that is 
opposite side a. From these measurements, we can determine the number 
of different triangles. Figure 7.22 shows the four different possibilities 
(or cases) when angle A is acute. The number of triangles depends on the 
length of side a.

In case 2, side a is perpendicular to the base line resulting in a single 
right triangle, shown in Figure 7.23. In this case, clearly sin A 5   a __ 

b
   and 

a 5 b sin A. In case 1, the length of a is shorter than it is in case 2, i.e b sin A. 
In case 3, which occurred in Example 17, the length of a is longer than 
b sin A, but less than b. And, in case 4, the length of a is greater than b. 
These results are summarized in the table below. Because the number of 
triangles may be none, one or two, depending on the length of a (the side 
opposite the given angle), the SSA arrangement is called the ambiguous 
case.

The ambiguous case (SSA)
Given the lengths of sides a and b and the fact that the non-included angle A is acute, 
the following four cases and resulting triangles can occur.

Length of a Number of triangles

a , b sin A No triangle

a 5 b sin A One right triangle

b sin A , a , b Two triangles

a > b One triangle

Figure 7.22

Figure 7.23
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C
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b a

base line

four di�erent cases

B1B BB2
A

C

1
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The situation is considerably simpler if angle A is obtuse rather than acute. 
Figure 7.24 shows that if a . b then there is only one possible triangle, and 
if a < b then no triangle that contains angle A is possible.

Example 18 

For triangle ABC, if side b 5 50  cm and angle A 5 30°, find the values for 
the length of side a that will produce: (i) no triangle, (ii) one triangle, (iii) 
two triangles. This is the same SSA information given in Example 17 with 
the exception that side a is not fixed at 35  cm, but is allowed to vary.

Solution
Because this is a SSA arrangement and given A is an acute angle, then the 
number of different triangles that can be constructed is dependent on 
the length of a. First calculate the value of b sin A:

b sin A 5 50 sin 30° 5 50(0.5) 5 25  cm

Thus, if a is exactly 25  cm then triangle ABC is a right triangle, as shown in 
the figure.

 (i) If a , 25  cm, there is no triangle.
 (ii) If a 5 25  cm, or a . 50  cm, there is one unique triangle.
 (iii) If 25  cm , a , 50  cm, there are two different possible triangles.

Example 19 

The diagrams below show two different triangles both satisfying the 
conditions: HK 5 18  cm, JK 5 15  cm, JĤK 5 53°.

a) Calculate the size of HĴK in Triangle 2.
b) Calculate the area of Triangle 1.

Figure 7.24  Angle A is obtuse.

 Hint:  It is important to be familiar 
with the notation for line segments 
and angles commonly used in 
IB exam questions. For example, 
the line segment labelled b in the 
diagram (below) is denoted as [AC ] 
in IB notation. Angle A, the angle 
between [BA] and [AC], is denoted 
as BÂC. Also, the line containing 
points A and B is denoted as (AB).

A B

a
b

c

C

A

a � b           one triangle

C

B

b
a

a � b           no triangle

C

A

ba

A 30°

50 cm 25 cm

B

C

H J

Triangle 1

K

H J

Triangle 2

K
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Solution

a) From the law of sines,   
sin(HĴK)

 ________ 
18

   5   sin 53° ______ 
15

   ⇒ sin(HĴK) 5   18 sin 53° ________ 
15

   

  < 0.958  36 ⇒ sin21(0.95836) < 73.408°

However, HĴK . 90° ⇒ HĴK < 180° 2 73.408° < 106.592°.

Therefore, in Triangle 2 HĴK < 107° (3 s.f.).

b) In Triangle 1, HĴK , 90° ⇒ HĴK < 73.408°

⇒ HK̂J < 180° 2 (73.408° 1 53°) < 53.592°

Area 5   1 _ 2   (18)(15) sin(53.592°) < 108.649  cm2.

Therefore, the area of Triangle 1 is approximately 109  cm2 (3 s.f.).

Two cases remain in our list of different ways to arrange three known parts 
of a triangle. If three sides of a triangle are known (SSS arrangement), 
or two sides of a triangle and the angle between them are known (SAS 
arrangement), then a unique triangle is determined. However, in both of 
these cases, the law of sines cannot solve the triangle.

For example, it is not possible to set up an equation using the law of sines 
to solve triangle PQR or triangle STU in Figure 7.25.

• Trying to solve PQR:   sin P ____ 4   5   sin R ____ 
6

   ⇒ two unknowns; cannot solve for 
angle P or angle R

• Trying to solve STU:   sin 80° ______ t   5   sin U _____ 
13

   ⇒ two unknowns; cannot solve 
for angle U or side R

The law of cosines (or cosine rule)
We will need the law of cosines to solve triangles with these kinds of 
arrangements of sides and angles. To derive this law, we need to place a 
general triangle ABC in the coordinate plane so that one of the vertices is at 
the origin and one of the sides is on the positive x-axis. Figure 7.26 shows 
both an acute triangle ABC and an obtuse triangle ABC. In either case, the 
coordinates of vertex C are x 5 b cos C and y 5 b sin C. Because c is the 
distance from A to B, then we can use the distance formula to write

The law of cosines7.4

Figure 7.25

T

t

S

17 cm

13 cm
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4 m

6 m

80°
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Q
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 c 5  √
_________________________

   (b cos C 2 a)2 1 (b sin C 2 0)2   distance between (b cos C, b sin C)
   and (a, 0)

 c 2 5 (b cos C 2 a)2 1 (b sin C 2 0)2 squaring both sides

 c 2 5 b 2 cos 2  C 2 2ab cos C 1a 2 1 b 2 sin2 C expand

 c 2 5 b 2(cos2 C 1 sin2 C) 2 2ab cos C 1 a 2 factor out b 2 from two terms

 c 2 5 b 2 2 2ab cos C 1 a 2 apply trigonometric identity 
   cos2 u 1 sin2 u 5 1

 c 2 5 a 2 1 b 2 2 2ab cos C rearrange terms

This equation gives one form of the law of cosines. Two other forms are 
obtained in a similar manner by having either vertex A or vertex B, rather 
than C, located at the origin.

   

The law of cosines
In any triangle ABC with corresponding sides a, b and c:

  c 2 5 a 2 1 b 2 2 2ab cos C

  b 2 5 a 2 1 c 2 2 2ac cos B

  a 2 5 b 2 1 c 2 2 2bc cos A

It is helpful to understand the underlying pattern of the law of cosines 
when applying it to solve for parts of triangles. The pattern relies on 
choosing one particular angle of the triangle and then identifying the two 
sides that are adjacent to the angle and the one side that is opposite to it. 
The law of cosines can be used to solve for the chosen angle or the side 
opposite the chosen angle.

Solving triangles given two sides and the 
included angle (SAS)
If we know two sides and the included angle, we can use the law of cosines 
to solve for the side opposite the given angle. Then it is best to solve for one 
of the two remaining angles using the law of sines.

Figure 7.26

B

A C
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c a
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x(0, 0) B (a, 0)

A(b cos C, b sin C )
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C
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x(0, 0) B (a, 0)

A(b cos C, b sin C )
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c
b

side opposite the
chosen angle
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adjacent to the
chosen angle
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adjacent to the
chosen angle

chosen angle

c2 � a2 � b2 � 2ab cos C
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Example 20 

Find all of the unknown angles and sides of triangle 
STU, one of the triangles shown earlier in Figure 7.25. 
Approximate all measurements to 1 decimal place.

Solution
We first solve for side t, opposite the known angle ST̂U, using the law of 
cosines:

 t 2 5 132 1 172 2 2(13)(17) cos 80°

 t  5  √
________________________

   132 1 172 2 2(13)(17) cos 80°  

 t < 19.5256

Now use the law of sines to solve for one of the other angles, say TŜU:

   sinTŜU ______ 
17

   5   sin 80° _______ 
19.5256

  

 sin TŜU 5   17 sin 80° ________ 
19.5256

  

 TŜU 5 sin21  (   17 sin 80° ________ 
19.5256

   ) 

 TŜU < 59.0288°

Then, SÛT < 180° 2 (80° 1 59.0288°) < 40.9712°.

Therefore, the other parts of the triangle are t < 19.5  cm, TŜU < 59.0° and 
SÛT < 41.0°.

 Hint:  As previously mentioned, remember to store intermediate answers on the GDC for 
greater accuracy. By not rounding until the final answer, you reduce the amount of round-
off error. The GDC screen images below show the calculations in the solution for Example 20 
above.

Example 21 

A ship travels 50 km due west, then changes its 
course 18° northward, as shown in the diagram. 
After travelling 75  km in that direction, how 
far is the ship from its point of departure? Give 
your answer to the nearest tenth of a kilometre.

You may have noticed that the 
formula for the law of cosines 
looks similar to the formula for 
Pythagoras’ theorem. In fact, 
Pythagoras’ theorem can be 
considered a special case of the 
law of cosines. When the chosen 
angle in the law of cosines is 90°, 
and since cos 90° 5 0, the law 
of cosines becomes Pythagoras’ 
theorem.

If angle C 5 90°, then 
c 2 5 a 2 1 b 2 2 2ab cos C 
⇒ c 2 5 a 2 1 b 2 2 2ab cos 90° 
⇒ c 2 5 a 2 1 b 2 2 2ab(0) 
⇒ c 2 5 a 2 1 b 2 or a 2 1 b 2 5 c 2

A Cb

c a

B

d

50 km
departure

point

75 km
18°

N

T

t

S

17 cm

13 cm
80°

U

√(132+17-2(13)(

19.52556031
17)cos(80))

19.52556031
Ans T

19.52556031
sin-1(17sin(80)/T

59.02884098

59.02884098

)

Ans T

Ans S

sin-1(17sin(80)/T

59.02884098

59.02884098

40.97115902

)

Ans S

180-(80+S)
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Solution
Let d be the distance from the departure point to the position of the ship. 
A large obtuse triangle is formed by the three distances of 50  km, 75  km 
and d  km. The angle opposite side d is 180° 2 18° 5 162°. Using the law of 
cosines, we can write the following equation to solve for d:

 d 2 5 502 1 752 2 2(50)(75) cos 162°

 d 5  √
_________________________

   502 1 752 2 2(50)(75) cos 162°   < 123.523

Therefore, the ship is approximately 123.5      km from its departure point.

Solving triangles given three sides (SSS)
Given three line segments such that the sum of the lengths of any two is 
greater than the length of the third, then they will form a unique triangle. 
Therefore, if we know three sides of a triangle we can solve for the three 
angle measures. To use the law of cosines to solve for an unknown angle, it 
is best to first rearrange the formula so that the chosen angle is the subject 
of the formula.

Solve for angle C in:

c 2  5  a 2  1  b 2  2  2ab cos C ⇒ 2 ab cos C 5 a 2  1  b 2  2  c 2 ⇒ cos C 5   a 2 1 b 2 2 c 2 ___________ 
2ab

  

Then, C 5 cos21  (   a 2 1 b 2 2 c 2 ___________ 
2ab

   ) .

Example 22 

Find all of the unknown angles of triangle PQR, the second triangle shown 
earlier in Figure 7.25. Approximate all measurements to 1 decimal place.

Solution
Note that the smallest angle will be opposite the shortest side. Let’s first 
solve for the smallest angle – thus, writing the law of cosines with chosen 
angle P:

P 5 cos21  (   52 1 62 2 42
 ___________ 

2(5)(6)
   )  < 41.4096°

Now that we know the measure of angle P, we have two sides and a non-
included angle (SSA), and the law of sines can be used to find the other 
non-included angle. Consider the sides QR 5 4, RP 5 5 and the angle 
P < 41.4096°. Substituting into the law of sines, we can solve for angle Q 
that is opposite RP.

   
sin Q

 _____ 5   5   sin 41.4096° __________ 4  

5 m

4 m

6 m

P

R

Q
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 sin Q 5   5 sin 41.4096° ___________ 4  

 Q 5 sin21  (   5 sin 41.4096° ___________ 4   )  < 55.7711°

Then, R < 180° 2 (41.4096° 1 55.7711°) < 82.8192°.

Therefore, the three angles of triangle PQR are P < 41.4°, Q < 55.8° and 
R < 82.8°.

Example 23 

A ladder that is 8  m long is leaning against a non-vertical wall that slopes 
away from the ladder. The foot of the ladder is 3.5  m from the base of 
the wall, and the distance from the top of the ladder down the wall to the 
ground is 5.75  m. To the nearest tenth of a degree, what is the acute angle 
at which the wall is inclined to the horizontal?

Solution
Let’s start by drawing a diagram that accurately represents the given 
information. u marks the acute angle of inclination of the wall. Its 
supplement is FB̂T. From the law of cosines:

 cos FB̂T 5   3.52 1 5.752 2 82
  _______________  

2(3.5)(5.75)
  

  FB̂T 5 cos21  (   3.52 1 5.752 2 82
  _______________  

2(3.5)(5.75)
   )  < 117.664°

 u < 180° 2 117.664° < 62.336°

Therefore, the angle of inclination of the wall is approximately 62.3°.

In questions1–6, state the number of distinct triangles (none, one, two or infinite) 
that can be constructed with the given measurements. If the answer is one or two 
triangles, provide a sketch of each triangle.

  1  AĈB 5 30°, AB̂C 5 50° and BÂC 5 100°

  2  AĈB 5 30°, AC 5 12  cm and BC 5 17  cm

  3  AĈB 5 30°, AB 5 7  cm and AC 5 14  cm

  4  AĈB 5 47°, BC 5 20  cm and AB̂C 5 55°

  5  BÂC 5 25°, AB 5 12  cm and BC 5 7  cm

  6  AB 5 23  cm, AC 5 19  cm and BC 5 11  cm

In questions 7–15, solve the triangle. In other words, find the measurements of all 
unknown sides and angles. If two triangles are possible, solve for both.

  7  BÂC 5 37°, AB̂C 5 28° and AC 5 14

  8  AB̂C 5 68°, AĈB 5 47° and AC 5 23  

  9  BÂC 5 18°, AĈB 5 51° and AC 5 4.7

10  AĈB 5 112°, AB̂C 5 25° and BC 5 240

11  BC 5 68, AĈB 5 71° and AC 5 59

12  BC 5 16, AC 5 14 and AB 5 12

13  BC 5 42, AC 5 37 and AB 5 26

14  BC 5 34, AB̂C 5 43° and AC 5 28

15  AC 5 0.55, BÂC 5 62° and BC 5 0.51

Exercise 7.3 and 7.4

F B

T

8 m
5.75 m

3.5 m
θ
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16  Find the lengths of the diagonals of a parallelogram whose sides measure 14  cm 
and 18  cm and which has one angle of 37°.

17  Find the measures of the angles of an isosceles triangle whose sides are 10  cm, 
8  cm and 8  cm.

18  A boat is sailing directly towards a cliff. The angle of elevation of a point on the 
top of the cliff and straight ahead of the boat increases from 10° to 15° as the 
ship sails a distance of 50  m (see diagram). Find the height of the cliff.

 

19  Given that for triangle DEF, ED̂F 5 43°, DF 5 24 and FE 5 18, find the two 
possible measures of DF̂E.

20  A tractor drove from a point A directly north for 500  m, and then drove north-
east (i.e. bearing of 45°) for 300  m, stopping at point B. What is the distance 
between points A and B?

21  Find the measure of the smallest angle in the triangle shown.

 

22  Find the area of triangle PQR.

 

In questions 23 and 24, find a value for the length of BC so that the number of 
possible triangles is: a) one, b) two and c) none.

23  BÂC 5 36°, AB 5 5  24  BÂC 5 60°, AB 5 10

25  A 50  m vertical pole is to be erected on the side of a sloping hill that makes a 
8° angle with the horizontal (see diagram). Find the length of each of the two 
supporting wires (x and y) that will be anchored 35  m uphill and downhill from 
the base of the pole.

50 m
10° 15°

h

9

6
4

R Q

P

15 cm

78°

40°

x
y

8°
35 m

50 m

35 m
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There are some additional applications of triangle trigonometry – both right 
triangles and non-right triangles – that we should take some time to examine.

Equations of lines and angles between two lines
Recall from Section 1.6, the slope m, or gradient, of a non-vertical line is 

defined as m 5   
y2 2 y1 ______ x2 2 x1

   5   
vertical change

  _______________  
horizontal change

  .

The equation of the line shown in Figure 7.27 has a slope m 5   1 _ 2   and a 
y-intercept of (0, 21). So, the equation of the line is y 5   1 _ 2   x 2 1. We can 
find the measure of the acute angle u between the line and the x-axis by 
using the tangent function (Figure 7.28).

u 5 tan21(m) 5 tan21 (   1 _ 
2
   )  < 26.6°.

Clearly, the slope, m, of this line is equal to tan u. If we know the angle 
between the line and the x -axis, and the y-intercept (0, c), we can write the 
equation of the line in slope-intercept form (y 5 mx 1 c) as y 5 (tan u)x 1 c.

Before we can generalize for any non-horizontal line, let’s look at a line 
with a negative slope.

The slope of the line is 2  1 _ 
2
  . In order for tan u to be equal to the slope of the 

line, the angle u must be the angle that the line makes with the x-axis in the 
positive direction, as shown in Figure 7.29. In this example, 

u 5 tan21(m) 5 tan21 ( 2   1 _ 2   )  < 226.6°.

Remember, an angle with a negative measure indicates a clockwise rotation 
from the initial side to the terminal side of the angle.

Applications7.5

Figure 7.29

Figure 7.27

Figure 7.28
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Equations of lines intersecting the x-axis
If a line has a y-intercept of (0, c) and makes an angle of u with the positive direction of 
the x-axis, such that 290° , u , 90°, then the slope (gradient) of the line is m 5 tan u 
and the equation of the line is y 5 (tan u)x 1 c. Note: The angle this line makes with any 
horizontal line will be u.

Let’s use triangle trigonometry to find the angle between any two 
intersecting lines – not just for a line intersecting the x-axis. Realize that 
any pair of intersecting lines that are not perpendicular will have both an 
acute angle and an obtuse angle between them. When asked for an angle 
between two lines, the convention is to give the acute angle.

Example 24 

Find the acute angle between the lines y 5 3x and y 5 2x.

Solution

The angle between the line y 5 3x and the positive x-axis is a, and the 
angle between the line y 5 2x and the positive x-axis is b.

 a 5 tan21(3) < 71.565°
 b 5 tan21(21) 5 245°

The obtuse angle between the two lines is  
a 2 b < 71.565° 2 (245°) < 116.565°.

Therefore, the acute angle u between the two lines is 
u 5 180° 2 116.565° < 63.4°.

Example 25 

Find the acute angle between the lines y 5 5x 2 2 and y 5   1 _ 3   x 2 1.

Solution

A horizontal line is drawn through the point of intersection. 
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The angle between y 5 5x 2 2 and this horizontal line is a, and the angle 
between y 5   1 _ 3   x 2 1 and this horizontal line is b.

a 5 tan21(5) < 78.690° and b 5 tan21  (   1 _ 3   )  5 18.435°

The acute angle u between the two lines is 
u 5 a 2 b < 78.690° 2 18.435° < 60.3°.

We can generalize the procedure for finding the angle between two lines as 
follows.

Given two non-vertical lines with equations of y1 5 m1x 1 c1 and y2 5 m2x 1 c2, the angle 
between the two lines is |tan21(m1) 2 tan21(m2)|. Note: This angle may be acute or obtuse.

Example 26 

a) Find the exact equation of line L1 that passes through the origin and 
makes an angle of 260° with the positive direction of the x-axis (or 120°).

b) The equation of line L2 is 7x 1 y 1 1 5 0. Find the acute angle between 
the lines L1 and L2.

Solution
a) The equation of the line is given by y 5 (tan u)x

 ⇒ y 5 [tan(260°)]x 5  [   sin(260°)
 _________ 

cos(260°)
   ] x 5   [      √

__
 3  
 ___ 2   
 ____ 

 2   1 _ 2  
   ] x 5 (2 √

__
 3  )x

Therefore, the equation of L1 is y 5  ( 2 √
__

 3   ) x or y 5 2x √
__

 3  .

Note: tan (260°) 5 tan 120° 5 2 √
__

 3  .

b) L2: 7x 1 y 1 1 5 0 ⇒ y 5 27x 2 1

u is the acute angle between the lines L1 and L2.

u 5 |tan21(m1) 2 tan21(m2)| 5 |tan21 ( 2 √
__

 3   ) 2 tan21(27)|

⇒ u < |260° 2(281.870°)| < |221.87°|

Therefore, the acute angle between the lines is approximately  
21.9° (3 s.f.).

Further applications involving the  
solution of triangles
Many problems that involve distances and angles are represented  
by diagrams with multiple triangles – right and otherwise. These diagrams 
can be confusing and difficult to interpret correctly. In these situations, it 
is important to carry out a careful analysis of the given information and 
diagram – this will usually lead to drawing additional diagrams. Often we 
can extract a triangle, or triangles, for which we have enough information 
to allow us to solve the triangle(s).
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Example 27 

Two boats, J and K, are 500  m apart. A lighthouse is on top of a 470  m cliff. 
The base, B, of the cliff is in line horizontally with [JK]. From the top, T, of 
the lighthouse, the angles of depression of J and K are, respectively, 25° and 
40°. Find, correct to the nearest metre, the height, h, of the lighthouse from 
its base on the clifftop ground to the top T.

Solution
First, extract obtuse triangle JKT and apply the law of sines to solve for the 
side KT, which is also the hypotenuse of the right triangle KBT.

  sin 25° ______ 
KT

   5   sin 15° ______ 
500

   ⇒ KT 5   500 sin 25° _________ 
sin 15°

   < 816.436  m

We can now use the right triangle KBT to find the side BT – which is equal 
to the height of the cliff plus the height of the lighthouse.

sin 40° 5   BT _______ 
816.436

   ⇒ BT 5 816.436 sin 40° < 524.795  m

Then, h < 524.795 2 470 < 54.795  m.

Therefore, the height of the lighthouse is 54.8  m.

40°25°

470 m

500 m

T

K

B

J

h

15°

500
25°

T

KJ 

40°

816.4

T

K B
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Example 28 

As viewed from the surface of the Earth, the angle subtended by the full Moon 
is 0.5182°. Given that the distance from the Earth’s surface to the Moon’s 
surface is approximately 383  500 km, find the radius of the Moon to 3 s.f.

Solution

Remember that the radius of a circle drawn to a point of tangency will  
be perpendicular to the tangent line. This gives us two right triangles  
in the diagram – each with one acute angle having a measure  
of   1 _ 2  (0.5182°) 5 0.2591°. Extract right triangle ADC from the diagram.

sin(0.2591°) 5   r __________ 
383  500 1 r

  

r 5 (383  500 1 r)sin(0.2591°)

r 5 383  500 sin(0.2591°) 1 r sin(0.2591°)

r 2 r sin(0.2591°) 5 383  500 sin(0.2591°) Collect terms containing r on 
 the left side.

r (12sin(0.2591°)) 5 383  500 sin(0.2591°) Factor out r from the expression 
 on the left side.

r 5   
383  500 sin(0.2591°)

  _________________  
1 2 sin(0.2591°)

   < 1742.12  km

Therefore, the approximate radius of the Moon is 1740 km to 3 s.f.

Example 29 

The diagram shows a point P that is 10 
km due south of a point D. A straight 
road PQ is such that the (compass) 
bearing of Q from P is 45°. A and B are 
two points on this road which are both 8 
km from D. Find the bearing of B from D, 
approximated to 3 s.f.
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Solution
The angle u in the diagram is the bearing of B from D. A strategy that will 
lead to finding u is:

(1) Extract triangle PDB and use the law of sines to solve for DB̂P. 

(2) Triangle ADB is isosceles (two sides equal), so DÂB 5 DB̂P; and since 
the sum of angles in triangle ADB is 180°, we can solve for AD̂B. 

(3) We can solve for DÂP because it is supplementary to DÂB, and then we 
can find the third angle in triangle APD.

(4) Since u 1 AD̂B 1 AD̂P 5 180°, we can solve for u.

   sin DB̂P _______ 
10

   5   sin 45° ______ 
8

  

 sin DB̂P 5   10 sin 45° ________ 
8

  

 DB̂P 5 sin21  (   10 sin 45° ________ 
8

   )  < 62.11°

 DÂB 5 DB̂P < 62.11°

 AD̂B < 180° 2 2(62.11°) < 55.78°

 PÂD < 180° 2 62.11° < 117.89°

 AD̂P < 180° 2 (45° 1 117.89°) < 17.11°

 u < 180° 2 (17.11° 1 55.78°) < 107.11°

Therefore, the bearing of B from D is approximately 107° to an accuracy 
of 3 s.f.
 

Compass bearings are 
measured clockwise from 
north.
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Three-dimensional trigonometry problems
Of course, not all applications of triangle trigonometry are restricted to just 
two dimensions. In many problems, it is necessary to calculate lengths and 
angles in three-dimensional structures. As in the preceding section, it is very 
important to carefully analyze the three-dimensional diagram and to extract 
any relevant triangles in order to solve for the necessary angle or length.

Example 30 

The diagram shows a vertical pole GH that is supported by two wires fixed 
to the horizontal ground at C and D. The following measurements are 
indicated in the diagram: CD 5 50  m, GD̂H 5 32°, HD̂C 5 26° and 
HĈD 5 80°.

Find a) the distance between H and D, and b) the height of the pole GH.

Solution
a) In triangle HDC: DĤC 5 180° 2 (80° 1 26°) 5 74°.

 Now apply the law of sines: 

   sin 80° ______ 
HD

   5   sin 74° ______ 
50

   ⇒ HD 5   50 sin 80° ________ 
sin 74°

   < 51.225 m

 Therefore, the distance from H to D is 51.2  m accurate to 3 s.f.

b) Using the right triangle GHD: 

tan 32° 5   GH ______ 
51.225

   ⇒ GH 5 51.225 tan 32° < 32.009 m

Therefore, the height of the pole is 32.0 m accurate to 3 s.f.

Example 31 

The figure shown is a pyramid with a square base. It is a right pyramid, 
so the line segment (i.e. the height) drawn from the top vertex A 
perpendicular to the base will intersect the square base at its centre C. If 
each side of the square base has a length of 2  cm and the height of the 
pyramid is also 2  cm, find:

a) the measure of AĜF

b) the total surface area of the pyramid.
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Solution
a) Label the midpoint of [GF ] as point M and draw two line segments, 

[CM ] and [AM ]. Since C is the centre of the square base then 
CM 5 1  cm. Extract right triangle ACM and use Pythagoras’ theorem to 
find the length of [AM ].

AM 5  √
______

 12 1 22   5  √
__

 5     [AM] is perpendicular to [GF ]

Extract right triangle AMG and use the tangent ratio to find AĜM 
(same as AĜF):

 tan(AĜM) 5   
 √

__
 5  
 ___ 

1
  

 AĜM 5 tan21( √
__

 5  ) < 65.905°

Therefore, AĜM 5 AĜF < 65.9°.

b) The total surface area comprises the square base plus four identical 
lateral faces that are all isosceles triangles. Triangle AGM is one-half the 
area of one of these triangular faces.

Area of triangle AGM 5   1 __ 
2

   (1)( √
__

 5  ) 5   
 √

__
 5  
 ___ 

2
   

 ⇒ Area of triangle AGF 5 2 (    √
__

 5  
 ___ 

2
   )  5  √

__
 5  

Surface area 5 area of square base 1 area of four lateral faces
 5 22 1 4 √

__
 5   5 4 1 4 √

__
 5   < 12.94  cm2

Example 32 

For the rectangular box shown, find a) the measure of AB̂C, and b) the area 
of triangle ABC.
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Solution
a) Each of the three sides of triangle ABC is the hypotenuse of a right 

triangle. Using Pythagoras’ theorem:

 AC 5  √
_______

 72 1 122   5  √
________

 49 1 144   5  √
____

 193   5 13.892

 AB 5  √
______

 52 1 72   5  √
_______

 25 1 49   5  √
___

 74   < 8.602

 BC 5  √
_______

 52 1 122   5  √
________

 25 1 144   5  √
____

 169   5 13

Apply the law of cosines to find AB̂C, using exact lengths of the sides of 
the triangle.

cos AB̂C 5   
( √

__
 74  )2 1 132 2 ( √

___
 193  )2

  __________________  
2( √

__
 74  )(13)

   ⇒ AB̂C 5 cos21  [   74 1 169 2 193  ____________ 
2( √

__
 74  )(13)

   ]  < 77.082°

Therefore, the measure of AB̂C is approximately 77.1° to 3 s.f.

b) Area of triangle 5   1 _ 2  (AB)(BC) sin AB̂C 5   1 _ 2  ( √
___

 74  )(13) sin(77.082°) 
< 54.499  96  cm2

Therefore, the area of triangle ABC is approximately 54.5  cm2.

In questions 1–4, determine:

a)  the slope (gradient) of the line (approximate to 3 s.f. if not exact)

b)  the equation of the line.

  1    2 

  3    4   

Exercise 7.5
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In questions 5–7, find the acute angle that the line through the given pair of points 
makes with the x-axis.

  5  (1, 4) and (21, 2)

  6  (23, 1) and (6, 25)

  7   ( 2,   1 _ 2   )  and (24, 210)

In questions 8 and 9, find the acute angle between the two given lines.

  8  y 5 22x and y 5 x

  9  y 5 23x 1 5 and y 5 2x

10  a)   Find the exact equation of line L1 that passes through the origin and makes 
an angle of 30° with the positive direction of the x-axis.

b)  The equation of line L2 is x 1 2y 5 6. Find the acute angle between L1 and L2.

11  Calculate AB given CD 5 30  cm, and the angle measures given in the diagram.

12  The circle with centre O and radius of 8  cm has two chords PR and RS, such that 
PR 5 5  cm and RS 5 10  cm. Find each of the angles PR̂O and SR̂O, and then 
calculate the area of the triangle PRS.

13  A pilot measures the angles of depression to two ships to be 40° and 52° (see 
diagram). If the pilot is flying at an elevation of 10 000 m, find the distance 
between the two ships.

40°

d

52°

10 000 m

A

B DC
40° 20°
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P

R

S
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14  A forester was conducting a survey of a tropical jungle that was mostly 
inaccessible on foot. The points F and G indicate the location of two rare trees. 
To find the distance between points F and G, a line AB of length 250  m is 
measured out so that F and G are on opposite sides of AB. The angles between 
the line segment AB and the line of sight from each endpoint of AB to each tree 
are measured, and are shown in the diagram. Calculate the distance between  
F and G.

15  Calculate the distance between the tips of the hands of a large clock on a 
building at 10 o’clock if the minute hand is 3  m long and the hour hand is 2.25  m 
long.

16  An airplane takes off from point A. It flies 850  km on a bearing of 030°. It then 
changes direction to a bearing of 065° and flies a further 500  km and lands at 
point B. 

a)  What is the straight line distance from A to B?

b)  What is the bearing from A to B?

17  The traditional bicycle frame consists of tubes connected together in the shape 
of a triangle and a quadrilateral (four-sided polygon). In the diagram, AB, BC, 
CD and AD represent the four tubes of the quadrilateral section of the frame. A 
frame maker has prepared three tubes such that AD 5 53  cm, AB 5 55  cm and 
BC 5 11  cm. If DÂB 5 76° and AB̂C 5 97°, what must be the length of tube CD? 
Give your answer to the nearest tenth of a centimetre.
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18  The tetrahedron shown in the diagram has the following measurements.

  AB 5 12  cm, DC 5 10  cm, AĈB 5 45° and AD̂B 5 60° 

  AB is perpendicular to the triangle BCD. Find the area of each of the four 
triangular faces: ABC, ABD, BCD and ACD.

19  Find the measure of angle DEF in the rectangular box.

20  At a point A, due south of a building, the angle of elevation from the ground to 
the top of a building is 58°. At a point B (on level ground with A), 80  m due west 
of A, the angle of elevation to the top of the building is 27°. Find the height of 
the building.
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  1  The shortest distance from a chord [AB] to the centre O of a circle is 3 units. The radius 
of the circle is 5 units. Find the exact value of sin AÔB.

  2  In a right triangle, tan u 5   3 _ 7  . Find the exact value of sin 2u and cos 2u.

  3  A triangle has sides of length 4, 5 and 7 units. Find, to the nearest tenth of a degree, 
the size of the largest angle.

  4  If A is an obtuse angle in a triangle and sin A 5   5 ___ 
13

  , calculate the exact value of sin 2A.

  5  The diagram shows a vertical pole PQ, which is supported by two wires fixed to the 
horizontal ground at A and B.

  BQ 5 40  m

  PB̂Q 5 36°

  BÂQ 5 70°

  AB̂Q 5 30°

  Find:  a)  the height of the pole PQ
    b)  the distance between A and B.

© International Baccalaureate Organization, 2000

  6  Town A is 48  km from town B and 32  km from town C, as shown in the diagram.

Given that town B is 56  km from town C, find the size of the angle CÂB to the nearest 
tenth of a degree.

© International Baccalaureate Organization, 2003
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  7  The following diagram shows a triangle with sides 5  cm, 7  cm and 8  cm.

  Find:  a)  the size of the smallest angle, in degrees

    b)  the area of the triangle.
© International Baccalaureate Organization, 2001

  8  The diagrams below show two different triangles, both satisfying the conditions: 
AB 5 20  cm, AC 5 17  cm, AB̂C 5 50°.

a)  Calculate the size of AĈB in Triangle 2.

b)  Calculate the area of Triangle 1.
© International Baccalaureate Organization, 2001

  9  Two boats A and B start moving from the same point P. Boat A moves in a straight line 
at 20  km/h and boat B moves in a straight line at 32  km/h. The angle between their 
paths is 70°. Find the distance between the two boats after 2.5 hours.

© International Baccalaureate Organization, 2002

10  In triangle JKL, JL 5 25, KL 5 38 and K ĴL 5 51°, as shown in the diagram.

  Find JK̂L, giving your answer correct to the nearest degree.

11  The following diagram shows a triangle ABC, where BC 5 5  cm, AB̂C 5 60° and 
AĈB 5 40°.

a)  Calculate AB.

b)  Find the area of the triangle.
© International Baccalaureate Organization, 2001
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12  Find the measure of the acute angle between a pair of diagonals of a cube.

13  A farmer owns a triangular field ABC. One side of the triangle, [AC], is 104  m, a second 
side, [AB ], is 65  m and the angle between these two sides is 60°.
a)  Use the cosine rule to calculate the length of the third side, [BC ], of the field.

b)  Given that sin 60° 5    
√

__
 3   ___ 

2
   , find the area of the field in the form p  √

__
 3  , where p is an 

integer.

  Let D be a point on [BC] such that [AD] bisects the 60° angle. The farmer divides the 
field into two parts, A1 and A2, by constructing a straight fence [AD] of length x  m, as 
shown in the diagram.

c)  (i)  Show that the area of A1 is given by   65x ____ 
4
   .

  (ii)  Find a similar expression for the area of A2.
  (iii)  Hence, find the value of x in the form q  √

__
 3  , where q is an integer.

d)  (i)  Explain why sin AD̂C 5 sin AD̂B.
  (ii)  Use the result of part (i) and the sine rule to show that   BD ___ 

DC
   5   5 __ 

8
  .

© International Baccalaureate Organization, 2002

30°
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Vectors are an essential tool in physics and a very significant part of 
mathematics. Historically, their primary application was to represent 
forces, and the operation called ‘vector addition’ corresponds to the 
combining of various forces. Many other applications in physics and other 
fields have been found since. In this chapter, we will discuss what vectors 
are and how to add, subtract and multiply them by scalars; we will also 
examine why vectors are useful in everyday life and how they are used in 
real-life applications. Then we will discuss scalar products.

Introduction

8 Vectors I--
Assessment statements

4.1	 Vectors	as	displacements	in	the	plane.
Components	of	a	vector;	column	representation.

v	5		( 	v1
	
	

	v2			
v3

		)		5	v1i	1	v2	j	1	v3k

Algebraic	and	geometric	approaches	to	the	following	topics:
the	sum	and	difference	of	two	vectors;	the	zero	vector;	the	vector	2v;
multiplication	by	a	scalar,	kv;	parallel	vectors;
magnitude	of	a	vector,	|v|;
unit	vectors;	base	vectors,	i,	j	and	k;
position	vectors	OA	5	a;
	
	___

	
›
	AB		=		

	___
	
›
	OB		–		

	___
	
›
	OA		=	b	–	a

4.2	 The	scalar	product	of	two	vectors.
Perpendicular	vectors;	parallel	vectors.
The	angle	between	two	vectors.

Control panel of a passenger jet 
cockpit.
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We can represent physical quantities like temperature, distance, area, speed, 
density, pressure and volume by a single number indicating magnitude 
or size. These are called scalar quantities. Other physical quantities 
possess the properties of magnitude and direction. We define the force 
needed to pull a truck up a 10° slope by its magnitude and direction. 
Force, displacement, velocity, acceleration, lift, drag, thrust and weight are 
quantities that cannot be described by a single number. These are called 
vector quantities. Distance and displacement, for example, have distinctly 
different meanings; so do speed and velocity. Speed is a scalar quantity that 
refers to ‘how fast an object is moving’.

Velocity is a vector quantity that refers to ‘the rate at which an object changes 
its position’. When evaluating the velocity of an object, we must keep track of 
direction. It would not be enough to say that an object has a velocity of 55 
km/h; we must include direction information in order to fully describe the 
velocity of the object. For instance, you must describe the object’s velocity 
as being 55 km/h east. This is one of the essential differences between speed 
and velocity. Speed is a scalar quantity and does not keep track of direction; 
velocity is a vector quantity and is direction-conscious.

Thus, an airplane moving westward with a speed of 600 km/h has a 
velocity of 600 km/h west. Note that speed has no direction (it is scalar) 
and velocity, at any instant, is simply the speed with a direction.

We represent vector quantities with directed line segments (Figure 8.1).

The directed line segment  
 ___

 
›
 AB  has initial point A and terminal point B. We 

use the notation  
 ___

 
›
 AB  to indicate that the line segment represents a vector 

quantity. We use | 
 ___

 
›
 AB  | to represent the magnitude of the directed line 

segment. The terms size, length or norm are also used. The direction of  
 ___

 
›
 AB  

is from A to B.  
 ___

 
›
 BA  has the same length but the opposite direction to  

 ___
 
›
 AB  and 

hence cannot be equal to it.

Two directed line segments that have the same magnitude and direction 
are equivalent. For example, the directed line segments in Figure 8.2 are all 
equivalent.

We call the set of all directed line segments equivalent to a given directed 
line segment  

 ___
 
›
 AB  a vector v, and write v 5  

 ___
 
›
 AB . We denote vectors by lower-

case, boldface letters such as a, u, and v.

We say that two vectors a and b are equal if their corresponding directed 
line segments are equivalent.

Vectors as displacements in the 
plane

8.1 The notion of vector, as 
presented here, is due to the 
mathematician-physicist J. 
Williard Gibbs (1839–1903) of 
Yale University. His book Vector 
Analysis (1881) made these 
ideas accessible to a wide 
audience.

Figure 8.1

AB
→

terminal point B

A initial point

Figure 8.2

B

A

 Hint: Note: When we handwrite 
vectors, we cannot use boldface, so 
the convention is to use the arrow 
notation.

Figure 8.3

Vectors a and b have the
same direction but di�erent
magnitudes ⇒ a � b.

a

b

Vectors a and b have equal
magnitudes but di�erent
directions ⇒ a � b.

Vectors a and b have equal
magnitudes and the same
direction ⇒ a � b.

b
b

aa
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Definition 1: Two vectors u and v are equal if they have the same magnitude and the 
same direction. 

Definition 2: The negative of a vector u, denoted by 2u, is a vector with the same 
magnitude but opposite direction.

Example 1 

Marco walked around the park as shown in the diagram. What is Marco’s 
displacement at the end of his walk?

Solution
Even though he walked a total distance of 180  m, his displacement is zero 
since he returned to his original position. So, his displacement is 0.

This is a displacement and hence direction is also important, not only 
magnitude. The 30  m south ‘cancelled’ the 30  m north, and the 60  m east is 
cancelled by the 60  m west.

Vectors can also be looked at as displacement/translation in the plane. 
Take, for example, the directed segments PQ and RS as representing the 
vectors u and v, respectively. The points P(0, 0), Q(2, 5), R(3, 1) and S(5, 6) 
are shown in Figure 8.4.

We can prove that these two vectors are equal.

Figure 8.4

60 m

60 m

30 m 30 m

y

xP

Q

R

v

u

S

(0, 0)

(2, 5)

(3, 1)

(5, 6)

1

2

3

4

5

6

1 2 3 4 5 6
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The directed line segments representing the vectors have the same 
direction, since they both have a slope of   5 _ 2  .

They also have the same magnitude, as:

 | 
 ___

 
›
 PQ  | 5  √

______

 52 1 22   5  √
___

 29   and

 | 
 __

 
›
 RS  | 5  √

_________________

  (5 2 3)2 1 (6 2 1)2   5  √
___

 29  

Component form
The directed line segment with the origin as its initial point is the most 
convenient way of representing a vector. This representation of the vector 
is said to be in standard position. In Figure 8.4, u is in standard position. A 
vector in standard position can be uniquely represented by the coordinates 
of its terminal point (u1, u2). This is called the component form of a vector 
u, written as u 5 (u1, u2).

The coordinates u1
 and u2 are the components of the vector u. In Figure 

8.4, the components of the vector u are 2 and 5.

If the initial and terminal points of the vector are the same, the vector is a 
zero vector and is denoted by 0 5 (0, 0).

If u is a vector in the plane with initial point (0, 0) and terminal point (u1, u2), the 
component form of u is u 5 (u1, u2). 

Note: The component form is also written as  (  u1   u2
  ) .

So, a vector in the plane is also an ordered pair (u1, u2) of real numbers. 
The numbers u1 and u2 are the components of u. The vector u 5 (u1, u2) is 
also called the position vector of the point (u1, u2).

If the vector u is not in standard position and is represented by a directed 
segment AB, then it can be written in its component form, observing the 
following fact:

u 5 (u1, u2) 5 (x2 2 x1, y2 2 y1), where A(x1, y1) and B(x2, y2) (Figure 8.5).

The length of vector u can be given using Pythagoras’ theorem and/or the 
distance formula:

|u | 5  √
_______

 u  2   1  1 u  2   2    5  √
___________________

  (x2 2 x1)2 1 (y2 2 y1)2  

Figure 8.5

xO

u

u1

u2

A(x1, y1)

B(x2, y2)

y2 � y1

x2 � x1

y
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Example 2 

Find the components and the length of the vector between the points 
P(22, 3) and Q(4, 7).

Solution

  
 ___

 
›
 PQ  5 (4 2 (22), 7 2 3) 5 (6, 4)

 | 
 ___

 
›
 PQ  | 5  √

_______
 36 1 16   5  √

___
 52   5 2 √

___
 13  

Example 3 

The directed segment from (21, 2) to (3, 5) represents a vector v. Find 
the length of vector v, draw the vector in standard position and find the 
opposite of the vector in component form.

Solution
The length of vector v can be found using the distance formula:

|v | 5  √
_________________

  (3 1 1)2 1 (5 2 2)2   5 5

The opposite of this vector can be represented by 2v 5 (24, 23).

Two of the most basic and important operations are scalar multiplication 
and vector addition. 

Scalar multiplication
In working with vectors, numbers are considered scalars. 
In this discussion, scalars will be limited to real numbers 
only. Geometrically, the product of a vector u and a scalar 
k, v 5 ku, is a vector that is |k | times as long as u. If k 
is positive, v has the same direction as u, and when k is 
negative, v has the opposite direction to u (Figure 8.6).

Vector operations8.2

u

u

2u

�u
�  u3

2

1
2 Figure 8.6

x

y

1

2

3

4

5

�2 �1 0 1

(�1, 2)

(3, 5)

(4, 3)

2 3

v

v

4
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Consequence: It becomes clear from this discussion that for two vectors to be parallel, 
it is necessary and sufficient that one of them is a scalar multiple of the other. That is, if v 
and u are parallel, then v 5 ku; and vice versa, if v 5 ku, then v and u are parallel.

In terms of their components, the operation of scalar multiplication is 
straightforward.

If u 5 (u1, u2) then v 5 ku 5 k(u1, u2) 5 (ku1, ku2).

Vector addition
There are two equivalent ways of looking at the addition of vectors 
geometrically. One is the triangular method and the other is the 
parallelogram method.

Let u and v denote two vectors. Draw the vectors such that the terminal point of u and 
initial point of v coincide. The vector joining the initial point of u to the terminal point of 
v is the sum (resultant) of vectors u and v and is denoted by u 1 v (Figure 8.7).

Another equivalent way of looking at the sum also gives us the grounds to 
say that vector addition is commutative. 

Let u and v denote two vectors. Draw the vectors such that the initial point 
of u and initial point of v coincide. The vector joining the common initial 
point of u and v to the opposite corner of the parallelogram, formed by the 
vectors as its adjacent sides, is the sum (resultant) of vectors u and v and is 
denoted by u 1 v (Figure 8.8).

The difference of two vectors is an extremely important rule that will be 
used later in the chapter.

As Figure 8.9 shows, it is an extension of the addition rule. An easy way of 
looking at it is through a combination of the parallelogram rule and the 
triangle rule. We draw the vectors u and v in the usual way, then we draw 
2v starting at the terminal point of u and we add u 1 (2v) to get the 
difference u 2 v. As it turns out, the difference of the two vectors u and v 
is the diagonal of the parallelogram with its initial point the terminal of v 
and its terminal point the terminal point of u.

Example 4 

Consider the vectors u 5 (2, 23) and w 5 (1, 3).

a) Write down the components of v 5 2u.

b) Find |u| and |v| and compare them.

c) Draw the vectors u, v, w, 2w, u 1 w, v 1 2w, u 2 w, v 2 2w.

d) Comment on the results of c) above.

Solution
a) v 5 2(2, 23) 5 (4, 26)
b) |u|  5   √

_____
 4 1 9    5   √

___
 13  , |v|  5   √

_______
 16 1 36    5   √

___
 52    5  2 √

___
 13  . Clearly, |v| 5 2|u|.

u � v
v

u

Figure 8.7

u � vv

u

Figure 8.8

u � v
�v

v

u

u

Figure 8.9
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d) We observe that u 1 w 5 (3, 0) which turns out 
to be (1 1 2, 3 2 3), the sum of the corresponding 
components. We observe the same for  
v 1 2w 5 (6, 0), which in turn is (2 1 4, 6 2 6).

We also observe that v 1 2w 5 2u 1 2w 5 2(u 1 w), 
and v 2 2w is parallel to u 2 w and is twice its length!

Can you draw more observations?

Base vectors in the coordinate plane
As you have seen before, vectors can also be represented in a coordinate 
system using their component form. This is a very useful tool that helps 
make many applications of vectors simple and easy. At the heart of the 
component approach to vectors we find the ‘base’ vectors i and j.

i is a vector of magnitude 1 with the direction of the positive x-axis and j 
is a vector of magnitude 1 with the direction of the positive y-axis. These 
vectors and any vector that has a magnitude of 1 are called unit vectors. 
Since vectors of same direction and length are equal, each vector i and j 
may be drawn at any point in the plane, but it is usually more convenient 
to draw them at the origin, as shown in Figure 8.10. 

Now, the vector ki has magnitude k and is parallel to the vector i. Similarly, 
the vector mj has magnitude m and is parallel to j.

Consider the vector u 5 (u1, u2). This vector, in standard position, has an 
x-component u1 and y-component u2 (Figure 8.11).

Since the vector u is the diagonal of the parallelogram with adjacent sides 
u1i and u2j, then it is the sum of the two vectors, i.e. u 5 u1i 1 u2j. It 
is customary to say that u1i is the horizontal component and u2j is the 
vertical component of u.

The previous discussion shows that it is always possible to express any 
vector in the plane as a linear combination of the unit vectors i and j.

This form of representation of vectors opens the door to a rich world of 
vector applications.

xO i

u

u1i

u2j

j

y

Figure 8.11

xO i

(0, 1)

(1, 0)
j

y

Figure 8.10

x

y

�4

�5

�6

�7

�3

�2

�1

1

(1, 3)

(2, 6)

(4, �6)

(2, �3)

0

2

3

4

5

6

7

�1 1 2 3 4 5 6

v � 2w

2w

w

u

v

v � 2wu � w u � w

c)

If vector u has components 
(u1, u2), then its component 
form is u = u1i + u2 j.



261

Vector addition and subtraction in component 
form
Consider the two vectors u 5 u1i 1 u2j and v 5 v1i 1 v2j. 

(i) Vector sum u 1 v

u 1 v 5 (u1i 1 u2j) 1 (v1i 1 v2j) 5 (u1i 1 v1i) 1 (u2j 1 v2j)
   5 (u1 1 v1)i 1 (u2 1 v2)j

For example, to add the two vectors u 5 2i 1 4j and v 5 5i − 3j, it is 
enough to add the corresponding components: 

u 1 v 5 (2 1 5)i 1 (4 2 3)j 5 7i 1 j

(ii) Vector difference u – v

u 2 v 5 (u1i 1 u2j) 2 (v1i 1 v2j) 5 (u1i 2 v1i) 1 (u2j 2 v2j) 

   5 (u1 2 v1)i 1 (u2 2 v2)j

For example, to subtract the two vectors u 5 2i 1 4j and v 5 5i − 3j, 
it is enough to subtract the corresponding components:

u 2 v 5 (2 2 5)i 1 (4 1 3)j 5 23i 1 7j

This interpretation of the difference gives us another way of finding 
the components of any vector in the plane, even if it is not in 
standard position (Figure 8.12).

 

Consider the vector  
 ___

 
›
 AB  where the position vectors of its endpoints 

are given by the vectors  
 ___

 
›
 OA  5 x1i 1 y1j and  

 ___
 
›
 OB  5 x2i 1 y2j.

As we have seen in section 8.1,  
 ___

 
›
 AB  5  

 ___
 
›
 OB  2  

 ___
 
›
 OA  5 (x2 2 x1)i 1 (y2 2 y1)

j. This result was given in Section 8.1 as a definition.

• Many of the laws of ordinary algebra are also valid for vector algebra. 
These laws are: 
• Commutative law for addition: a 1 b 5 b 1 a
• Associative law for addition: (a 1 b) 1 c 5 a 1 (b 1 c)

Figure 8.12

xO

A(x1, y1)

B(x2, y2)

y

Two vectors u and v are parallel 
iff v = ku. This also means that 
in component form   

v1 __ u1
   =   

v2 __ u2
   = k.
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The verification of the associative law is shown in Figure 8.13. 

  

If we add a and b we get a vector e. And similarly, if b is added to c, we 
get f.

Now d 5 e 1 c 5 a 1 f. Replacing e with (a 1 b) and f with (b 1 c), 
we get (a 1 b) 1 c 5 a 1 (b 1 c) and we see that the law is verified.

• Commutative law for multiplication: ma 5 am

• Distributive law (1): (m 1 n)a 5 ma 1 na, where m and n are two 
different scalars. 

• Distributive law (2): m(a 1 b) 5 ma 1 mb 

These laws allow the manipulation of vector quantities in much the same 
way as ordinary algebraic equations.

 1 Consider the vectors u and v given. 
Sketch each indicated vector.
a) 2u b) 2v 
c) u 1 v d) 2u – v  
e) v 2 2u

For questions 2 and 3, consider the points A and B given and answer the following 
questions:

a) Find |A
→

B|.
b) Find the components of the vector u 5 A

→
B and sketch it in standard position.

c) Write the vector v 5   1 ____ 
|AA
→

B|
   ? u in component form.

d) Find |v|.

e) Sketch the vector v and compare it to u.

 2 A(3, 4) and B(7, 21)

 3 A(22, 3) and B(5, 1)

 4 Consider the vector shown.
a) Write down the component  

representation of the vector.
b) Find the length of the vector.
c) Sketch the vector in standard  

position.
d) Find a vector equal to this one with  

initial point (21, 1).

Exercise 8.1 and 8.2

Figure 8.13

v
u

x

y

�4

�6

�2

0

2

�4 �2 2 4

Q(2, �5)

P(�3, 1)

d

a

b

c
fe
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Consider the vector u 5 3i 1 4j. To find the magnitude of this vector, |u|, 
we use the distance formula:

|u| 5  √
______

 32 1 42   5 5

If we divide the vector u by |u| 5 5, i.e. we multiply the vector u by the 
reciprocal of its magnitude, we get another vector that is parallel to u, since 
they are scalar multiples of each other. The new vector is

  u __ 5   5   3 __ 5   i 1   4 __ 5   j

This vector is a unit vector in the same direction as u, because

 |   u __ 
5

   | 5  √
___________

  (   3 __ 5   ) 2 1  (   4 __ 5   ) 2   5 1

Therefore, to find a unit vector in the same direction as a given vector, we 
divide that vector by its own magnitude.

For questions 5–7, the initial point P and terminal point Q are given. Answer the 
same questions as in question 4.

 5 P(3, 2), Q(7, 8)

 6 P(2, 2), Q(7, 7)

 7 P(26, 28), Q(22, 22)

 8 Find the terminal point of v 5 3i 2 2j if the initial point is (22, 1).

 9 Find the initial point of v 5 (23, 1) if the terminal point is (5, 0).

10 Find the terminal point of v 5 (6, 7) if the initial point is (22, 1).

11 Find the initial point of v 5 2i 1 7j if the terminal point is (23, 2).

12 Consider the vectors u 5 3i 2 j and v 5 2i 1 3j. 
a) Find u 1 v, u 2 v, 2u 1 3v and 2u 2 3v.
b) Find |u 1 v|, |u 2 v|, |u| 1 |v| and |u| 2 |v|.
c) Find |2u 1 3v|, |2u 2 3v|, 2|u| 1 3|v| and 2|u| 2 3|v|.

13 Let u 5 (1, 5) and v 5 (3, 24). Find the vector x such that
 2u 2 3x 1 v 5 5x 2 2v.

14 Find u and v if u 2 2v 5 2i 2 3j and u 1 3v 5 i 1 j.

15 Find the lengths of the diagonals of the parallelogram whose sides are the 
vectors 2i 2 3j and i 1 j.

16 Vectors u and v form two sides of parallelogram PQRS, as shown. Express each of 
the following vectors in terms of u and v.
a)  

 __
 
›
 PR 

b)  
 ___

 
›
 PM , where M is the midpoint of [RS]

c)  
 __

 
›
 QS 

d)  
 ___

 
›
 QN 

P

S R

Q

Nv

u

M

Unit vectors and direction angles8.3
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This is tightly connected to the concept of the direction angle of a given 
vector. The direction angle of a vector (in standard position) is the angle it 
makes with the positive x-axis (Figure 8.14).

So, the vector u can be expressed in terms of the unit vector parallel to it in 
the following manner:

u 5 u1i 1 u2j 5 (|u|cosu)i 1 (|u|sinu)j 5 |u|(cosui 1 sinuj), where

u1 5 |u|cosu and u2 5 |u|sinu. This fact implies two important tools that 
help us:

1. find the direction of a given vector 

2. find vectors of any magnitude parallel to a given vector.

Given a vector u 5 u1i 1 u2j, find the direction angle of this vector and 
another vector, whose magnitude is m, that is parallel to the vector u. 

1. To help determine the direction angle, we observe the following:

u1 5 |u|cosu and u2 5 |u|sinu

This implies that   
u2 __ u1

   5    
|u|sin u

 _______ 
|u|cos u

   5 tan u.

So, tan21u is the reference angle for the direction angle in question. To 
know what the direction angle is, it is best to look at the numbers u1 and 
u2 in order to determine which quadrant the vector is in. The following 
example (Example 5) will clarify this point.

2. To find a vector of magnitude m parallel to u, we must first find the unit 
vector in the direction of u and then we multiply it by the scalar m.

The unit vector in the direction of u is   u ___ 
|u|

   5   1 ___ 
|u|

   (u1i 1 u2j), and the 

vector of magnitude m in this direction will be

m   u ___ 
|u|

   5   m _________ 
 √

_______

 u  2 
 
 1  1 u  2 

 
 2   
   (u1i 1 u2j).

Figure 8.14

sin θ

�u�sin θ

�u�cos θ

u
�u�

cos θ
θ

u

x

y

0

To find a unit vector parallel to 
a vector u, we simply find the 
vector

  u ___  | u |     =   u _______ 
 √

______

 u 2 
 
 1  + u 2 

 
 2   
   

       =  (   u1 _______ 
 √

______

 u 2 
 
 1  + u 2 

 
 2   
  ,   

u2 _______ 
 √

______

 u 2 
 
 1  + u 2 

 
 2   
   ) .
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Example 5 

Find the direction angle (to the nearest degree) of each vector, and find a 
vector of magnitude 7 that is parallel to each.
a) u 5 2i 1 2j
b) v 5 23i 1 3j
c) w 5 3i 2 4j

Solution
a) The direction angle for u is u, as shown in Figure 8.15.

tan u 5   2 __ 
2

   5 1 ⇒ u 5 45°

A vector of magnitude 7 that is parallel to u is

7   u ___ 
|u|

   5   7 ________ 
 √

______

 22 1 22  
   (2i 1 2j) 5   7 ____ 

2 √
__

 2  
   (2i 1 2j) 5   7 ___ 

 √
__

 2  
   (i 1 j)

b) The direction angle for v is 180° 2 u, as shown in Figure 8.16.

tan u 5   23 ___ 
3

   5 21 ⇒ u 5 180° 2 45° 5 135°

A vector of magnitude 7 that is parallel to v is

7   v ___ 
|v|

   5   7 ________ 
 √

______

 32 1 32  
   (23i 1 3j) 5   7 ____ 

3 √
__

 2  
   (23i 1 3j) 5   7 ___ 

 √
__

 2  
   (2i 1 j)

Figure 8.15

Figure 8.16

y

x0

1

2

3

4

5

1 2

θ

3

u

u

(2, 2)

4 5

7
2   2

x

y

0

1

2

3

4

5

�5 �4 �3

v

v

(�3, 3)

�2 �1

7
3   2

135°θ



266

Vectors I--8

c) The direction angle for w is u, as shown in Figure 8.17.

tan u 5   24 ___ 
3

   ⇒ u < 253°

A vector of magnitude 7 that is parallel to w is

7   u ___ 
|u|

   5   7 ___________ 
 √

__________

 32 1 (24)2  
   (3i 2 4j) 5   7 __ 5   (3i 2 4j)

Example 6 

What force is required to pull a boat of 800 N up a ramp inclined at 15° 
from the horizontal? Friction is ignored in this case.

Solution

The situation can be shown on a diagram. The weight is represented 
by the vector  

 ___
 
›
 AB . The weight of the boat has two components – one 

perpendicular to the ramp, which is the force responsible for keeping the 
boat on the ramp and preventing it from tumbling down (p). The other 
force is parallel to the ramp, and is the force responsible for pulling the 
boat down the ramp (l). Therefore, the force we need, f, must counter l. 

In triangle ABC:

sin ∡ A 5 |l |/800 ⇒ |l | 5 800 sin ∡ A 5 800 sin 15° 5 207.06.

We need an upward force of 207.06  N along the ramp to move the boat.

Figure 8.17

The process of ‘breaking-up’ the 
vector into its components, as 
we did in the example, is called 
resolving the vector into its 
components. Notice that the 
process of resolving a vector 
is not unique. That is, you can 
resolve a vector into several 
pairs of directions.

y

x0

�5

�4

�3

�2

�1

1 2θ 3

w

w
(3, �4)

4 5

7
5

15°

800

l

15°

p

C
B

A f



267

Example 7 

In many countries, it is a requirement that disabled people have access to 
all places without needing the help of others. Consider an office building 
whose entrance is 40 cm above ground level. Assuming, on average, that 
the weight of a person including the equipment used is 1200 N, answer the 
following questions:
a) At what angle should the ramp designed for disabled persons be set if, 

on average, the force that a person can apply using their hands is 300 N?
b) How long should the ramp be?

Solution
a)

As the diagram above shows, |l| 5 300, and 

sin ∡ A 5   
|l |
 ____ 

1200
   5   300 ____ 

1200
   ⇒ ∡ A 5 sin21 0.25 < 14.47°.

b) The length d of the ramp can be found using right triangle 
trigonometry:

sin 14.47 5   40 ___ 
d

   ⇒ d 5   40 ________ 
sin 14.47

   <   40 ____ 
0.25

   5 160  cm

 Vectors can be used to help 
tackle displacement situations. 
For example, an object at 
a position defined by the 
position vector (a, b) and a 
velocity vector (c, d) has a 
position vector (a, b) 1 t(c, d) 
after time t.
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Example 8 

The position vector of a ship (MB) from its starting position at a port RJ is 

given by  (   x     y   )  5  (   5       20   )  1 t  (  12   16  ) . Distances are in kilometres and speeds are in 

km/h. t is time after 00 hour.

a) Find the position of the MB after 2 hours.

b) What is the speed of the MB?

c) Another ship (LW) is at sea in a location  (   41       68   )  relative to the same port. 

 LW has stopped for some reason. Show that if LW does not start to 
move, the two ships will collide. Find the time of the potential collision.

d) To avoid collision, LW is ordered to leave its position and start moving 

 at a velocity of  (   15           
236   )  one hour after MB started. Find the position 

 vector of LW.

e) How far apart are the two ships after two hours since the start of MB?

Solution

a) MB is at a position with vector  (   x     y   )  5  (   5       20   )  1 2 (   12       16   )  5  (   29       52   ) .

b) Since the velocity of the ship is  (   12       16   ) , the speed is  |  (   12       16   )  |  5  √
________

 122 1 162   
5 20  km/h.

c) The collision can happen if the position vectors of the two ships are equal:

  (   5       20   )  1 t  (   12       16   )  5  (   41       68   )  ⇒ 5 1 12t 5 41 and 20 1 16t 5 68 ⇒ 12t 5 36

 and 16t 5 48 ⇒ t 5 3. After 3 hours, at 03:00, a collision could happen.

d) Since LW started one hour later, its position vector is 

  (   x     y   )  5  (   41       68   )  1 (t 2 1) (   15           
236   )  , t > 1.

e) MB is at  (   29       52   )  and LW is at  (   41       68   )  1 (2 2 1) (   15           
236   )  5  (   56       32   ) . The distance 

 between them is  √
____________________

  (56 2 29)2 1 (32 2 52)2   5  √
____

 1129   5 33.6  km.

 1 Find the direction angle for each vector

a) u 5 (2, 0)

b) v 5 (0, 3)

c) w 5 (23, 0)

d) u 1 v
e) v 1 w

Exercise 8.3
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 2 Find the magnitude and direction angle for each vector.

a) u 5 (3, 2)

b) v 5 (23, 22)

c) 2u
d) 3v
e) 2u 1 3v
f ) 2u 2 3v

 3 Write each of the following vectors in component form. u is the angle that the 
vector makes with the positive horizontal axis.

a) |u| 5 310, u 5 62°

b) |u| 5 43.2, u 5 19.6°

 4 Find the unit vector in the same direction as u in each of the following cases:

a) u 5 (3, 4)

b) u 5 2i – 5j

 5 Find a vector of magnitude 7 that is parallel to u 5 3i – 4j.

 6 A plane is flying on a bearing of 170° at a speed of 840  km/h. The wind is blowing 
in the direction N 120° E with a strength of 60  km/h.
a) Find the vector components of the plane’s still-air velocity and the wind’s 

velocity.
b) Determine the true velocity (ground) of the plane in component form.
c) Write down the true speed and direction of the plane.

 7 A plane is flying on a compass heading of 340° at 520  km/h. The wind is blowing 
with the bearing 320° at 64  km/h.

a) Find the component form of the velocities of the plane and the wind.

b) Find the actual ground speed and direction of the plane.

 8 

 

A box is being pulled up a 15° inclined plane. The force needed is 25 N. Find the 
horizontal and vertical components of the force vector and interpret each of 
them. 

 9 A motor boat with the power to steer across a river at 30  km/h is moving such 
that the bow is pointed in a northerly direction. The stream is moving eastward 
at 6  km/h. The river is 1  km wide. Where on the opposite side will the boat meet 
the land?

15°

Note: In navigation, the 
convention is that the course 
or bearing of a moving 
object is the angle that its 
direction makes with the 
north direction measured 
clockwise. So, for example, a 
ship going east has a bearing 
of 90°.
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The multiplication of two vectors is not uniquely defined: in other words, 
it is unclear whether the product will be a vector or not. For this reason 
there are two types of vector multiplication: 

The scalar or dot product of two vectors, which results in a scalar; and the 
vector or cross product of two vectors, which results in a vector. 

In this book, we shall discuss only the scalar or dot product.

10 A force of 2500 N is applied at an angle of 38° to pull a 10 000 N ship in the 
direction given. What force F is needed to achieve this?

11 A boat is observed to have a bearing of 072˚. The speed of the boat relative to 
still water is 40  km/h. Water is flowing directly south. The boat appears to be 
heading directly east.
a) Express the velocity of the boat with respect to the water in component form.
b) Find the speed of the water stream and the true speed of the boat.

12 A 50 N weight is suspended by two strings as shown. Find the tensions T and S 
in the strings.

 

13 A runner runs in a westerly direction on the deck of a cruise ship at 8 km/h. The 
cruise ship is moving north at a speed of 35 km/h. Find the velocity of the runner 
relative to the water.

14 The boat in question 9 wants to reach a point exactly north of the starting 
point. In which direction should the boat be steered in order to achieve this 
objective?

x

y

38°

2500 N

10 000 N

F

Scalar product of two vectors8.4

45° 35°

50 N

S
T
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The scalar product of two vectors, a and b denoted by a ? b, is defined as the product 
of the magnitudes of the vectors times the cosine of the angle between them:  
a ? b 5 |a | |b | cos u

This is illustrated in Figure 8.18.

Note that the result of a dot product is a scalar, not a vector. The rules for 
scalar products are given in the following list:

 a ? b 5 b ? a
 0 ? a 5 a ? 0 5 0
 a ? (b 1 c) 5 a ? b 1 a ? c
 a ? a 5 |a|2

 k (a ? b) 5 k a ? b 5 a ? k b, with k any scalar.

The first properties follow directly from the definition:

a ? b 5 |a | |b |cos u, and b ? a 5  |b | |a |cos u, and, since multiplication of real 
numbers is commutative, it follows that a ? b 5 b ? a The third property will 
be proved later in this section. Proofs of the rest of the properties are left as 
exercises.

Using the definition, it is immediately clear that for two non-zero vectors u and v, if u 
and v are perpendicular, the dot product is zero. This is so, because 
u ? v 5 |u ||v |cos u 5 |u ||v |cos 90° 5 |u ||v | 3 0 5 0.

The converse is also true: if u ? v 5 0, the vectors are perpendicular,
u ? v 5 0 ⇒ |u ||v |cos u 5 0 ⇒ cos u 5 0 ⇒ u 5 90°.

Using the definition, it is also clear that for two non-zero vectors u and v, if u and v are 
parallel then the dot product is equal to 6 |u ||v |. This is so, because 
u ? v 5 |u ||v |cos u 5 |u ||v |cos 0° 5 |u ||v | 3 1 5 |u ||v |, or
u ? v 5 |u ||v |cos u 5 |u ||v |cos 180° 5 |u ||v | 3 (21) 5 2|u ||v |.

The converse is also true: if u ? v 5 6 |u ||v |, the vectors are parallel, since
u ? v 5 |u ||v |cos u ⇒ |u ||v |cos u 5 6 |u ||v | ⇒ cos u 5 61 ⇒ u 5 0° or u 5 180°.

Another interpretation of the dot product

Projection 

(This subsection is optional – it is beyond the scope of IB/SL syllabus, but very 
helpful in clarifying the concept of dot products.)

The quantity |a|cos u is called the projection of the vector a on vector b 
(Figure 8.19). So, the dot product b ? a 5 |b||a|cos u 5 |b|(|a|cos u) 5 |b| 3 
(the projection of a on b).

This fact is used in proving the third property on the list above.

If we let B and C stand for the projections of b and c on a, we have

a(b 1 c) 5 |a|(B 1 C) 5 |a|B 1 |a|C 5 a ? b 1 a ? c

See Figure 8.20 right.

With this result, we can develop another definition for the dot product  
that is more useful in the calculation of this product.

θ
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b

Figure 8.18

Figure 8.19
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Theorem
If vectors are expressed in component form, u 5 u1i 1 u2j and 
v 5 v1i 1 v2j, then u ? v 5 (u1i 1 u2j) ? (v1i 1 v2j) 5 u1v11 u2v2.

Proof
u ? v 5 (u1i 1 u2j) ? (v1i 1 v2j) 5 u1v1i 2 1 u1v2ij 1 u2v1ji 1 u2v2j2

However, i 2 5 j 2 5 1 and ij 5 ji 5 0. (Proof is left as an exercise for you.)

Therefore, u ? v 5 (u1i 1 u2j) ? (v1i 1 v2j) 5 u1v11 u2v2.

For example, to find the scalar product of the two vectors u 5 2i 1 4j and 
v 5 5i 2 3j, it is enough to add the products’ corresponding components:

u ? v 5 2 3 5 1 4 3(23) 5 22

Example 9 

Find the dot product of u 5 2i – 3j and v 5 3i 1 2j.

Solution

u ? v 5 2 3 3 2 3 3 2 5 0

What does this tell us about the two vectors?

The angle between two vectors
The basic definition of the scalar product offers us a method for finding 
the angle between two vectors.

Since a  ?  b 5 |a||b|cos u, then cos u 5   a  ?  b _____ 
|a||b|

  .

Example 10 

Find the angle between the following two vectors:

v 5 23i 1 3j and w 5 2i 2 4j

Solution

cos u 5   v ? w _____ 
|v||w|

   5   23 3 2 1 3 3 24  _____________________  
 √

__________

 (23)2 1 32   3  √
______

 22 1 42  
   5   218 _______ 

 √
___

 18   √
___

 20  
   ⇒ u 5 161.57°

Example 11 

The instrument panel in a plane indicates that its airspeed (the speed of 
the plane relative to the surrounding air) is 200 km/h and that its compass 
heading (the direction in which the plane’s nose is pointing) is due at  
N 45° E. There is a steady wind blowing from the west at 50  km/h. Because 
of the wind, the plane’s true velocity is different from the panel reading. 
Find the true velocity of the plane. Also, find its true speed and direction.
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Solution

A diagram can help clarify the situation.

The plane velocity p can be expressed in its component form:

 x 5 |p|cos 45° 5 200 cos 45° 5 100 √
__

 2  ,

 y 5 |p|sin 45° 5 200 sin 45° 5 100 √
__

 2  ,

 so p can be written as p 5(100 √
__

 2  , 100 √
__

 2  ).

The wind velocity w can also be expressed in component form:

 w 5 (50, 0)

So, the true velocity, v 5 (100 √
__

 2   1 50, 100 √
__

 2  ).

To find the true speed, we find the magnitude of the resultant found above:

 |v| 5  √
_______________________

   (100 √
__

 2   1 50)2 1 (100 √
__

 2  )2   < 238  km/h

To find the true direction, we find u and calculate the heading of the plane:

tan u 5   100 √
__

 2   __________ 
100 √

__
 2   1 50

   < 0.739 ⇒ u < 36.5°,

so the true direction is N 53.5° E.

Example 12 

Consider the segment [AB] with A(22, 23) and B(3, 1). Use dot products 
to find the equation of the circle whose diameter is AB.

Solution

Consider any point C(x, y) on the graph. Find the vectors  
 ___

 
›
 AC  and  

 ___
 
›
 BC . 

E

N

w

45°
θ

p
v

x

y
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For the point C to be on the circle, the angle at C must be a right angle. 
Hence, the vectors  

 ___
 
›
 AC  and  

 ___
 
›
 BC  are perpendicular.

For perpendicular vectors, the dot product must be zero.

 
 ___

 
›
 AC  5 (x 1 2, y 1 3),  

 ___
 
›
 BC  5 (x 2 3, y 2 1)

 
 ___

 
›
 AC  ?  

 ___
 
›
 BC  5 0 ⇒ (x 1 2)(x 2 3) 1 (y 1 3)(y 2 1) 5 0

⇒  x 2 2 x 1 y 2 1 2y 5 9

 Hint: The work done by any 
force is defined as the product of 
the force multiplied by the distance 
it moves a certain object. In other 
words, it is the product of the force 
multiplied by the displacement of 
the object. As such, work is the dot 
product between the force and 
displacement W 5 F  ?  D 

 1 Find (i) u ? v and (ii) the angle between u and v to the nearest degree.

a) u 5 i 1  √
__

 3   j, v 5  √
__

 3   i 2 j
b) u 5 (2, 5), v 5 (4, 1)

c) u 5 2i 2 3j, v 5 4i 2 j
d) u 5 2j, v 5 2i1  √

__
 3   j

 2 Using the vectors u 5 3i 2 2j, v 5 i 1 3j and w 5 4i 1 5j, find each of the 
indicated results.

a) u  ?  (v 1 w)

b) u  ?  v 1 u  ?  w
c) u(v  ?  w)

d) (u  ?  v)w
e) (u  ?  v)(u  ?  w)

f ) (u 1 v)  ?  (u 2 v)

g) Looking at a)–d) write one paragraph to summarize what you learned!

  3 Find the work done by the force F in moving an object between points M and N.
a) F 5 400i 2 50j, M(2, 3), N(12, 43)

b) F 5 30i 1 150j, M(0, 30), N(15, 70)

 4 Find the interior angles of the triangle ABC.
a) A(1, 2), B(3, 4), C(2, 5)

b) A(3, 4), B(21, 27), C(28, 22)

c) A(3, 25), B(1, 29), C(27, 29)

 5 Find a vector perpendicular to u in each case below. (Answers are not unique!)
a) u 5 (3, 5)

b) u 5   1 _ 2   i 2   3 _ 4   j

 6 Use the dot product to find the equation of a circle whose diameter is [AB ].
a) A(1, 2), B(3, 4).

b) A(3, 4), B(21, 27).

 7 Decide whether the triangle ABC is right angled using vector algebra:

 A(1, 23), B(2, 0), C(6, 22)

 8 Find t such that a 5 ti 2 3j is perpendicular to b 5 5i 1 7j.

 9 For what value(s) are the vectors (26, b) and (b, b2) perpendicular?

10 Find a unit vector that makes an angle of 60˚ with u 5 (3, 4).

11 Find t such that a 5 ti 2 j and b 5 i 1 j make an angle of   3 _ 4  p radians.

12 Use the dot product to prove that the diagonals of a rhombus are 
perpendicular to each other.

Exercise 8.4
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  1  ABCD is a rectangle with M the midpoint of [AB]. u and v represent the vectors joining 
M to D and C respectively. Express each of the following vectors in terms of u and v.

a)   
 __

 
›
 DC 

b)   
 ___

 
›
 AM 

c)   
 __

 
›
 BC 

d)   
 __

 
›
 AC 

  2  Consider the vectors u 5 i 2 2j and v 5 4i 1 3j.
a)  Find the component form of the vector w 5 2u 1 v.
b)  Find the vector z which has a magnitude of 6 units and same direction as w.

  3  M and A are the ends of the diameter of a circle with centre at the origin. The radius 

  of the circle is 15 cm and  
 __

 
›
 OR  5  (    10          

5 √
__

 5  
   ) .

a)  Verify that R lies on the circle.
b)  Find the vector  

 __
 
›
 AR .

c)  Find the cosine of OAR.
d)  Find the area of MAR.

  4  Quadrilateral MARC has vertices with coordinates M (0, 0), A (6, 2), R (11, 4) and C (3, 8).
a)  Find the vectors  

 ___
 
›
 MR  and  

 __
 
›
 AC .

b)  Find the angle between the diagonals of quadrilateral MARC.
c)  Let the vector u be the vector joining the midpoints of [MA] and [AR], and v be the 

vector joining the midpoints of [RC ] and [CM ]. Compare u and v to  
 ___

 
›
 MR , and hence 

show that the quadrilateral connecting the midpoints of the sides of MARC form a 
parallelogram.

  5  Vectors u 5 5i 1 3j and v 5 i 2 4j are given. Find the scalars m and n such that 
  m(u 1 v) 2 5i 1 7j 5 n(u 2 v).

  6  Vector  (   1     
0
   )  represents a displacement in the eastern direction while vector  (   0     

1
   )  

  represents a displacement north. Distances are in kilometres.

Two crews of workers are laying gas pipes in a north-south direction across the North 
Sea. Consider the base port where the crews leave to start work as the origin (0, 0).

At 07:00 the crews left the base port with their motor boats to two different locations. 

The crew called ‘Marco’ travel at a velocity of  (   9       
12

   )  and the crew called ‘Tony’ travel 

at a velocity of  (   18        
28

   ) . Speeds are in km/h.

a)  Find the speed of each boat.

b)  Find the position vectors of each crew at 07:30.

Practice questions
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c)  Hence, or otherwise, find the distance between the vehicles at 07:30.

d)  At 07:30 ‘Tony’ stops and the crew begins laying pipes towards the north. ‘Marco’ 
continues travelling in the same direction at the same speed until it is exactly north 
of ‘Tony’. At this point, ‘Marco’ stops and the crew then begins laying pipes towards 
the south. At what time does ‘Marco’ start work?

e)  Each crew lays an average of 400  m of pipe in an hour. If they work non-stop until 
their lunch break at 12:30, what is the distance between them at this time?

f)  How long would ‘Marco’ take to return to base port from its lunchtime position, 
assuming it travelled in a straight line and with the same average speed as on the 
morning journey? (Give your answer to the nearest minute.)

  7  Triangle TRI is defined as follows:

   
 __

 
›
 OT  5  (    3        

21
   ) ,  

 __
 
›
 TR  5  (   5     

6
   ) ,  

 __
 
›
 TR   ?   

 __
 
›
 IR  5 0, and  

 __
 
›
 TI  5 kj where k is a scalar and j is the 

  unit vector in the y-direction.
a)  Draw an accurate diagram of TRI.
b)  Write the vector  

 __
 
›
 IR .

  8  The position vector of a plane for AUA airlines from its starting position in Vienna is 

given by  (   x    y   )  5  (   25       
40

   )  1 t  (   360         
480

   ) . Distances are in kilometres and speeds are in km/h.

t is time after 00 hour.
a)  Find the position of the AUA plane after 2 hours.
b)  What is the speed of the plane?
c)  A plane for LH airline started at the same time from a location  (   2155            

1300
   )  

  relative to Vienna and moving with a velocity vector  (    480            
2360

   ) , flying at the 

  same height as the AUA plane. Show that if the LH plane does not change route, the 
two planes will collide. Find the time of the potential collision.

d)  To avoid collision, the LH plane is ordered to leave its position and start moving at 

  a velocity of  (    450            
2390

   )  one hour after it started. Find the position vector of the LH 
plane at that time.

e)  How far apart are the two planes after two hours?

  9  For what value(s) of n are the vectors  (    3n              
2n 1 3

   )  and  (   2n 2 1              
4 2 2n

   )  perpendicular. 

  Otherwise, show that it is not possible.
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You will almost inevitably encounter statistics in one form or another on a 
daily basis. Here is an example:

The World Health Organization (WHO) collects and 
reports data pertaining to worldwide population 
health on all 192 UN member countries. Among 
the indicators reported is the health-adjusted 
life expectancy (HALE), which is based on life 
expectancy at birth, but includes an adjustment 
for time spent in poor health. It is most easily 
understood as the equivalent number of years in full 
health that a newborn can expect to live, based on 
current rates of ill-health and mortality. According 
to WHO rankings, lost years due to disability are 
substantially higher in poorer countries. Several 
factors contribute to this trend including injury, 
blindness, paralysis, and the debilitating effects of 
tropical disease.

Introduction

9 Statistics
Assessment statements
5.1	 Concepts	of	population,	sample,	random	sample,	discrete	and	continuous	

data.
	 Presentation	of	data:	frequency	distributions	(tables);	frequency	

histograms	with	equal	class	intervals;	box-and-whisker	plots;	outliers.
	 Grouped	data;	use	of	mid-interval	values	for	calculations;	interval	width;	

upper	and	lower	interval	boundaries;	modal	class.

5.2	 Statistical	measures	and	their	interpretations.
	 Central	tendency;	mean,	median,	mode.
	 Quartiles,	percentiles.
	 Dispersion:	range,	interquartile	range,	variance,	standard	deviation.
	 Effect	of	constant	changes	to	the	original	data.

5.3	 Cumulative	frequency;	cumulative	frequency	graphs;	use	to	find	median,	
quartiles,	percentiles.

5.4	 Linear	correlation	of	bivariate	data.
	 Pearson’s	product-moment	correlation	coefficient	r.
	 Scatter	diagrams;	lines	of	best	fit.
	 Equation	of	the	regression	line	of	y	on	x;	use	of	the	equation	for	

prediction	purposes;	mathematical	and	contextual	interpretation.

More information on HALE can 
be found by visiting  
www.pearsonhotlinks.com, 
enter the ISBN or title of this 
book and select weblink 2.

Fr
eq

ue
nc

y

0
0

10

20

30

40

50

30 40 50 60 70 80
HALE 2002



278

Statistics9

Of the 192 countries ranked by WHO, Japan has the highest life expectancy 
(75 years) and the lowest ranking country is Sierra Leone (29 years).

Reports similar to this one are commonplace in publications of several 
organizations, newspapers and magazines, and on the internet.

Questions that come to mind as we read such a report include: How did 
the researchers collect the data? How can we be sure that these results 
are reliable? What conclusions should be drawn from this report? The 
increased frequency with which statistical techniques are used in all 
fields, from business to agriculture to social and natural sciences, leads to 
the need for statistical literacy – familiarity with the goals and methods 
of these techniques – to be a part of any well-rounded educational 
programme. 

Since statistical methods for summary and analysis provide us with 
powerful tools for making sense out of the data we collect, in this chapter 
we will first start by introducing two basic components of most statistical 
problems – population and sample – and then delve into the methods of 
presenting and making sense of data.

In the language of statistics, one of the most basic concepts is sampling. In 
most statistical problems, we draw a specified number of measurements 
or data – a sample – from a much larger body of measurements, called the 
population. On the basis of our observation of the data in the well-chosen 
sample, we try to describe or predict the behaviour of the population. 

A population is any entire collection of people, animals, plants or things 
from which we may collect data. It is the entire group we are interested 

in, which we wish to describe or draw conclusions about. 
In order to make any generalizations about a population, 
a sample, that is meant to be representative of the 
population, is often studied. For each population there 
are many possible samples. 

For example, a report on the effect the economic status 
(ES) has on healthy children’s postures stated that:

‘…ES, independent of overt malnutrition, affects 
height, weight, … with some gender differences in 
healthy children. Influence of income on height 
and weight show sexual dimorphism, a slight but 
significant effect is observed only in boys. MPH 
(mid-parental height) is the most prominent variable 
effecting height in healthy children. Higher height 
… observed in higher income groups suggest that 
secular trend in growth still exists, at least in boys, in a 
country of favorable economic development.’

Source: European Journal of Clinical Nutrition (2007) 
61, 752–758

Sample

Population
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The population is the 3-tuple measurement (economic status, height, 
weight) of all children of age 3–18 in Turkey. The sample is the set of 
measurements of the 428 boys and 386 girls that took part in the study. 
Notice that the population and sample are the measurements and not the 
people! The boys and girls are ‘experimental units’ or subjects in this study.

In this chapter we will present some basic techniques in descriptive 
statistics – the branch of statistics concerned with describing sets of 
measurements, both samples and populations. 

Once you have collected a set of measurements, how can you display this 
set in a clear, understandable and readable form? First, you must be able 
to define what is meant by measurement or ‘data’ and to categorize the 
types of data you are likely to encounter. We begin by introducing some 
definitions of the new terms in the statistical language that you need to 
know.

A variable is a characteristic that changes or varies over time and/or for different objects 
under consideration.

For example, if you are measuring the height of adults in a certain area, 
the height is a variable that changes with time for an individual and 
from person to person. When a variable is actually measured, a set of 
measurements or data will result. So, if you gather the heights of the 
students at your school, the set of measurements you get is a data set.

As the process of data collection begins, it becomes clear that often the 
number of data collected is so large that it is difficult for the statistician 
to see the findings of the data. The statistician’s objective is to summarize 
succinctly, bringing out the important characteristics of the numbers and 
values in such a way that a clear and accurate picture emerges. 

There are several ways of summarizing and describing data. Among them 
are tables and graphs and numerical measures.

Graphical tools9.1

Data

Categorical/
qualitative

Numerical/
quantitative

Discrete Continuous
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Classification of variables
Numerical or categorical

When classifying data, there are two major classifications: numerical or 
categorical data.

NUMERICAL (QUANTITATIVE) DATA – Quantitative variables measure 
a numerical quantity or amount on each experimental unit. Quantitative 
data yields a numerical response. 

Examples: Yearly income of company presidents, the heights of students at 
school, the length of time it takes students to finish their lunch at school, 
and the total score you receive on exams are all numerical.

Moreover, there are two types of numerical data:

DISCRETE – responses which arise from counting. 

Example: Number of courses students take in a day.

CONTINUOUS – responses which arise from measuring. 

Example: Time it takes a student to travel from home to school.

CATEGORICAL (QUALITATIVE) DATA – Qualitative variables measure a 
quality or characteristic of the experimental unit. Categorical data yields a 
qualitative response, i.e. data is kind or type rather than quantity.

Examples: Categorizing students into first year IB or second year IB; into 
Maths Studies SL, Maths SL, Further Maths SL, or Maths HL; or political 
affiliation will result in qualitative variables and data. 

When data is first collected, there are some simple ways of beginning to 
organize the data. These include an ordered array and the stem-and-leaf 
display – not required.
• Data in raw form (as collected): 

24, 26, 24, 21, 27, 27, 30, 41, 32, 38
• Data in ordered array from smallest to largest (an ordered array is an 

arrangement of data in either ascending or descending order):
 21, 24, 24, 26, 27, 27, 30, 32, 38, 41

Suppose a consumer organization was interested in studying weekly food 
and living expenses of college students. A survey of 80 students yielded the 
following expenses to the nearest euro:

38 50 55 60 46 51 58 64 50 49 48 65 58 61 65 53

39 51 56 61 48 53 59 65 54 54 54 59 65 66 47 49

40 51 56 62 47 55 60 63 60 59 59 50 46 45 54 47

41 52 57 64 50 53 58 67 67 66 65 58 54 52 55 52

44 52 57 64 51 55 61 68 67 54 55 48 57 57 66 66

The first step in the analysis is a summary of the data, which should show 
the following information:
• What values of the variable have been measured?
• How often has each value occurred?

Table 9.1
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Such summaries can be done in many ways. The most useful are the 
frequency distribution and the histogram. There are other methods of 
presenting data, some of which we will discuss later. The rest are not within 
the scope of this book.

Frequency distribution (table)
A frequency distribution is a table used to organize data. The left column 
(called classes or groups) includes numerical intervals on a variable 
being studied. The right column is a list of the frequencies, or number of 
observations, for each class. Intervals normally are of equal size, must cover 
the range of the sample observations, and are non-overlapping (Table 2).

There are some general rules for preparing frequency distributions that 
make it easier to summarize data and to communicate results.

Construction of a frequency distribution (table)

Rule 1: Intervals (classes) must be inclusive and non-overlapping; each 
observation must belong to one and only one class interval. 
Consider a frequency distribution for the living expenses of the 
80 college students. If the frequency distribution contains the 
intervals ‘35–40’ and ‘40–45’, to which of these two classes would a 
person spending E40 belong?

The boundaries, or endpoints, of each class must be clearly 
defined. For our example, appropriate intervals would be ‘35 but 
less than 40’ and ‘40 but less than 45’.

Rule 2: Determine k, the number of classes. Practice and experience 
are the best guidelines for deciding on the number of classes. In 
general, the number of classes could be between 5 and 10. But this 
is not an absolute rule. Practitioners use their judgement in these 
issues. If the number of classes is too few, some characteristics 
of the distribution will be hidden, and if too many, some 
characteristics will be lost with the detail.

Rule 3: Intervals should be the same width, w. The width is determined by 
the following:

interval width 5   
largest number 2 smallest number

   _____________________________   
number of intervals

  

Both the number of intervals and the interval width should be 
rounded upward, possibly to the next largest integer. The above 
formula can be used when there are no natural ways of grouping 
the data. If this formula is used, the interval width is generally 
rounded to a convenient whole number to provide for easy 
interpretation. 

In the example of the weekly living expenses of students, a 
reasonable grouping with nice round numbers was that of ‘35 but 
less than 40’ and ‘40 but less than 45’, etc.
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Living expenses (E) Number of students Percentage of students

35 but , 40  2   2.50

40 but , 45  3   3.75

45 but , 50 11  13.75

50 but , 55 21  26.25

55 but , 60 19  23.75

60 but , 65 11  13.75

65 but , 70 13  16.25

Total 80 100.00

Grouping the data in a table like this one enables us to see some of its 
characteristics. For example, we can observe that there are few students 
who spend as little as 35 to 45 euros, while the majority of the students 
spend more than E45. Grouping the data will also cause some loss of detail, 
as we do not see from the table what the real values in each class are.

In the table above, the impression we get is that the class midpoint, also 
known as the mid-interval value, will represent the data in that interval. 
For example, 37.5 will represent the data in the first class, while 62.5 will 
represent the data in the 60 to 65 class. 35 and 40 are known as the interval 
boundaries.

Graphically, we have a tool that helps visualize the distribution. This tool is 
the histogram.

Histogram

A histogram is a graph that consists of vertical bars constructed on a 
horizontal line that is marked off with intervals for the variable being 
displayed. The intervals correspond to those in a frequency distribution 
table. The height of each bar is proportional to the number of observations 
in that interval. The number of observations can also be displayed above 
the bars.

By looking at the histogram, it becomes visually clear that our observations 
above are true. From the histogram we can also see that the distribution is 
not symmetric.

Table 9.2 Frequency and 
percentage frequency distributions 
of the weekly expenses of 80 
students.
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To get a histogram on your GDC:
• Enter your data into a list
• Go to StatPlot and change it as shown below
• Graph

Cumulative and relative cumulative frequency distributions

A cumulative frequency distribution contains the total number of 
observations whose values are less than the upper limit for each interval. 
It is constructed by adding the frequencies of all frequency distribution 
intervals up to and including the present interval. A relative cumulative 
frequency distribution converts all cumulative frequencies to cumulative 
percentages.

In our example above, the following is a cumulative distribution and a 
relative (percentage) cumulative distribution.

Living 
expenses (E)

Number
of students

Cumulative 
number 

of students

Percentage of
students

Cumulative 
percentage of

students

35 but , 40  2  2   2.50   2.50

40 but , 45  3  5   3.75   6.25

45 but , 50 11 16  13.75  20.00

50 but , 55 21 37  26.25  46.25

55 but , 60 19 56  23.75  70.00

60 but , 65 11 67  13.75  83.75

65 but , 70 13 80  16.25 100.00

80 100.00

Notice how every cumulative frequency is added to the frequency in the 
next interval to give you the next cumulative frequency. The same is true 
for the relative frequencies.

As we will see later, cumulative frequencies and their graphs help in 
analyzing data that are given in group form.

Cumulative line graph/cumulative frequency graph

Sometimes called an ogive, this is a line that connects points that are the 
cumulative percentage of observations below the upper limit of each class 
in a cumulative frequency distribution.

Table 9.3 Cumulative frequency 
and cumulative relative frequency 
distributions of the weekly 
expenses of 80 students.

L2

L1( 1)=38
min=38
max<42.285714 n=4

P1:L 1L3 1
38
39
40
41
44
45
48

Plot2 Plot3Plot1

On Off
Type:

Xlist:L1
Freq:1

L1
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Notice how the height of each line at the upper boundary represents the 
cumulative frequency for that interval. For example, at 50 the height is 16 
and at 60 it is 56.

Example 1 

Here is the WHO data in raw form.

Prepare a frequency table starting with 25 and with a class interval of 5. 
Then draw a histogram of the data and a cumulative frequency graph.

Solution
We first sort the data and then make sure we count every number in one 
class only.

Life
expectancy (years)1

Number
of countries

Life
expectancy (years)

Number
of countries

25–30  1 55–60 26

30–35  4 60–65 54

35–40 14 65–70 22

40–45 14 70–75 27

45–50 11 75–80  1

50–55 18

125–30 contains all observations larger than or equal to 25 but less than 30.

The histogram created by Excel is shown on the next page. Since we have 
classes of equal width, the height and the area give the same impression 

29 36 40 44 48 52 54 56 59 60 61 61 62 63 64 66 68 71 72 73 63 64 66 68

31 36 41 44 49 52 54 57 59 60 61 62 62 64 64 66 68 71 72 75 63 64 66 68

33 36 41 44 49 52 55 57 59 60 61 62 62 64 65 66 69 71 72 35 38 43 47 71

34 37 41 45 49 53 55 58 59 60 61 62 63 64 65 66 69 71 73 36 40 44 48 71

34 37 42 45 50 53 55 58 59 60 61 62 63 64 65 67 70 71 73 50 54 56 59 72

35 37 42 45 50 53 55 58 59 60 61 62 63 64 65 67 70 71 73 51 54 56 59 72

35 37 43 46 50 54 55 58 59 60 61 62 63 64 65 67 70 71 73 60 60 61 62 73

35 38 43 46 50 54 55 58 59 60 61 62 63 64 65 67 70 72 73 60 61 61 62 73
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about the frequency of the class interval. For example, the class of 60–65 
contains almost twice as much as the class of 55–60, and the height of the 
histogram is also twice as high. So is the area. Similarly, the height of the 
65–70 class is double that of the 45–50 class.

Life
expectancy 

(years)

Number
of

countries

Cumulative
number of
countries

Life
expectancy 

(years)

Number
of

countries

Cumulative
number of
countries

25–30  1  1 55–60 26  88

30–35  4  5 60–65 54 142

35–40 14 19 65–70 22 164

40–45 14 33 70–75 27 191

45–50 11 44 75–80  1 192

50–55 18 62

 1 Identify the experimental units, sensible population and sample on which each 
of the following variables is measured. Then indicate whether the variable is 
quantitative or qualitative.
a) Gender of a student
b) Number of errors on a final exam for 10th-grade students
c) Height of a newborn child
d) Eye colour for children aged less than 14
e) Amount of time it takes to travel to work
f ) Rating of a country’s leader: excellent, good, fair, poor
g) Country of origin of students at international schools

Exercise 9.1
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 2 State what you expect the shapes of the distributions of the following variables 
to be: uniform, unimodal, bimodal, symmetric, etc. Explain why.
a) Number of goals shot by football players during last season.
b) Weights of newborn babies in a major hospital during the course of 10 years.
c) Number of countries visited by a student at an international school.
d) Number of emails received by a high school student at your school per week.

 3 Identify each variable as quantitative or qualitative:
a) Amount of time to finish your extended essay.
b) Number of students in each section of IB Maths SL.
c) Rating of your textbook as excellent, good, satisfactory, terrible.
d) Country of origin of each student on Maths SL courses.

 4 Identify each variable as discrete or continuous:
a) Population of each country represented by SL students in your session of the 

exam.
b) Weight of IB Maths SL exams printed every May since 1976.
c) Time it takes to mark an exam paper by an examiner.
d) Number of customers served at a bank counter.
e) Time it takes to finish a transaction at a bank counter.
f ) Amount of sugar used in preparing your favourite cake.

 5 Grade point averages (GPA) in several colleges are on a scale of 0–4. Here are the 
GPAs of 45 students at a certain college.

1.8 1.9 1.9 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.4 2.4 2.5

2.5 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.7

2.8 2.8 2.8 2.9 2.9 2.9 3.0 3.0 3.0 3.1 3.1 3.1 3.2 3.2 3.4

Prepare a frequency histogram, a relative frequency histogram and a cumulative 
frequency graph. Describe the data in two to three sentences.

 6 The following are the grades of an IB course with 40 students (two sections) on 
a 100-point test. Use the graphical methods you have learned so far to describe 
the grades.

61 62 93 94 91 92 86 87 55 56

63 64 86 87 82 83 76 77 57 58

94 95 89 90 67 68 62 63 72 73

87 88 68 69 65 66 75 76 84 85

 7 The length of time (months) between repeated speeding violations of 50 young 
drivers are given in the table below:

 2.1 1.3  9.9  0.3 32.3  8.3  2.7  0.2  4.4  7.4

 9 18  1.6  2.4  3.9  2.4  6.6  1  2 14.1

14.7  5.8  8.2  8.2  7.4  1.4 16.7 24  9.6  8.7

19.2 26.7  1.2 18  3.3 11.4  4.3  3.5  6.9  1.6

 4.1  0.4 13.5  5.6  6.1 23.1  0.2 12.6 18.4  3.7

a) Construct a histogram for the data.
b) Would you describe the shape as symmetric?
c) The law in this country requires that the driving licence be taken away if the 

driver repeats the violation within a period of 10 months. Use a cumulative 
frequency graph to estimate the fraction of drivers who may lose their licence.
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 8 To decide on the number of counters needed to be open during rush hours in a 
supermarket, the management collected data from 60 customers for the time they 
spent waiting to be served. The times, in minutes, are given in the following table.

3.6 0.7 5.2 0.6 1.3 0.3 1.8 2.2 1.1 0.4

1 1.2 0.7 1.3 0.7 1.6 2.5 0.3 1.7 0.8

0.3 1.2 0.2 0.9 1.9 1.2 0.8 2.1 2.3 1.1

0.8 1.7 1.8 0.4 0.6 0.2 0.9 1.8 2.8 1.8

0.4 0.5 1.1 1.1 0.8 4.5 1.6 0.5 1.3 1.9

0.6 0.6 3.1 3.1 1.1 1.1 1.1 1.4 1 1.4

a) Construct a relative frequency histogram for the times.
b) Construct a cumulative frequency graph and estimate the number of 

customers who have to wait 2 minutes or more.

 9 The histogram below shows the number of days spent by heart patients in 
Austrian hospitals in the 2003–2005 period.

a) Describe the data in a few sentences.
b) Draw a cumulative frequency graph for the data.
c) What percentage of the patients stayed less than 6 days?

10 One of the authors exercises on almost a daily basis. He records the length of 
time he exercises on most of the days. Here is what he recorded for 2006.

a) What is the longest time he has spent doing his exercises?
b) What percentage of the time did he exercise more than 30 minutes?
c) Draw a cumulative frequency graph for his exercise time.
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Summarizing data can help us understand them, especially when the 
number of data is large. This section presents several ways to summarize 
quantitative data by a typical value (a measure of location, such as the 
mean, median or mode) and a measure of how well the typical value 
represents the list (a measure of spread, such as the range, interquartile 
range or standard deviation). When looking at raw data, rather than 
looking at tables and graphs, it may be of interest to use summary 
measures to describe the data. The farthest we can reduce a set of data, 
and still retain any information at all, is to summarize the data with a 
single value. Measures of location do just that – they try to capture with 
a single number what is typical of the data. What single number is most 
representative of an entire list of numbers? We cannot say without defining 
‘representative’ more precisely. We will study three common measures of 
location: the mean, the median and the mode. The mean, median and 
mode are all ‘most representative’, but for different, related notions of 
representativeness.

• The median is the number that divides the (ordered) data in half. At 
least half the data is equal to or smaller than the median, and at least 
half the data is equal to or greater than the median. (In a histogram, the 
median is that middle value that divides the histogram into two equal 
areas.)

• The mode of a set of data is the most common value among the data.

• The mean (more precisely, the arithmetic mean) is commonly called the 
average. It is the sum of the data, divided by the number of data: 

mean 5   sum of data  _____________  
number of data

   5   total _____________  
number of data

  

When these measures are computed for a population, they are called 
parameters. When they are computed for a sample, they are called 
statistics.

Statistic and parameter
A statistic is a descriptive measure computed from a sample of data. A parameter is a 
descriptive measure computed from an entire population of data.

Measures of central tendency provide information about a ‘typical’ 
observation in the data, or locate the data set.

The mean and the median
The most common measure of central tendency is the arithmetic mean, usually referred 
to simply as the ‘mean’ or the ‘average.’ 

Measures of central tendency9.2

 Hint: It is rare that several data 
coincide exactly, unless the variable 
is discrete, or the measurements are 
reported with low precision. 
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Example 2 

The following are the five closing prices of the NASDAQ Index for the first 
business week in November 2007. This is a sample of size n 5 5 for the 
closing prices from the entire 2007 population: 2794.83, 2810.38, 2795.18, 
2825.18, 2748.76.

What is the average closing price?

Solution

Average 5   2794.83 1 2810.38 1 2795.18 1 2825.18 1 2748.76    __________________________________________  5   5 2794.87.

This is called the sample mean. A second measure of central tendency is the 
median, which is the value in the middle position when the measurements 
are ordered from smallest to largest. The median of this data can only be 
calculated if we first sort them in ascending order:

The arithmetic mean or average of a set of n measurements (data set) is equal to the 
sum of the measurements divided by n.

Notation

The sample mean:  
__

 x  5   

 ∑ 
i 5 1

   

n

  xi 

 _____ n   5   
x1 1 x2 1 x3 1 … 1 xn  ____________________ n  , where n is the sample size. 

This is a statistic.

The population mean: m 5   

 ∑ 
i 5 1

   

N

  xi 

 _____ 
N

   5   
x1 1 x2 1 x3 1 … 1 xN  ____________________ 

N
  , where N is the population 

size. This is a parameter.

It is important to observe that you normally do not know the mean of the population m 
and that you usually estimate it with the sample mean  

__
 x .

The median of a set of n measurements is the value of x that falls in the 
middle position when the data is sorted in ascending order.

In the previous example, we calculated the sample median by finding the 
third measurement to be in the middle position. However, in a different 
situation, where the number of measurements is even, the process is 
slightly different.

Let us assume that you took six tests last term and your marks were, in 
ascending order, 52, 63, 74, 78, 80, 89.

There are two ‘middle’ observations here. To find the median, choose a 
value halfway between the two middle observations:

m 5   74 1 78 _______ 
2

   5 76

2748.76    2794.83    2795.18    2810.38    2825.18

52          63          74          78          80          89
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Note: The position of the median can be given by   n 1 1 _____ 
2

  . If this number 

ends with a decimal, you need to average the adjacent values. 

In the NASDAQ Index case, we have five observations, the position of 

the median is then at   5 1 1 _____ 
2

   5 3, which we found. In the grades example, 

the position of the median score is at   6 1 1 _____ 
2

   5 3.5, and hence we average 

the numbers at positions three and four.

Although both the mean and median are good measures for the centre of 
a distribution, the median is less sensitive to extreme values or outliers. For 
example, the value 52 in the previous example is lower than all your test 
scores and is the only failing score you have. The median, 76, is not affected 
by this outlier even if it were much lower than 52. Assume, for example, 
that your lowest score is 12 rather than 52. The median calculation

still gives the same median of 76. If we were to calculate the mean of the 
original set, we would get

 
_
 x  5   ̂

x
 ___ 

6
   5   436 ___ 

6
   5 72. 

_
 6 

While the new mean, with 12 as the lowest score, is

 
_
 x  5   ̂

x
 ___ 

6
   5   396 ___ 

6
   5 66

Clearly, the low outlier ‘pulled’ the mean towards it while leaving the 
median untouched. However, because the mean depends on every 
observation and uses all the information in the data, it is generally, 
wherever possible, the preferred measure of central tendency.

A third way to locate the centre of a distribution is to look for the value 
of x that occurs with the highest frequency. This measure of the centre is 
called the mode.

Example 3 

Here is a table listing the frequency distribution of 25 families in Lower 
Austria that were polled in a marketing survey to list the number of litres 
of milk consumed during a particular week.

Number of litres Frequency Relative frequency

0 2 0.08

1 5 0.20

2 9 0.36

3 5 0.20

4 3 0.12

5 1 0.04

Find the frequency histogram.

12          63          74          78          80          89



291

Solution

The histogram (Example 3) shows a relatively symmetric shape with a 
modal class at x 5 2. Apparently, the mean and median are not far from 
each other. The median is the 13th observation, which is 2, and the mean is 
calculated to be 2.2.

For lists, the mode is the most common (frequent) value. A list can have more than one 
mode. For histograms, the mode is a relative maximum.

Shape of the distribution

An examination of the shape of a 
distribution will illustrate how the 
distribution is centred around the mean. 
Distributions are either symmetric or 
they are not symmetric, in which case the 
shape of the distribution is described as 
asymmetric or skewed.

Symmetry 
The shape of a distribution is said to be symmetric if the observations 
are balanced, or evenly distributed, about the mean. In a symmetric 
distribution, the mean and the median are equal.

Skewness 
A distribution is skewed if the observations are not symmetrically 
distributed above and below the mean. 

Symmetric distribution
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A positively skewed (or skewed to the right) distribution has a tail that 
extends to the right in the direction of positive values. A negatively skewed 
(or skewed to the left) distribution has a tail that extends to the left in the 
direction of negative values.

Looking back at the WHO data, we can clearly see that the data is skewed 
to the left. Few countries have low life expectancies. The bulk of the 
countries have life expectancies between approximately 50 and 65 years.

The average HALE is m5   ̂
x
 ___ n   5   11028 _____ 

192
   5 57.44. Looking at the raw data, 

it does not appear sensible to search for the mode, as there are very few of 
them (61, 59, 60 or 62). However, after grouping the data into classes, we 
can see that the modal class is 60–65.

As there are 192 observations, which means that the median is at

   n 1 1 _____ 
2

   5   192 1 1 _______ 
2

   5 96.5, we take the average of the 96th and 97th 

observations, which are Palau and Moldova with 60 each. So, the median is 60!

Knowing the median, we could say that a typical life expectancy is 60 years. 
How much does this really tell us? How well does this median describe the 
real situation? After all, not all countries have the same 60 years HALE. 
Whenever we find the centre of data, the next step is always to ask how well 
it actually summarizes the data.

When we describe a distribution numerically, we always report a measure 
of its spread along with its centre.

Measures of location summarize what is typical of elements of a list, but 
not every element is typical. Are all the elements close to each other? Are 
most of the elements close to each other? What is the biggest difference 
between elements? On average, how far are the elements from each other? 
The answer lies in the measures of spread or variability. 

It is possible that two data sets have the same mean, but the individual 
observations in one set could vary more from the mean than do the 
observations in the second set. It takes more than the mean alone to describe 
data. Measures of variability (also called measures of dispersion or spread), 
which include the range, the variance, the standard deviation, interquartile 
range and the coefficient of variation, will help to summarize the data.

Range
The range in a set of data is the difference between the largest and smallest 
observations.

Consider the expense data given at the beginning of this chapter. Also 
consider the same data when the largest value of 68 is replaced by 120. 
What is the range for these two sets of data?

Measures of variability9.3
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Expense data Expense data with outlier

Minimum 38  38

Maximum 68 120

Range 30  82

Notice that the range is a single number, not an interval of values as you 
might think from its use in common speech. The maximum of the HALE 
data is 79 and the minimum is 29, so the range is 50.

Range doesn’t take into account how the data is distributed and is, of 
course, affected by extreme values (outliers) as you see above.

Variance and standard deviation
The most comprehensive measures of dispersion are those in terms of the 
average deviation from some location parameter.

Variance

The sample variance, s 2, is the sum of the squared differences between each 
observation and the sample mean divided by the sample size minus 1.

s 2 5    

 ∑ 
i 5 1

   

n

    (xi 2  
_
 x )2 

  ____________ 
n 2 1

  

Discussing the reason we define the sample variance in this manner is beyond the scope 
of this book. The use of n 2 1 in the denominator has to deal with the use of the sample 
variance as an estimate of the population variance. Such an estimate has to be unbiased, 
and this sample variance is the most unbiased estimate of the population variance. 
However, since the IB syllabus uses a different definition of this variance, we will use the 
IB’s definition in our calculations. You should also be careful with use of your calculator, 
as the listed sx in TI GDC’s is this one and not the IB’s definition. So, when you use your 
GDC, make sure you use what is called sx.
The IB variance is listed as s   2 

 
 n  and is evaluated as follows:

s   2 
 
 n  5    

 ∑ 
i 5 1

   

n

    (xi 2  
__

 x  )2 

  ____________ n  

From this point on, we will use this statistic to denote the sample variance!

The population variance, s 2, is the sum of the squared differences between 
each observation and the population mean divided by the population size, N.

s 2 5    

 ∑ 
i 5 1

   

  N

    (xi 2 m)2 

 ___________ 
N

  

The variance is a measure of the variation about the mean squared. In 
order to bring the measure down to the data measurements, the square 
root is taken and the measure looked at is the standard deviation.

The standard deviation measures the standard amount of deviation or 
spread around the mean.

Table 9.4
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Standard deviation

The sample standard deviation, sn, is the (positive) square root of the 
variance, and is defined as:

sn 5  √ 
__

 s  2 
 
 n    5  √ 

_____________

      

 ∑ 
i 5 1

   

n

    (xi 2  
_
 x  )2 

  ____________ n    

The population standard deviation is: 

s 5  √ 
___

 s 2   5  √ 
_____________

      

 ∑ 
i 5 1

   

N

    (xi 2 m)2 

  ____________ 
N

    

These are measures of variation about the mean.

Consider the following example:

In business, investors invest their money in stocks whose prices fluctuate 
with market conditions. Stocks are considered risky if they have high 
fluctuations. Here are the closing prices of two stocks traded on Vienna’s 
stock market for the first seven business days in September 2007:

Stock A Stock B

4 1

4.25 3

5 2.5

4.75 5

5.75 7

5.25 6.5

6 10

 
__

 x A 5 5
Median (A) 5 5

 
__

 x B 5 5
Median (B) 5 5

Even though the two stocks have similar central values, they do behave 
differently. It is obvious that stock B is more variable and it becomes more 
obvious when we calculate the standard deviations.

We will calculate the standard deviation manually in this example to 
demonstrate the process. You do not have to do this manually all the time!

This means that the standard deviations are sA 5 0.681 and sB 5 2.866. 
Stock B is four times as variable as stock A.

When is s 5 0? Answer: When 
all the data takes on the same 
value and there is no variability 
about the mean.

When is s large? Answer: When 
there is a large amount of 
variability about the mean.

s  2 
 
 A  5    

 ∑ 
i 5 1  

   

7

  (xi 2 5)2 

 ___________ 
7

   5   
(4 2 5)2 1 (4.25 2 5)2 1 (5 2 5)2 1 (4.75 2 5)2 1 (5.57 2 5)2 1 (5.25 2 5)2 1 (6 2 5)2

       __________________________________________________________________    7   5 0.464

s  2 
 
 B  5    

 ∑ 
i 5 1

   

7

    (xi 2 5)2 

 ___________ 
7

   5   
(1 2 5)2 1 (3 2 5)2 1 (2.5 2 5)2 1 (5 2 5)2 1 (7 2 5)2 1 (6.5 2 5)2 1 (10 2 5)2

       _____________________________________________________________   7   5 8.21
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Note: When computing the sample variance manually, you may find the 
following shortcut of some use:

s  2 
 
 n  5    

 ∑ 
i 5 1

   

n

   (xi 2  
_
 x  )2 

  ___________ n   5    

 ∑ 
i 5 1

   

n

    (x 2 
 
 i  2 2xi  

_
 x  1  

_
 x  2) 

  __________________ n   5       

 ∑ 
i 5 1

   

  n

   x  2 
 
 i   2 2 ∑ 

i 5 1

   

n  

   xi  
_
 x  1   ∑ 

i 5 1

   

n   

   
_
 x  2 

   _______________________  n  

 5    

 ∑ 
i 5 1

   

n

    x 2 
 
 i  

 ______ n    2     

2 
_
 x  ∑ 

i 5 1

   

n

    xi 

 ________ n    1     

 ∑ 
i 5 1

   

n 

     
_
 x  2 

 _______ n   5    

 ∑ 
i 5 1

   

n

    x 2 
 
 i  

 ______ n   2  2 
_
 x  ∑ 

i 5 1

   

n

      
xi __ n   1   n 

_
 x  2 ____ n   5    

 ∑ 
i 5 1

   

n

    x 2 
 
 i  

 ______ n   2  
_
 x  2

However, remember that once you have a good understanding of the standard 
deviation, you will rely on a GDC or software to do most of the calculation for 
you.

Here is how you can use your TI GDC:

Notice that the standard deviation you read from this output is called sx rather 
than sx. 

The Sx used by your GDC gives   √
_____________

     

 ∑ 
i 5 1

   

n   

  (xi 2  
_
 x  )2 

  ____________ 
n 2 1

     instead of   √
____________

     

 ∑ 
i 5 1  

   

n

  (xi 2  
_
 x  )2 

  ____________ n     ,

which is officially used on exam papers.

The screenshots also show you that the GDC gives you ^x 2, which can be used 
if you want to find the variance by hand.

s  2 
 
 n  5    

 ∑ 
i 5 1   

   

n

  x  2 
 
 i  

 _______ n   2  
_
 x  2 5   178.25 ______ 7   252 5 0.464 ⇒ sn 5 0.681

The interquartile range and measures of non-
central tendency 
To understand another measure of spread known as the interquartile 
range, it is first necessary to define percentiles and quartiles. 

Percentiles and quartiles

Data must first be in ascending order. 

Percentiles separate large ordered data sets into hundredths. The pth 
percentile is a number such that p per cent of the observations are at or 
below that number.

L2

L1( 1)= 4

L3 1
4
4.25
5
4.75
5.75
5.25
6

L1EDIT CALC TESTS
1:Edit…
2:SortA(
3:SortD(
4:ClrList
5:SetUpEditor

EDIT CALC TESTS
1:1–Var Stats
2:2–Var Stats
3:Med–Med
4:LinReg(ax+b)
5:QuadReg
6:CubicReg
7 QuartReg

1–Var Stats L 1 1–Var Stats
x=5

Sx=.7359800722
ox=.6813851439
n=7

x=35
x2=178.25

1–Var Stats
n=7

Med=5
Q3=5.75
maxX=6

minX=4
Q1=4.25
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Quartiles are descriptive measures that separate large ordered data sets into 
four quarters.

To score in the 90th percentile indicates 90% of the tests scores were less 
than or equal to your score. An excellent performance! You scored in the 
upper 10% of all persons taking the test.

• First quartile, Q1

The first quartile, Q1, is another name for the 25th percentile. The first 
quartile divides the ordered data such that 25% of the observations are 
at or below this value. Q1 is located in the 0.25(n 1 1)st position when 
the data is in ascending order. That is,

Q1 5   n 1 1 _____ 4   ordered observation

• Third quartile, Q3

The third quartile, Q3, is another name for the 75th percentile. The third 
quartile divides the ordered data such that 75% of the observations are 
at or below this value. Q3 is located in the 0.75(n + 1)st position when 
the data is in ascending order. That is,

Q3 5   
3(n 1 1)

 ________ 4   ordered observation

• The median 
The median is the 50th percentile, or the second quartile, Q2.

A measure which helps to measure variability and is not affected by extreme 
values is the interquartile range. It avoids the problem of extreme values by 
just looking at the range of the middle 50% of the data.

Interquartile range

The interquartile range (IQR) measures the spread in the middle 50% of 
the data; it is the difference between the observations at the 25th and the 
75th percentiles:

IQR 5 Q3 2 Q1

If we consider the student expense data in Table 1 and once again look at 
that same data with the outlier 120 replacing the largest value 68, we have 
the following results:

Expense data Expense data with outlier

Minimum 38  38

Q1 50  50

Median 55  55

Q3 61  61

Maximum 68 120

Range 30  82

IQR 11  11

A practical method to calculate 
the quartiles is to split the data 
into two halves at the median. 
(When n is odd, include the 
median in both halves!) The 
first quartile is the median 
of the first half and the third 
quartile is the median of the 
second half. For example, with 
the stocks data, {4, 4.25, 4.75, 5, 
5.25, 5.75, 6}, n 5 7, the median 
is the fourth observation, 5. The 
first quartile is then the median 
of {4, 4.25, 4.75, 5}, which is 
4.5, and the third quartile is 
the median of {5, 5.25, 5.75, 6}, 
which is 5.5.

 Hint: The first quartile is also 
called the lower quartile. The third 
quartile is also called the upper 
quartile.
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Range doesn’t take into account how the data is distributed and is, of 
course, affected by extreme values. We clearly saw that in Table 4. However, 
the IQR evidently does not have that problem.

Five-number summary

Five-number summary refers to the five descriptive measures: minimum, 
first quartile, median, third quartile, maximum.  
Clearly, Xminimum , Q1 , Median , Q3 , Xmaximum.

Box-and-whisker plot

Whenever we have a five-number summary, we can put the information 
together in one graphical display called a box plot, also known as a box-
and-whisker plot. In the student expenditure data, the IQR is E11. This is 
evident in the box plot below, where the IQR is the difference between 50 
and 61.

Let us make a box plot with the student expense data. 
• Draw an axis spanning the range of the data. Mark the numbers 

corresponding to the median, minimum, maximum, and the lower and 
upper quartiles.

• Draw a rectangle with lower end at Q1 and upper end at Q3, as shown 
below.

• To help us consider outliers, mark the points corresponding to lower 
and upper fences. Mark them with a dotted line since they are not part 
of the box. The fences are constructed at the following positions:
• Lower fence: Q1 2 1.5 3 IQR (Here it is 50 2 1.5(11) 5 33.5.)
• Upper fence: Q3 1 1.5 3 IQR (Here it is 61 1 1.5(11) 5 77.5.)

Any point beyond the lower or upper fence is considered an outlier.
• Mark any outlier with an asterisk (*) on the graph. (Shown below).
• Extend horizontal lines called ‘whiskers’ from the ends of the box to the 

smallest and largest observations that are not outliers. In the first case 
these are 38 and 68, while in the second they are 38 and 67.

An outlier is an unusual 
observation. It lies at an 
abnormal distance from the 
rest of the data. There is no 
unique way of describing 
what an outlier is. A common 
practice is to consider any 
observation that is further than 
1.5 IQR from the first or third 
quartile as an outlier. Outliers 
are important in statistical 
analysis. Outliers may contain 
important information not 
shared with the rest of the 
data. Statisticians look very 
carefully at outliers because of 
their influence on the shapes 
of distributions and their effect 
on the values of the other 
statistics, such as the mean and 
standard deviation.

33.5 38 50 55 61 68 77.5
Lower fence

Minimum Q1 Median

IQR � 61 � 50 � 11

Q3 Maximum
Upper fence

33.5 38 50 55 61 67 77.5
Lower fence

Minimum Q1 Median

IQR � 61 � 50 � 11

Q3 Maximum
Upper fence

120

*
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Here is a box plot of the data done by a software package.

As you can see, the box contains the middle 50% of the data. The width of 
the box is nothing but the IQR! Now we know that the middle 50% of the 
students’ expenditure is e11. This seems, at times, as a reasonable summary 
of the spread of the distribution, as you can see in the histogram below.

If you locate the IQR on the histogram, you can also get another visual 
indication of the spread of the data. 

How to use your GDC for histograms and box plots:

For grouped data:

An ogive can also be produced:

Box plot of student expense data
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This is a realistic ogive.

Notice how we locate the first quartile. Since there are 80 observations, 

the first quartile is approximately at the   n 1 1 _____ 4   5   81 ___ 4    20th position, 

which appears to be around 50.

The median is at the   n 1 1 _____ 
2

   5   81 ___ 
2

    40th– 41st position, i.e. approximately 
at 55.

Similarly, the third quartile is at   
3(n 1 1)

 ________ 4   5   243 ___ 4    61st, which happens 

here at approximately 61!

The calculation of the mean and variance for grouped data is essentially 

Pe
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the same as for raw data. The difference lies in the use of frequencies to 
save typing (writing) all numbers. Here is a comparison:

where xi  5 data point
 f (xi) 5 frequency of xi

 mi 5 interval midpoint (mid mark or mid value)
 f (mi) 5 frequency of interval i

 ∑ f (xi), ∑ f (mi) 5 total number of data points

For the grouped data reproduced here, this is how we estimate the mean 
and variance:

The numbers here are estimates of the mean and the variance and 
eventually the standard deviation. As you will notice, they are not equal to 
the values we calculated earlier, but are close. The reason for this is that, 

Statistic Raw data Grouped data Grouped data with intervals

 
__

 x  
__

 x  5   

 ∑ 
all x

   

 

   x 

 _____ n   
__

 x  5   

 ∑ 
all x

   

   

   xi  f(xi) 

 __________ n   5    

 ∑ 
all x

   

   

   xi  f(xi) 

 __________ 
 ∑     

 

    f (xi) 
   

__
 x  5   

 ∑ 
all x

   

 

    mi  f (mi) 

 ____________ n   5    

 ∑ 
all x

   

 

    mi  f (mi) 

 ____________ 
 ∑     

 

    f (mi) 
  

s  2 
 
 n s  2 

  n  5   

 ∑ 
all x

   

 

    (xi 2  
__

 x  )2 

  ____________ n  s  2 
  n  5   

 ∑ 
all x

   

 

   (xi 2  
__

 x  )2   f (xi)

  ________________ n   

 5   

 ∑ 
all x

   

 

   (xi 2  
__

 x  )2   f (xi)

  ________________  
 ∑     

 

   f (xi) 
  

s  2 
  n  5   

 ∑ 
all x

   

 

   (mi 2  
__

 x  )2   f (mi)

  _________________ n  

5   

 ∑ 
all x

   

 

   (mi 2  
__

 x  )2   f (mi)

  _________________  
 ∑     

 

   f (mi) 
  

Living
expenses

Midpoint
m

Number of
students f (m) mi 3 f (mi) (mi 2  

__
 x  )2 (mi 2  

__
 x  )2 3 f (mi)

35 but ,40 37.5  2   75 344.5  688.9

40 but ,45 42.5  3  127.5 183.9  551.6

45 but ,50 47.5 11  522.5  73.3  806.0

50 but ,55 52.5 21 1102.5  12.7  266.1

55 but ,60 57.5 19 1092.5   2.1   39.4

60 but ,65 62.5 11  687.5  41.5  456.2

65 but ,70 67.5 13  877.5 130.9 1701.4

Totals ∑f (mi) 5 80  ∑ 
 all x

   

 

    mi  f (mi)  5 4485  ∑ 
 all x

   

 

    ( mi 2  
_

 x  )2 · f (mi) 5 4509.6

Mean   4485 _____ 80   5 56.06 Variance   4509.6 ______ 80   5 56.37

Standard
deviation

7.51
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with grouping, we lost the detail in each interval. For example, the interval 
between 45 and 50 is represented by the midpoint 47.5. In essence, we are 
assuming that every number in the interval is equal to 47.5.

Shape, centre and spread
Statistics is about variation, so spread is an important fundamental 
concept. Measures of spread help us to precisely analyze what we do not 
know! If the values we are looking at are scattered very far from the centre, 
the IQR and the standard deviation will be large. If these are large, our 
central values will not represent the data well. That is why we always report 
spread with any central value.

A practical way of seeing the significance of the standard deviation can be 
demonstrated with the following (optional) observations:

Empirical rule:
If the data is close to being symmetrical, as in the figure right, the following 
is true:
• The interval m 6 s contains approximately 68% of the measurements.
• The interval m 6 2s contains approximately 95% of the measurements.
• The interval m 6 3s contains approximately 99.7% of the measurements.

The empirical rule usually indicates if an observation is very far from the 
expected or not. Take the following example:

I have recorded my car’s fuel efficiency over the last 98 times that I have 
filled the tank with gasoline. Here is the data expressing how many 
kilometeres per litre the car travelled:

km/litre Frequency km/litre Frequency

6.0  1 10.0 14

7.0  1 10.5  7

7.5  4 11.0  9

8.0  8 11.5  5

8.5 14 12.0  1

9.0 21 12.5  2

9.5 11

The summary measures are:

Mean 9.454

s 1.223

Median 9.25

Q1 8.5

Q3 10.125

IQR 1.625

Symmetric distribution
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The histogram shows that the distribution is almost symmetric. The 
possible outlier has little effect on the mean and standard deviation. That 
is why the mean and median are almost the same. Looking at the box plot, 
you can see that there is one outlier. The confirmation is below:

9.25 2 1.5 3 1.625 5 6.8, which is why 6 is considered as an outlier.

10.125 1 1.5 3 1.625 5 12.6, and hence no outliers on this side.

If we use the empirical rule, we can expect about 
99.7% of the data to lie within three standard 
deviations of the mean, i.e. 9.454 2 3 3 1.223 5 5.8 
and 9.454 1 3 3 1.223 5 13.1. In fact, you see all 
the data is within the specified interval, including the 
potential outlier!

Question: What should you be able to tell about a 
quantitative variable?

Answer: Report the shape of its distribution, and 
include a centre and a spread.

Question: Which central measure and which measure 
of spread?

Answer: The rules are:
• If the shape is skewed, report the median and IQR. 

You may want to include the mean and standard 
deviation, but you should point out that the mean 
and median differ as this difference is a sign that 
the data is skewed. A histogram can help.

• If the shape is symmetrical, report the mean and 
standard deviation. You may report the median 
and IQR as well.
• If there are clear outliers, report the data with 

and without the outliers. The differences may be 
revealing.

Example 4 

The records of a large high school show the heights of their students for 
the year 2006.

Fuel e�ciency
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y 15
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6 7 8 9 10 11 12
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a) Which statistics would best represent the data here? Why?

b) Calculate the mean and standard deviation.

c) Develop a cumulative frequency graph of the data.

d) Use your result of c) above to estimate the median, Q1, Q3 and IQR.

e) Are there any outliers in the data? Why?

f ) Write a few sentences describing the distribution.

Solution
a) The data appears to have outliers and is slightly skewed to the right. The 

most appropriate measure is the median, since the mean is influenced 
by the extreme values.

b) To calculate the mean and standard deviation, we will set up a table that 
will facilitate the calculation.

Height (cm)
x i

Number of
students f (x ) xi 3 f (xi ) (xi 2  

_
 x  )2 (xi 2  

_
 x  )2 3 f (xi )

170 15 2550  51.84  777.6

171 60 10  260  38.44 2306.4

172 90 15  480  27.04 2433.6

173 70 12  110  17.64 1234.8

174 50 8700  10.24  512

175 200 35  000   4.84  968

176 180 31  680   1.44  259.2

177 70 12  390   0.04    2.8

178 120 21  360   0.64   76.8

179 50 8950   3.24  162

180 110 19  800   7.84  862.4

181 80 14  480  14.44 1155.2

182 90 16  380  23.04 2073.6

183 40 7320  33.64 1345.6

184 20 3680  46.24  924.8

185 40 7400  60.84 2433.6

186 10 1860  77.44  774.4

194 2 388 282.24  564.5

196 3 588 353.44 1060.3

Totals ∑f (xi)

5 1300

 ∑ 
 all x

   

   

  xi · f (xi) 

5 230  376

 ∑ 
 all x

   

 

    (xi 2  
_

 x  )2 · f (xi)

5 19  927.6

Mean   230  376 _______ 1300   5 177.2 Variance   19  927.4 ________ 1300   5 15.33

Standard
deviation 3.92
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Note: Using the alternative formula for the variance will also give the same 
result. (Due to rounding, answers will differ slightly.)

s   2 
 
 n  5   

 ∑ 
i 5 1

   

n

    x   2 
 
 i  3 f (xi)

  _____________ n   2  
_
 x   2 5   40  845  390 _________ 

1300
   2 177.21232 5 15.3315 ⇒ sn 5 3.92

c) To develop the cumulative frequency graph, we first need to develop 
the cumulative frequency table. This is done by accumulating the 
frequencies as shown below.

x f (x) Cum f (x) x f (x) Cum f (x)

170  15   15 184 20 1245

171  60   75 185 40 1285

172  90  165 186 10 1295

173  70  235 187  0 1295

174  50  285 188  0 1295

175 200  485 189  0 1295

176 180  665 190  0 1295

177  70  735 191  0 1295

178 120  855 192  0 1295

179  50  905 193  0 1295

180 110 1015 194  2 1297

181  80 1095 195  0 1297

182  90 1185 196  3 1300

183  40 1225

The cumulative frequency table is constructed such that the cumulative 
frequency corresponding to any measurement is the number of 
observations that are less than or equal to its value. So, for example, 
the cumulative frequency corresponding to a height of 174  cm is 285, 
which consists of the 50 observations with height 174  cm and the 235 
observations for heights less than 174  cm.

The cumulative frequency graph plots the observations on the 
horizontal axis against their cumulative frequencies on the vertical axis, 
as shown below.

Height (cm)

0

400

800

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

1200

200
285

174

1285

600

1000

1400

169 171 173 175 177 179 181 183 185 187 189 191 193 195



305

d) The median is the observation between   1300 ____ 
2

   5 650th and 651st 

observations, since the number is even. From the cumulative table, we 
can see that the median is in the 176 interval. So the median is 176. 

Q1 is at   1301 ____ 4    325th observation. From the table, as 174 has a 

cumulative frequency of 285, and 175 has a cumulative frequency of 
485, then Q1 has to be 175. 

Also, Q3 is at   3 3 1301 ________ 4    976th observation. So, similarly, it is 180. 

IQR 5 180 2 175 5 5.

e) To check for outliers, we can calculate the lengths of the whiskers.

Lower fence: 175 2 1.5 3 5 5 167.5, which is lower than the minimum 
value, so there are no outliers on the left.

Upper fence: 180 1 1.5 3 5 5 187.5. So we have five outliers, two at 
194  cm and three at 196  cm.

f) The distribution appears to be bimodal with two modes at 175 and 
176. It is slightly skewed to the right with a few extreme values at 194 
and 196. This is further confirmed by the fact that the mean of 177.2 is 
higher than the median of 176.

Note: Here are the calculations using a GDC:

 1 You are given eight measurements: 5, 4, 7, 8, 6, 6, 5, 7.
a) Find  

__
 x . b) Find the median.

c) Based on the previous results, is the data symmetric or skewed? Explain and 
support your conclusion with an appropriate graph.

 2 You are given ten measurements: 5, 7, 8, 6, 12, 7, 8, 11, 4, 10.
a) Find  

__
 x . b) Find the median. c) Find the mode.

 3 The following table gives the number of DVD players owned by a sample of 50 
typical families in a large city in Germany.

Number of DVD players 0 1 2 3

Number of households 12 24 8 6

Find the average and the median number of DVD players. Which measure is 
more appropriate here? Explain.

Exercise 9.2 and 9.3

1–Var Stats
x=177. 2 123077

Sx=3.9 16704232
ox=3.9 15197517
n=1300

x=230376
x2=40845390

1–Var Stats
n=1300

Med=176
Q3=180
maxX=196

minX=170
Q1=175

L2

L3( 1)=

L3 3
170
171
172
173
174
175
176

15
60
90
70
50
200
180

L1

Plot2 Plot3Plot1

On Off
Type:

Xlist:L 1
Freq:L 2

Plot3Plot1

On Off
Type:

Xlist:L 1
Freq:L 2
Mark:

Plot2



306

Statistics9

 4 Ten of the Fortune 500 large businesses that lost money in 2006 are listed below:

Company Loss ($ million) Company Loss ($ million)

Vodafone 39  093 General Motors 10  567

Kodak 1362 Japan Airlines 417

UAL 21  167 Japan Post 3

Mitsubishi Motors 814 AMR 861

Visteon 270 Karstadt Quelle 393

Calculate the mean and median of the losses. Which measure is more 
appropriate in this case? Explain.

 5 Even on a crucial examination, students tend to lose focus while writing their 
tests. In a psychology experiment, 20 students were given a 10-minute quiz and 
the number of seconds they spent ‘on task’ were recorded. Here are the results:

350 380 500 460 480 400 370 380 450 530

520 460 390 360 410 470 470 490 390 340

Find the mean and median of the time spent on task. If you were writing a report 
to describe these times, which measure of central tendency would you use and 
why?

 6 At 5:30  p.m. during the holiday season, a toy shop counted the number of items 
sold and the revenue collected for that day. The result was n 5 90 toys with a 
total revenue of ∑x 5 e4460.
a) Find the average amount spent on each toy that day.

Shortly before the shop closed at 6 p.m., two new purchases of €74 and €60 
were made.
b) Calculate the new mean of the sales per toy that day.

 7 Cats is a famous musical. In a large theatre in Vienna (1744 capacity), during a 
period of 10 years, it played 1000 performances. The manager of the group kept 
a record of the empty seats on the days it played. Here is the table.

Number 
of empty 
seats

1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100

Days 15 50 100 170 260 220 90 45 30 20

a) Copy and complete the following cumulative frequency table for the above 
information.

Number 
of empty 
seats

x  <  10 x  <  20 x  <  30 x  <  40 x  <  50 x  <  60 x  <  70 x  <  80 x  <  90 x  <  100

Days 15 165 815 1000

b) Draw a cumulative frequency graph of this distribution. Use 1 unit on the 
vertical axis to represent the number of 100 days and 1 unit on the horizontal 
axis to represent every 10 seats.

c) Use the graph from b) to answer the following questions:
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 (i) Find an estimate of the median number of empty seats.
 (ii) Find an estimate for the first quartile, third quartile and the IQR.
 (iii)  The days the number of empty seats was less than 35 seats were 

considered bumper days (lots of profit). How many days were considered 
bumper days?

 (iv)  The highest 15% of the days with empty seats were categorized as loss 
days. What is the number of empty seats above which a day is claimed as 
a loss?

 8 A farmer has 144 bags of new potatoes weighing 2.15  kg each. He also has 56 
bags of potatoes from last year with an average weight of 1.80  kg. Find the mean 
weight of a bag of potatoes available from this farmer.

 9 The heights of football players at a given school are given in the table below:
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152 2 160  7 168 18 175  5 183 9 191 4

155 6 163  5 170  7 178 11 185 4 193 1

157 9 165 20 173 12 180  8 188 2

a) Find the five-number summary for this data.
b) Display the data with a box plot and a histogram.
c) Find the mean and standard deviation of the data.
d) Describe the data with a few sentences.
e) Draw a cumulative frequency graph and estimate the height of the player 

that is in the 90th percentile.
f ) 10 players’ data was missing when we collected the data. The average height 

of the 10 players is 182. Find the average height of all the players, including 
the last 10.

Scatter plot

The total time you devote getting ready for an exam impacts on the 
score you obtain in that exam.

In general, the foot size of an adult is related to the height of that 
adult. 

Smoking increases the chances of a heart attack.

Such statements as those above concern the relationship between two 
variables. So far you have considered how to describe the characteristics 
of one variable. In this section, you will look at relationships between two 
variables. This is why we call this study bivariate statistics.

Linear regression9.4
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To study the relationship between two variables, we measure both variables 
on the same subjects. For example, if we are interested in the relationship 
between height and foot size, then for a group of individuals we record 
each person’s height and foot size. This way we know which foot size goes 
with which height. Similarly, we record the grades of each individual in 
the study along with his/her time preparing for the exam. So, our data are 
sets of ordered pairs. These data allow us to study the link (association) 
between height and foot size or time and grade. In fact, taller people tend 
to have larger foot sizes. And the more you prepare for an exam the higher 
your grade is. We say that pairs of variables like these are associated.

Here are the grades of 10 students in an IB Mathematics SL class. The table 
gives the time they spent preparing for their math test and the score they 
achieved.

Student Tim Joon S-youn Kevin Steve Niki Henry Anton Cindy Lukas

Hours 4 4.5 6 3.5 3 5 5.5 6.5 7 6.5

Grade 65 80 83 61 55 79 85 89 92 95

Here is a graph (scatter plot) of the data given in the 
table.

The horizontal axis shows the number of hours spent 
studying and on the vertical axis shows the scores 
received. As you will notice, it appears that the more 
hours spent studying the higher the grade. We say that 
the grades on tests and the time preparing for them are 
associated. We call the time the explanatory variable 
(independent) and the grade the response variable 
(dependent). The students whose time and grades are 
recorded are the subjects of the experiment/study.

For instance, larger values for the foot size of an individual tend to occur 
in connection with taller individuals. Or, a higher rate of serious road 
accidents happens in connection with drivers that have a high level of 
alcohol concentration in their blood. We claim that height and foot size 
are positively associated as well as alcohol level and involvement in serious 
road accidents. We can also claim that there is a negative association 
between time spent watching TV and scores on weekly tests for teenagers.

In our effort to study the nature of the relationship between two variables 
we try to look into how changes in the values of one variable help explain 
the variation in the other variable. For instance, we look at how the 
increase in a person’s height can explain the increase in his/her foot size. 
As discussed above, we call the first variable explanatory and the second 
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Definition
Two variables measured on the same subjects are associated, if specific values of one 
variable tend to occur in connection with particular values of the other variable.
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the response variable. These are traditionally called independent and 
dependent variables.

The principles that guide our work on data are:

• Start with graphical display, and then explore numerical summaries.

• Look for overall patterns and deviations from those patterns.

• When the overall pattern is quite regular, use a mathematical model to 
describe it.

Graphical displays associated with one variable include histograms, box 
plots and others. In bivariate statistics the graphical tool we use is the 
scatter plot, or scatter diagram. In a scatter plot, each observation is 
represented by a point on a grid. The horizontal component represents the 
explanatory variable and the vertical component represents the response 
variable.

Example 5 

The data presented below is for 80 adults in 
a dieting program. The researchers believe 
that the metabolic rate (calories burnt per 24 
hours) is influenced by the lean body mass 
(in kg without fat).

Does the scatter plot show that there is an 
association between the metabolic rate and 
lean mass?

You will observe that there is a positive 
association between these two variables, 
i.e. the greater the weight, the higher is the 
metabolic rate.

What to look for in a scatter plot

As a rule of thumb, when we examine a scatter plot, we may look at the 
following characteristics:

• Overall pattern (form, direction and strength)

• Striking deviations from pattern (outliers)

Definition
A response variable measures an outcome of a study. An explanatory variable 
explains the changes in the response variable. If the study is to determine the 
relationship between weight and blood pressure, then weight is the explanatory variable 
and blood pressure is the response variable. If the study is to investigate the relationship 
between the level of fertilizer and the crop volume during an agricultural season, then 
the level of fertilizer is explanatory, the crop is the response.
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In this example, the form is roughly linear. That is, the points appear to 
cluster around a straight line. The direction, as mentioned earlier appears 
to be a positive association. The strength is determined by how closely the 
points follow the form (will be revisited later), even though some points 
stray away from the line. In this case it does not appear that there are any 
outliers.

Example 6 

The table below lists the fuel consumption of 34 small cars in km/litre 
during city driving and highway driving. Make a scatter plot of the data 
and comment on any patterns you observe.

City Highway
7.3 10.2

8.5 11.9

8.5 11.9

7.3 10.7

7.7 10.7

5.1 8.5

4.7 6.8

4.3 6.8

7.3 9.8

3.8 6.4

3.8 5.5

6.4 9.4

5.1 7.3

9.4 11.9

6.8 9.8

5.5 8.1

8.5 11.1

8.5 12.4

6.4 9.8

11.1 13.7

5.1 8.1

9.0 12.4

8.1 11.5

8.1 11.9

6.8 9.8

7.7 11.1

6.8 9.8

7.7 9.8

10.7 13.7

9.8 13.2

8.5 12.4

7.7 11.1

6.0 9.4

25.6 28.2

An outlier is an observation 
whose values fall outside 
the overall pattern of the 
relationship.
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Solution

Here is a scatter plot of the data.

The data indicate that the fuel consumption 
in highway driving and city driving, as 
expected, are positively associated. The 
relationship appears to be strong as 
the data are tightly clustered around a 
positively sloped line. However, we can 
see that there is one observation that is 
positioned quite far from the rest of the 
data. This observation is an outlier. Outliers 
in statistics are important. Sometimes 
they indicate a problem in the data being 
observed and sometimes they may have a special significance. In our case, 
the data corresponds to a ‘hybrid’ car, which uses battery power in addition 
to fuel and hence the high performance. In that sense, this observation 
is not typical of the study and must be removed in order to get a clear 
indication of the nature of the relationship between the two variables. Here 
is an adjusted scatter plot without the hybrid car.
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You can use either Excel or your GDC to produce scatter plot.

Here are the instructions for a TI-84:

• First enter the data into two lists L1 and L2 in this case.

• Then go to STAT PLOT

• Choose Plot1.

• Then choose the scatter plot and the correct lists as shown.

• Graph.
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For a CASIO fx-CG20, you do the following:

• Go to Menu and choose Statistics.

• Press EXE and then fill in the lists as shown.

• Choose GRAPH1 (or 2).

Correlation

A scatter plot is a good device that reveals the form, trend and strength 
of the association between two quantitative variables. At this level, we are 
only interested in linear relations. As mentioned earlier, we say that a linear 
relationship is strong if the data are tightly packed around the line, and 
weak if they are widely dispersed around the line. Our judgment using our 
eyes only may be misleading though. Look at the two scatter plots.

The graph at the top is a copy of 
the second graph in Example 6. 
The graph gives the impression 
that the association is stronger 
than it is in the other graph. 
This is due to the change in scale 
on the vertical axis. However, 
both scatter plots represent the 
same situation. We will need a 
more robust measure to support 
our first graphical impressions. 
This measure is the correlation 
coefficient.
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Let us consider height and weight data collected from 
130 19-year-olds. The measurements were made in 
metric units. Here is the scatter plot.

Not surprisingly, the association between the two 
variables is strong. To measure the strength of this 
association, we use the correlation coefficient given by 
the following formula.

This formula is somewhat complex to calculate. However, it helps us see 
what correlation is instead. In practice, you will read the result from your 
calculator or computer output.

If we look at the formula, we see that the first component ​​
xi 2 ​

__
​x​
​______ 

Sx
 ​ is nothing 

but the standardized value for xi. Similarly, the second component ​​
yi 2 ​

__
​y​
​_____​

Sy
 ​

is the standardized value for yi. So, the correlation coefficient can be 

written as r 5 ​​
∑z x z y

 _____​n 2 1 ​. That is, the correlation coefficient is an average of 
the products of the standardized values of the two variables.

Definition
The correlation coefficient measures the strength and direction 
of the linear relationship between two quantitative variables 
when it exists. We use r to represent it.

For a set of data (xi, yi) of size n, the correlation coefficient is

r 5   1 _____ n 2 1   ∑ (   xi 2  
__

 x  _____ 
Sx

    )  (   yi 2  
_
 y 
 _____ 

Sy
   ) 

where  
_
 x  and  

_
 y  are the means of the variables and Sx and Sy are 

the standard deviations.

Note: Whether we use the definition of r or r, it can be shown that they are equivalent. 
Hence, using your GDC will give you the correct value. If you are interested in seeing 
how to show their equivalence, here is one method.

Starting with r:
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r is also called the Pearson 
product-moment correlation 
coefficient. In fact, r is an 
unbiased estimate of the 
population coefficient, which is 
given by:

r 5   1 __ n   ∑ (   xi 2 mx ______ sx
    )   (   yi 2 my

 ______ sy
   ) 

The GDCs use r.

In exams, you will not be asked 
to calculate the coefficient 
by hand but to interpret the 
GDC result. There are several 
equivalent forms for the 
equation but it is not necessary 
at this stage to calculate any of 
them!
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Let us take the weight2height data and express it in pounds and inches 
instead. Here is what we get:

W
ei

gh
t (

lb
)

72.5 73.0 73.5 74.0 74.5 75.0 75.5
163.5

164.0

164.5

165.0

165.5

76.0
Height (in)

As you notice, other than the scale on the axes being inches and pounds, 
the plot has the same form and direction and strength as the original 
one. Similarly, when you standardize the variables, you are subtracting a 
constant from each value and dividing by another constant. If you plot the 
standardized variables, here is what you get:

W
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1

0
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Height standard

As you will notice, other than the centre of the data being at the origin, the 
form, direction and strength appear to be the same.

This fact is verified by calculating the correlation coefficient for all three 
forms of the data. The result is always the same, 0.95 (software use).

For Example 6, the correlation can be read from TI-84’s regression output 
below. You first need to enable the Diagnostics on your GDC, then run 
LinReg from the Stats menu.

LinReg
y=ax+b

LinReg(ax+b)L1,
L2

a=1.108163254
b=2.141125622
r2=.8793206242
r=.9377209735

EDIT CALC TESTS
1:1–Var Stats
2:2–Var Stats
3:Med–Med
4:LinReg(ax+b)
5:QuadReg
6:CubicReg
7 QuartReg
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On CASIO fx-CG20, from the list, choose CALC, REG, X, ax 1 b (or a 1 bx).

Properties of the correlation coefficient

• The correlation coefficient is a measure of the strength of the linear 
association between two quantitative variables.

• Do not apply correlation to non-quantitative data!

• The coefficient makes sense only if there is a linear relationship. It 
does not prove a linear relationship. If there is a linear association, the 
coefficient will describe its strength.

• The outliers can distort the correlation. Special attention must be paid to 
such outliers.

• The correlation is always a number between 21 and 11. Values of r near 
0 indicate a weak relationship. Values close to 11 or 21 indicate strong 
association.

• r does not change as we change the units of measurement.

• r has no units and is not a percentage! Don’t express a correlation of 0.85 
as 85% for example.

• Correlation between two variables means that there is some association 
between them. It does NOT mean that one of them causes the other. 
So, correlation does not mean causation, i.e. two variables can have a 
strong correlation without one of them being the cause of the changes 
in the other. For example, there may be a strong correlation between 
the amount of crude oil imported by country X and the rate of birth 
in country Y. That does not necessarily mean that the increase of 
oil imports causes an increase in birth rate. However, in some cases, 

Rad

GRAPH CALC TEST INTR DIST

Norm1

List 1

7.3

SUB
1
2
3
4

7.3
8.5
8.5
7.3

10.2
11.9
11.9
10.7

List 2 List 3 List 4
d/c Real Rad Norm1 d/c Real

LinearReg(ax+b)
a
b
r
r2
MSe

y=ax+b
COPY

=1.10816325
=2.14112562
=0.93772097
=0.87932062
=0.60072376

You may have observed in the technology output that r 2 is also reported. This measure 
is not required for your exam. However, it is an extremely useful and powerful tool. r 2 is 
known as the coefficient of determination. It reports the portion of variation in the 
response variable that can be explained by the variation in the explanatory variable. As 
such, r 2 can be expressed as a percentage. Using the data from Example 6, 
r 2 5 0.879, which can be interpreted as ‘if all else is equal, then 88% of the variation 
in city consumption can be explained by variation in the highway consumption’, i.e. 
on average, for cars with the same characteristics, if there is a 1 km/L change in City 
consumption, we expect that 88% of this change can be explained by changes in the 
Highway consumption. Using the data from Example 5, r 5 0.84 and r 2 5 0.7056, which 
means that approximately 70.6% of the changes in the metabolic rate can be explained 
by changes in the lean mass. Finally, using the data from Example 7 below, r 2 5 0.9025 
which means that, all else equal, approximately 90% of the variation in weight could be 
explained by variation in the height of those teenagers.
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there may be a causal relationship. For example, the increase in level 
of income in a certain country and the decrease of unemployment 
can have a strong negative correlation. This association is also causal. 
However, the task of proving the causal relationship comes with 
economics.

Example 7 

The table below gives you the data for a lab experiment involving the 
length (mm) of a metal alloy bar used in electronic equipment when it is 
exposed to heat (°C).

Heat (°C) 40 45 50 55 60 65 70 75 80

Length (mm) 20 20.12 20.20 20.21 20.25 20.25 20.34 20.47 20.61

Draw a scatter plot. Comment on the strength of the relationship. Use both 
r and r 2.

Solution

Here is the scatter plot.

It appears that we have a relatively strong 
relationship where the points are tightly spread 
around the trend line.

This is confirmed by calculating the correlation 
coefficient. In this case, regardless of which 
formula we use(r or ρ), the correlation is 
approximately 0.95521. Using the r 2 5 91.2% 
implies that 91.2% of the variation in the 
length can be explained by variation in the 
temperature.
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19.9

Heat (°C)

Exercise 9.4A

1 The following table lists the values of a response variable y against an 
explanatory variable x. Draw a scatter plot and comment on the strength of the 
relationship.

x 8 6 14 11 16 13 11 12 11 12 12 11 15 16 14 13 13 8 10 11

y 8 7 12 10 14 10 10 9 15 11 10 9.5 12 13 13 11 11 9 9 9

2 The data below represents the outcome of an experiment on a small car, 
relating fuel consumption to speed.

Speed km/h 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150

Fuel 
consumption 
km/L

16.9 16.8 15.9 15.9 14.4 14.3 13.2 14.3 12.1 12.0 10.2 9.8 9.0 8.0 7.1
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 a) Make a scatter plot.

 b)  Describe the relationship and justify your choice of which variable is the 
explanatory and which is the response.

 c) Is the relationship strong? Explain your answer.

3 The following data is from World Bank statistics relating the Gross National 
Income per Capita (GNI/Cap) to Purchasing Power Parity (PPP) for a few 
developed countries. (The exchange rate adjusts so that an identical product 
in two different countries has the same price when expressed in the same 
currency.) For example, a chocolate bar that sells for C$1.50 in a Canadian city 
should cost US$1.00 in a U.S. city, when the exchange rate between Canada and 
the U.S. is 1.50 USD/CDN. (Both chocolate bars cost US$1.00.)

Country GNI/Cap PPP

NOR 85380 57130.0

CH 70350 49180.0

DK 58980 40140.0

SWE 49930 39600.0

NL 49720 42590.0

FIN 47170 37180.0

USA 47140 47020.0

AUT 46710 39410.0

BEL 45420 37840.0

D 43330 38170.0

F 42390 34440.0

JPN 42150 34790.0

SGP 40920 54700.0

 a) Make a scatter plot.

 b)  Describe the relationship and justify your choice of which variable is the 
explanatory and which is the response.

 c) Is the relationship strong? Explain your answer.

4 In hotel management, it is necessary to estimate the electricity consumption in 
relation to number of visitors. Here is the data for a large hotel.

Visitors 232 311 321 334 352 375 412 447 456 472 480 495 512

Consumption 237 278 270 303 298 328 387 390 376 402 431 430 432

 a) Make a scatter plot.

 b)  Describe the relationship and justify your choice of which variable is the 
explanatory and which is the response.

 c) Is the relationship strong? Explain your answer.
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Least squares regression

You have seen above that correlation measures the strength and direction 
of a linear relationship between two quantitative variables. So, if we 
suspect from a scatter plot that the relationship is linear, then we need 
to summarize this linear behaviour, i.e. we need to find an equation of a 
straight line that best fits the trend in the data. In this sub-section, we will 
discuss how to find a line of best fit that describes the linear relationship 
between an explanatory and response variable when it exists.

Finding a line of best fit means finding a line that comes as close as 
possible to the points in the data set. Obviously, there is no straight line 
that contains all the points in the set.

Regression line

A regression line is a straight line that describes how a response variable 
changes with changes in an explanatory variable.

Let y be the response variable and x be the explanatory variable. The linear 
regression line is of the form

y 5 ax 1 b

where a, the slope of the line, reflects how does the response variable, y, 
changes according to changes in the explanatory variable x. b is the value of 
the response variable corresponding to a zero value in x.

In the example of height2weight, the equation is

Weight (kg) 5 56.1 1 0.0966 Height (cm)

That is a 5 0.0966 and b 5 56.1.

This means that on average, for every increase (decrease) of 1 cm in height, 
we predict an increase (decrease) of 0.0966 kg in weight. The interpretation 
of b is peculiar. As you know from algebra, b stands for the value of y 
(which is Weight in this case) corresponding to a zero value of x (which 
is height in this case). However, for this problem the interpretation is not 
ideal! It corresponds to a height of zero. The general rule in this is that if 
0 is not included in the domain of the explanatory variable, then trying to 
interpret the intercept is pointless.

This issue has to do with what we call extrapolation. Extrapolation is the 
use of the regression line for predicting values far off the range of values 
of the explanatory variable x used to find the equation of that line. Such 
predictions are often inaccurate.

We decided to use the familiar form y 5 ax 1 b for the equation of the regression line as 
an introduction. However, in most statistics books and in software the form used is  
y 5 a 1 bx where a is the y-intercept and b is the gradient.
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Why the least-squares regression line?

Let us take a simple example. The graph below represents a few points in a 
data set. The green line is the line of best fit. Take for example the point  
(x1, y1). The point on the line (x1,  ŷ  1) is the point whose y-coordinate  ŷ  1 
predicts the real y-coordinate, using the line of best fit. The distance 
y1 2 ŷ  1 is the error in this prediction. Similarly is y2 2  ŷ  2 and all other 
yi 2 ŷ  i. The line of best fit is the line that minimizes the sum of all these 
errors. However, like the variance, some of these errors are positive and 
some are negative and may eventually cancel each other out. To avoid 
this, like we did with the variance, we try to minimize the squares of these 
errors. That is, the line of best fit is the line that minimizes the sum  
^(yi,  ŷ  i)

2. Hence, it has the name of the least-squares line of regression 
 ŷ   5 bx 1 a .

The process of finding the slope of such a line is beyond the scope of this 
book. Here is one form of the many forms of the resulting formulas for the 

slope and intercept are b 5 r​​
Sy

 __​
Sx

 ​, and a 5 ​
__
​y​ 2 b​

__
​x​. Here, r is the correlation 

coefficient, ​
__
​x​ , ​
__
​y​, sx, and sy are the means and standard deviations of the 

explanatory and response variables.

As you will notice from the equations, every regression line should contain 
the point (​

__
​x​ , ​
__
​y​) with the averages of the variables as coordinates.

0

( y1– y1)

x

y
( y2– y2)

( x1, y1)

( x1, y1)

( x, y) ( x2, y2)

( x2, y2)

Example 8 

The following scatter plot represents a random sample of IB students who 
went through four years of university and a comparison of their scores on 

There are other equivalent forms of the equations, but since you don’t need to do the 
calculations yourself, we decided to share with you one of the more intuitive formulas. 
One conclusion you can draw from this formula is that along a line of regression with 
slope b, a change of 1 standard deviation in the x-direction will result in a change of 
r standard deviations in the y-direction.
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the IB exams they took and their Grade Point Averages in their university 
studies (scale 124).

U
ni

ve
rs

ity

24 26 28 30 32 34 36 38

4.0

3.5

3.0

2.5

2.0

1.5

IB
22

There appears to be a linear relationship between them. When we run a 
linear regression, the equation is:

University 5 21.51 1 0.151 IB

This means that on average, for every increase of 1 point in the total IB 
score, we expect an increase of 0.15 points in University Grade Point 
Average (GPA). If we want to predict the GPA of a student who scored 30 
on an IB diploma, the model predicts, on average, a grade of:

University 5 21.51 1 0.151(30) 5 3.02

The correlation coefficient of this relationship is r 5 0.758, which is a 
relatively strong correlation. In addition, r 2 5 57.5%. This means that 
changes in the IB score may help us explain 57.5% of the variation in the 
University GPA.

Does that mean high IB scores cause high university averages? The answer 
is no. They only help predict the future university averages.

Features of the regression line

• The regression equation can be used to predict the response variable 
according to values of the explanatory variable.

• The regression line must pass through the point (​
_
​x​ , ​
_
​y​).

• When the regression line is used for prediction and you substitute a 
specific value x1 for the explanatory variable, the predicted value  ŷ  1 of 
the response variable is an average value. For example, when we use the 
height2weight equation Weight (kg) 5 56.1 1 0.0966 Height (cm) to 
predict the weight corresponding to a height of 182 cm, the value we get 
(73.68 kg) is an average weight of 19 year-old students of height 182 cm.
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Here are the data for two variables. Draw the 
line of regression and indicate the distances, 
the sum of whose squares is minimized by the 
choice of the line of regression.

Solution

The scatter plot on the next page shows the data and line of regression. The 
red distances are those required.

The line has an equation:  ŷ    5 6.14 1 2.071 x

Look at the second table where we also introduced the value of each 
predicted y (Fit) and then calculated the distances (directed) whose squares 
were minimized.

x y Fit Distance Distance square

11 21 28.92857 27.92857 62.8622449

12 43 31 12 144

13 31 33.07143 22.07143 4.290816327

14 34 35.14286 21.14286 1.306122449

15 29 37.21429 28.21429 67.4744898

16 55 39.28571 15.71429 246.9387755

17 33 41.35714 28.35714 69.84183673

The minimum sum is 596.71. You can try to find any other line and you 
will notice that this is the minimum sum of the squares of distances.

Exceptional cases of the regression line
If r 5 0, the regression line is horizontal; its slope is zero.

If r 5 1, all the points fall on a line with positive slope.

If r 5 21, all the points fall on a line with negative slope.

Estimating the value of Y associated with a value of X that is larger than any of those 
observed, or smaller than any of those observed, is called extrapolation. Estimating the 
value of Y associated with a value of X that is within the range of the observed values of 
X but is not equal to any of the observed values of X is called interpolation.

Extrapolation is extremely suspect: without data in the range in which the estimate is 
wanted, there is no reason to believe that the relationship between X and Y is the same 
as it is in the region in which there are data.

Interpolation is sometimes reasonable when the scatter plot shows a strong relationship, 
especially if there are many data near the value of X or Y at which the estimate is sought.

x y
11 21

12 43

13 31

14 34

15 29

16 55

17 33



322

Statistics9

Moreover, since ​
__
​x​ 5 14 and ​

__
​y​ 5 35.14, then:

35.14 5 6.14 1 2.071 3 14

This indicates that the line contains the point (​
__
​x​, ​
__
​y​).

11 17
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Fitted line plot
y = 6.14 + 2.071 x
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S
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16.8%

If you regress x on y instead, the equation of regression is  x̂  5 dy 1 c.

The resulting formulae for the slope and intercept are d 5 r   
Sx __ 
Sy

  , and c 5  
__

 x  2 d  
_

 y .

A remarkable relationship appears here between the gradients of the regression line and r.

For example, b 5 r   
Sy __ 
Sx

   and d 5 r   
Sx __ 
Sy

  , and hence, bd 5 r   
Sy __ 
Sx

    r   
Sx __ 
Sy

   5 r 2.

Exercise 9.4B

1 Develop a regression model for each question in Exercise 9.4A and interpret the 
slope of each.

2 To test the benefit of using an online tutoring course for exam preparation, 20 
students were given a test before they took part in the experiment and then 
afterwards. The tests were similar and the scores before and after the experiment 
were recorded. The intention was to find how improved the scores were due to 
participation in the experiment.

 Analyze the data. For a student whose original score was 60, what do you expect, 
on average, the student’s new score to be?

Student Before After

 1 98 122

 2 24 46

 3 6 16

 4 8 28

 5 56 84

 6 54 68
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Student Before After

 7 40 64

 8 40 62

 9 68 82

10 30 50

11 32 40

12 80 100

13 102 129

14 30 56

15 12 32

16 16 56

17 60 90

18 58 73

19 50 74

20 48 70

3 A large electronics company produces LCD monitors to be used in the computer 
industry. The monthly total cost of production over the period of one year, is 
given in the table below. (Number of units produced is in thousands and the 
cost is in 1000 euros.)

Number of units 
produced

Cost

16 1875

31 2586

57 3716

76 4712

13 1690

25 2191

49 3319

71 4362

20 2005

38 2775

63 4116

81 4860

 a) Draw a scatter plot of the data.

 b)  Write down the equation of the regression line representing the association 
between units of production and sales. Draw the line on your scatter plot.

 c)  Interpret the slope of the line and comment on the strength of this 
association.

 d)  If the selling price of each unit during this year is 105 euros, what is the 
production level where the sales are equal to the cost?

4 The table shows the marks of 12 students sitting for IB Mathematics SL and IB 
Physics SL.
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Mathematics 7 6 5 5 6 3 7 7 5 4 5 7

Physics 6 6 6 4 7 4 6 5 6 4 6 5

 a) Find the correlation coefficient and comment on your result.

 b)  Find the regression equation that enables us to predict mathematics scores 
from the physics scores.

 c)  What mark in mathematics would you expect for a candidate with a mark of 
4 in physics?

5 Diamonds are usually priced according to weight. The carat is the usual measure 
and it is the weight of the diamond. 1 carat is equivalent to 200 milligrams. Some 
experts use points as the measure instead. 1 point is equivalent to 2 milligrams. 
Therefore, every carat is equivalent to 100 points. So, a 0.5 carat diamond is 
worth 50 points.

 Here is the data for 20 diamonds and their prices.

Points 73 103 106 21 31 100 26 82 101 100 63 66

Price 
(€)

5909 15260 13640 1287 2177 12837 1911 6927 16143 10945 9117 6020

 a) Construct a scatter plot of the data. What type of trend do you observe?

 b)  Write down the equation of a straight-line model relating the price to the 
number of points.

 c)  Give a practical interpretation of the coefficients. If a practical interpretation 
is not possible, explain why.

 d) How well does the line fit the given data?

 e) Use the line you found to predict the price of a diamond with 63 points.

 f ) Find the residual corresponding to your estimate in part e).

  1	 Given	that	m	is	the	mean	of	a	data	set	y1,	y2,	…,	y30,	and	you	know	that

	 		∑ 
i	5	1

			
30

	 		 	yi	5	360	and		∑ 
i	5	1

			
30

	 			(	yi	2	m)2	5	925,	find

a)	 the	value	of	m
b)	 the	standard	deviation	of	the	set.

  2	 Laura	made	a	survey	of	some	students	at	school	asking	them	about	the	time	it	takes	
each	of	them	to	come	to	school	every	morning.	She	scribbled	the	numbers	on	a	piece	of	
paper	and,	unfortunately,	could	not	read	the	number	of	students	who	spend	40	minutes	
on	their	trip	to	school.	The	average	number	of	minutes	she	had	originally	found	was	34	
minutes.	Find	out	how	many	students	spend	40	minutes	on	their	trip.

Time in minutes 10 20 30 40 50

Number of students with this time 1 2 5 ? 3

Practice questions
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  3	 The	following	table	gives	50	measurements	of	the	time	it	took	a	certain	reaction	to	be	
done	in	a	laboratory	experiment.

3.1 5.1 4.9 1.8 2.8 5.6 3.6 2.2 2.5 3.4

4.5 2.5 3.5 3.6 3.7 5.1 4.1 4.8 4.9 1.6

2.9 3.6 2.1 6.1 3.5 4.7 4 3.9 3.7 3.9

2.7 4.3 4 5.7 4.4 3.7 3.7 4.6 4.2 4

3.8 5.6 6.2 4.9 2.5 4.2 2.9 3.1 2.8 3.9

a)	 Construct	a	frequency	table	and	histogram	starting	at	1.6	and	with	interval	length	
of	0.5.

b)	 What	fraction	of	the	measurements	is	less	than	5.1?

c)	 Estimate,	from	your	histogram,	the	median	of	this	data	set.

d)	 Estimate	the	mean	and	standard	deviation	using	your	frequency	table.

e)	 Construct	a	cumulative	frequency	graph.

f)	 From	your	cumulative	frequency	graph,	estimate	each	of	the	five	numbers	in	the	
five-number	summary.

  4	 In	large	cities	around	the	world,	governments	offer	parking	facilities	for	public	use.	
The	histogram	below	gives	a	picture	of	the	number	of	parking	sites	available	with	the	
capacity	of	each,	in	a	number	of	cities	chosen	at	random.

a)	 Which	statistics	would	best	represent	the	data	here?	Why?

b)	 Calculate	the	mean	and	standard	deviation.

c)	 Develop	a	cumulative	frequency	graph	of	the	data.

d)	 Use	your	result	from	c)	above	to	estimate	the	median,	Q1,	Q3	and	IQR.

e)	 Are	there	any	outliers	in	the	data?	Why?

f)	 Write	a	few	sentences	describing	the	distribution.
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  5	 The	box	plots	display	the	case	prices	(in	e)	of	red	wines	produced	in	France,	Italy	and	
Spain.

a)	 Which	country	appears	to	produce	the	most	expensive	red	wine?	The	cheapest?

b)	 In	which	country	are	the	red	wines	generally	more	expensive?

c)	 Write	a	few	sentences	comparing	the	pricing	of	red	wines	in	the	three	countries.

  6	

 

112.72 53.55 54.12 54.33 58.79 59.26 60.39 62.45 52.22 52.52 52.58 52.85

	 54.06 51.34 51.93 52.09 52.14 52.24 52.24 52.53 53.5 51.82 51.93 52

	 52.78 52.82 50.28 50.49 51.28 51.28 51.52 51.62 52.4 52.43 49.83 50.46

	 50.95 51.07 51.11 49.45 49.45 49.73 49.76 49.93 50.19 50.32 50.63 48.64

	 49.79 50.19 50.62 50.96 49.09 49.16 49.29 49.74 49.74 49.75 49.84 49.76

52.9 52.91 53.4 52.18 52.57 52.72 50.56 50.87 50.9 49.32 49.7

The	table	shows	the	record	for	the	times	(seconds)	of	the	71	male	swimmers	in	the	
100		m	swim	on	the	first	day	during	the	Summer	Olympics	2000	in	Sydney.

a)	 Calculate	the	mean	time	and	the	standard	deviation.

b)	 Calculate	the	median	and	IQR.

c)	 Explain	the	differences	between	these	two	sets	of	measures.

  7	 In	a	survey	of	universities	in	major	cities	in	the	world,	the	percentage	of	first-year	
students	who	graduate	on	time	(some	require	4	years	and	some	5	years)	was	reported.	
The	summary	statistics	are	given	below.

Number	of	universities	surveyed	 120 Mean	percentage	 69

Median	percentage   70 Standard	deviation	   9.8

Minimum   42 Maximum 86

Range   44 Q1 60.25

Q3   75.75

a)	 Is	this	distribution	symmetric?	Explain.

b)	 Check	for	outliers.

c)	 Create	a	box	plot	of	the	data.

d)	 Describe	the	data	in	a	short	paragraph.
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  8	 The	International	Heart	Association	studies,	among	other	factors,	the	influence	of	
cholesterol	level	(in	mg/dl)	on	the	conditions	of	heart	patients.	In	a	study	of	2000	
subjects,	the	following	cumulative	relative	frequency	graph	was	recorded.

a)	 Estimate	the	median	cholesterol	level	of	heart	patients	in	the	study.
b)	 Estimate	the	first	and	third	quartiles,	and	the	90th	and	10th	percentiles.
c)	 Estimate	the	IQR.	Also	estimate	the	number	of	patients	in	the	middle	50%	of	this	

distribution.
d)	 Create	a	box	plot	of	the	data.
e)	 Give	a	short	description	of	the	distribution.

  9	 Many	of	the	streets	in	Vienna,	Austria	have	a	speed	limit	of	30	km/h.	On	one	Sunday	
evening	the	police	registered	the	speed	of	cars	passing	an	important	intersection,	in	
order	to	give	speeding	tickets	when	drivers	exceeded	the	limit.	Here	is	a	random	sample	
of	100	cars	recorded	that	evening.

26 46 39 41 44 37 38 35 34 31

27 47 39 41 44 37 38 35 34 32

27 47 39 41 44 37 38 35 34 32

27 48 39 41 44 27 38 35 34 32

29 48 40 41 45 37 38 36 34 33

30 48 40 41 45 37 38 36 35 33

30 48 40 42 45 38 39 36 35 33

30 49 40 42 46 38 39 36 35 33

30 50 41 42 46 38 39 36 35 33

31 54 41 43 46 38 39 36 35 33

a)	 Prepare	a	frequency	table	for	the	data.

b)	 Draw	a	histogram	of	the	data	and	describe	the	shape.

c)	 Calculate,	showing	all	work,	the	mean	and	standard	deviation	of	the	data.

d)	 Prepare	a	cumulative	frequency	table	of	the	data.

e)	 Find	the	median,	Q1,	Q3	and	IQR.

f)	 Are	there	any	outliers	in	the	data?	Explain	using	an	appropriate	diagram.
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10	 The	following	is	the	data	collected	from	50	industrial	countries	chosen	at	random	in	
2001.	The	data	represents	the	per	capita	gasoline	consumption	in	these	countries.	The	
Netherlands’	consumption	was	at	1123	litres	per	capita	while	Italy	stood	at	2220	litres	
per	capita.

2062 2076 1795 1732 2101 2211 1748 1239 1936 1658

1639 1924 2086 1970 2220 1919 1632 1894 1934 1903

1714 1689 1123 1671 1950 1705 1822 1539 1976 1999

2017 2055 1943 1553 1888 1749 2053 1963 2053 2117

1600 1795 2176 1445 1727 1751 1714 2024 1714 2133

a)	 Calculate	the	mean,	median,	standard	deviation,	Q1,	Q3	and	IQR.
b)	 Are	there	any	outliers?
c)	 Draw	a	box	plot.
d)	 What	consumption	levels	are	within	1	standard	deviation	from	the	mean?
e)	 Germany,	with	a	consumption	level	of	2758	litres	per	capita,	was	not	included	in	

the	sample.	What	effect	on	the	different	statistics	calculated	would	adding	Germany	
have?	Do	not	recalculate	the	statistics.

11	 90	students	on	a	statistics	course	were	given	an	experiment	where	each	reported,	to	
the	nearest	minute,	the	time,	x,	it	took	them	to	commute	to	school	on	a	specific	day.	
The	teachers	then	reported	back	that	the	total	travelling	time	for	the	course	participants	
was	∑x	5	4460	minutes.
a)	 Find	the	mean	number	of	minutes	the	students	spent	travelling	to	school	that	day.

Four	students	who	were	absent	when	the	data	was	first	collected	reported	that	they	
spent	35,	39,	28	and	32	minutes,	respectively.
b)	 Calculate	the	new	mean	including	these	four	students.

12	 Two	thousand	students	at	a	large	university	take	the	final	statistics	examination,	which	
is	marked	on	a	100-scale,	and	the	distribution	of	marks	received	is	given	in	the	table	
below.

Marks 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100

Number of 

candidates
30 100 200 340 520 440 180 90 60 40

a)	 Complete	the	table	below	so	that	it	represents	the	cumulative	frequency	for	each	
interval.

Marks <10 <20 <30 <40 <50 <60 <70 <80 <90 <100

Number of 
candidates

30 130 1630

b)	 Draw	a	cumulative	frequency	graph	of	the	distribution,	using	a	scale	of	1		cm	for	100	
students	on	the	vertical	axis	and	1		cm	for	10	marks	on	the	horizontal	axis.

c)	 Use	your	graph	from	b)	to	answer	parts	(i)–(iii)	below.
  (i)	 Find	an	estimate	for	the	median	score.
  (ii)	 	Candidates	who	scored	less	than	35	were	required	to	retake	the	examination.	

How	many	candidates	had	to	retake	the	exam?	
  (iii)	 	The	highest-scoring	15%	of	candidates	were	awarded	a	distinction.	

Find	the	mark	above	for	which	a	distinction	was	awarded.
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13	 At	a	conference	of	100	mathematicians	there	are	72	men	and	28	women.	The	men	
have	a	mean	height	of	1.79		m	and	the	women	have	a	mean	height	of	1.62		m.	Find	the	
mean	height	of	the	100	mathematicians.

14	 The	mean	of	the	population	x1,	x2,	…	,	x25	is	m.	Given	that		∑ 
i	5	1		

			
25

	 			xi	5	300	and	

	∑ 
i	5	1		

			
25

	 	(	xi	2	m)2	5	625,	find

a)	 the	value	of	m
b)	 the	standard	deviation	of	the	population.

15	 A	survey	is	carried	out	to	find	the	waiting	times	for	100	customers	at	a	supermarket.

Waiting time
(seconds)

Number of 
customers

	 0–30 	 5

30–60 15

60–90 33

	 90–120 21

120–150 11

150–180 	 7

180–210 	 5

210–240 	 3

a)	 Calculate	an	estimate	for	the	mean	of	the	waiting	times,	by	using	an	appropriate	
approximation	to	represent	each	interval.

b)	 Construct	a	cumulative	frequency	table	for	this	data.
c)	 Use	the	cumulative	frequency	table	to	draw,	on	graph	paper,	a	cumulative	frequency	

graph,	using	a	scale	of	1		cm	per	20	seconds	waiting	time	for	the	horizontal	axis	and	
1		cm	per	10	customers	for	the	vertical	axis.

d)	 Use	the	cumulative	frequency	graph	to	find	estimates	for	the	median	and	the	lower	
and	upper	quartiles	(i.e.	first	and	third	quartiles).

16	 The	following	diagram	represents	the	lengths,	in	cm,	of	80	plants	grown	in	a	laboratory.

a)	 How	many	plants	have	lengths	in	cm	between
  (i)	 50	and	60?
  (ii)	 70	and	90?
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b)	 Calculate	estimates	for	the	mean	and	the	standard	deviation	of	the	lengths	of	the	
plants.

c)	 Explain	what	feature	of	the	diagram	suggests	that	the	median	is	different	from	the	
mean.

d)	 The	following	is	an	extract	from	the	cumulative	frequency	table.

	
Length in cm

less than
Cumulative
frequency

. .

50 22

60 32

70 48

80 62

. .

Use	the	information	in	the	table	to	estimate	the	median.	Give	your	answer	to	2	
significant	figures.

17	 The	table	below	represents	the	weights,	W,	in	grams,	of	80	packets	of	roasted	
peanuts.

Weight	
(W )

80	,	W	
< 85

85	,	W	
< 90

90	,	W	
< 95

95	,	W	
< 100

100	,	W	
< 105

105	,	W	
< 110

110	,	W	
< 115

Number 
of	
packets

5	 10	 15	 26	 13	 7	 4	

a)	 Use	the	midpoint	of	each	interval	to	find	an	estimate	for	the	standard	deviation	of	
the	weights.

b)	 Copy	and	complete	the	following	cumulative	frequency	table	for	the	above	data.

Weight 
(W )

W	<	85	 W	<	90	 W	<	95	 W	<	100	 W	<	105	 W	<	110	 W	<	115	

Number 
of
packets

5 15 80

c)	 A	cumulative	frequency	graph	of	the	distribution	is	shown	below,	with	a	scale	of	
2		cm	for	10	packets	on	the	vertical	axis	and	2		cm	for	5	grams	on	the	horizontal	axis.

Use	the	graph	to	estimate
  (i)	 the	median
  (ii)	 the	upper	quartile	(that	is,	the	third	quartile).

Give	your	answers	to	the	nearest	gram.
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d)	 Let	W1,	W2,	…,	W80	be	the	individual	weights	of	the	packets,	and	let		
__

	W		be	their	
mean.	What	is	the	value	of	the	sum

(W1	2		
__

	W		)	1	(W2	2		
__

	W		)	1	(W3	2		
__

	W		)	1	…	1	(W79	2		
__

	W		)	1	(W80	2		
__

	W		)?	

e)	 One	of	the	80	packets	is	selected	at	random.	Given	that	its	weight	satisfies
85	,	W	<	110	,	find	the	probability	that	its	weight	is	greater	than	100	grams.

18	The	speeds,	in	km	h21,	of	cars	passing	a	point	on	a	highway	are	recorded	in	the	
following	table.

Speed v Number of cars

v	<	60 	 0

60	,	v	<	70 	 7

70	,	v	<	80 25

80	,	v	<	90 63

	 90	,	v	<	100 70

100	,	v	<	110 71

110	,	v	<	120 39

120	,	v	<	130 20

130	,	v	<	140 	 5

v	.	140 	 0

a)	 Calculate	an	estimate	of	the	mean	speed	of	the	cars.
b)	 The	following	table	gives	some	of	the	cumulative	frequencies	for	the	information	

above.
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Speed v Cumulative frequency

v	<	60 	 	 0

v	<	70 	 	 7

v	<	80 	 32

v	<	90 	 95

v	<	100 a

v	<	110 236

v	<	120 b

v	<	130 295

v	<	140 300

  (i)	 Write	down	the	values	of	a	and	b.
  (ii)	 	On	graph	paper,	construct	a	cumulative	frequency	curve	to	represent	this	

information.	Use	a	scale	of	1		cm	for	10		km	h21	on	the	horizontal	axis	and	a	
scale	of	1		cm	for	20	cars	on	the	vertical	axis.

c)	 Use	your	graph	to	determine
  (i)	 the	percentage	of	cars	travelling	at	a	speed	in	excess	of	105		km	h21

  (ii)	 the	speed	which	is	exceeded	by	15%	of	the	cars.

19	 A	taxi	company	has	200	taxi	cabs.	The	cumulative	frequency	curve	below	shows	the	
fares	in	dollars	($)	taken	by	the	cabs	on	a	particular	morning.
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a)	 Use	the	curve	to	estimate
  (i)	 the	median	fare
  (ii)	 the	number	of	cabs	in	which	the	fare	taken	is	$35	or	less.

The	company	charges	55	cents	per	kilometre	for	distance	travelled.	There	are	no	other	
charges.	Use	the	curve	to	answer	the	following.
b)	 On	that	morning,	40%	of	the	cabs	travel	less	than	a		km.	Find	the	value	of	a.
c)	 What	percentage	of	the	cabs	travel	more	than	90		km	on	that	morning?

20	 Three	positive	integers	a,	b	and	c,	where	a	,	b	,	c,	are	such	that	their	median	is	11,	
their	mean	is	9	and	their	range	is	10.	Find	the	value	of	a.

21	 In	a	suburb	of	a	large	city,	100	houses	were	sold	in	a	three-month	period.	The	following	
cumulative frequency table	shows	the	distribution	of	selling	prices	(in	thousands	of	
dollars).

Selling price P
($ thousand)

P	<	100 P	<	200 P	<	300 P	<	400 P	<	500

Total number
of houses

12 58 87 94 100

a)	 Represent	this	information	on	a	cumulative	frequency	curve,	using	a	scale	of	1		cm	
to	represent	$50		000	on	the	horizontal	axis	and	1		cm	to	represent	5	houses	on	the	
vertical	axis.

b)	 Use	your	curve	to	find	the	interquartile	range.
The	information	above	is	represented	in	the	following	frequency	distribution.

Selling 

price P

($ thousand)

0	,	P	<	100 100	,	P	<	200 200	,	P	<	300 300	,	P	<	400 400	,	P	<	500

Total 

number

of houses

12 46 29 a b

c)	 Find	the	values	of	a	and	b.
d)	 Use	mid-interval	values	to	calculate	an	estimate	for	the	mean	selling	price.
e)	 Houses	which	sell	for	more	than	$350		000	are	described	as	De	Luxe.

  (i)	 	Use	your	graph	to	estimate	the	number	of	De	Luxe	houses	sold.
Give	your	answer	to	the	nearest	integer.

  (ii)	 	Two	De	Luxe	houses	are	selected	at	random.	Find	the	probability	that	both	
have	a	selling	price	of	more	than	$400		000.

22	 A	student	measured	the	
diameters	of	80	snail	shells.	
His	results	are	shown	in	
the	following	cumulative	
frequency	graph.	The	lower	
quartile	(LQ)	is	14		mm	and	is	
marked	clearly	on	the	graph.

a)	 On	the	graph,	mark	clearly	
and	write	down	the	value	of

  (i)	 the	median  (ii)	 the	upper	quartile.

b)	 Write	down	the	interquartile	range.
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23	 The	cumulative	frequency	curve	
right	shows	the	marks	obtained	
in	an	examination	by	a	group	of	
200	students.

a)	 Use	the	cumulative	frequency	
curve	to	complete	the	
frequency	table	below.

Mark (x) 0	<	x	,	20 20	<	x	,	40 40	<	x	,	60 60	<	x	,	80 80	<	x	,	100

Number 
of
students

22 20

b)	 Forty	per	cent	of	the	students	fail.	Find	the	pass	mark.

24	 The	cumulative	frequency	curve	right	shows	
the	heights	(in	centimetres)	of	120		
basketball	players.
Use	the	curve	to	estimate
a)	 the	median	height
b)	 the	interquartile	range.

N
um

be
r o

f s
tu

de
nt

s

0

20

40

60

80

100

120

140

160

170

180

190

200

10

30

50

70

90

110

130

150

0 20 40 60 80
Mark obtained

10010 30 50 70 90

N
um

be
r o

f p
la

ye
rs

0

20

40

60

80

100

120

10

30

50

70

90

110

160 170 180 190 200
Height in centimetres

165 175 185 195



335

25	 Let	a,	b,	c	and	d	be	integers	such	that	a	,	b,	b	,	c	and	c 5 d.
The	mode	of	these	four	numbers	is	11.	
The	range	of	these	four	numbers	is	8.	
The	mean	of	these	four	numbers	is	8.
Calculate	the	value	of	each	of	the	integers	a,	b,	c,	d.

26	 A	test,	to	be	marked	out	of	100,	is	completed	by	800	students.	The	cumulative	
frequency	graph	for	the	marks	is	given	below.

a)	 Write	down	the	number	of	students	who	scored	40	marks	or	less	on	the	test.
b)	 The	middle	50%	of	test	results	lie	between	marks	a	and	b,	where	a	,	b.	Find	

a	and	b.	

Questions	13–26:	©	International	Baccalaureate	Organization
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Now that you have learned to describe a data set in Chapter 
9, how can you use sample data to draw conclusions about 
the populations from which you drew your samples? The 
techniques we use in drawing conclusions are part of what 
we call probability. To use this tool properly, you must first 
understand how it works. This chapter will introduce you to 
the language and basic tools of probability.

The variables we discussed in Chapter 9 can now be redefined 
as random variables, whose values depend on the chance 
selection of the elements in the sample. Using probability 

as a tool, you will be able to create probability distributions that serve as 
models for random variables. You can then describe these using a mean 
and a standard deviation as you did in Chapter 9.

Probability is the study of randomness.

The reasoning in statistics rests on asking, ‘How often would this method 
give a correct answer if I used it very many times?’ When we produce data 
by random sampling or by experiments, the laws of probability enable us 
to answer the question, ‘What would happen if we did this many times?’

Introduction

Assessment statements
5.5	 Concepts	of	trial,	outcome,	equally	likely	outcomes,	sample	space	(U )	and	

event.
The	probability	of	an	event	A	is	P(A) 5 n(A)/n(U ).
The	complementary	events	A	and	A9	(not	A);
P(A) 1 P(A9) 5 1.

	 Use	of	Venn	diagrams,	tree	diagrams	and	tables	of	outcomes.

5.6	 Combined	events:	P(A	⋃	B).	
Mutually	exclusive	events:	P(A	⋂	B) 5 0.
Conditional	probability;	the	definition:	P(A	∣	B) 5 P(A	⋂	B)/P(B).
Independent	events;	the	definition:	P(A	∣	B) 5 P(A) 5 P(A	∣	B9).

	 Probabilities	with	and	without	replacement.

5.7	 Concept	of	discrete	random	variables	and	their	probability	distributions.
Expected	value	(mean),	E(X )	for	discrete	data.

Randomness10.1

10 Probability
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What does ‘random’ mean? In ordinary speech, we use ‘random’ to denote 
things that are unpredictable. Events that are random are not perfectly 
predictable, but they have long-term regularities that we can describe and 
quantify using probability. In contrast, haphazard events do not necessarily 
have long-term regularities. Take, for example, the tossing of an unbiased 
coin and observing the number of heads that appear. 

When you throw the coin, there are only two outcomes, heads or tails. 
Figure 10.1 shows the results of the first 50 tosses of an experiment that 
tossed the coin 5000 times. Two sets of trials are shown. The red graph 
shows the result of the first trial: the first toss was a head followed by a tail, 
making the proportion of heads to be 0.5. The third toss was also a tail, so 
the proportion of heads is 0.33, then 0.25. On the other hand, the other 
set of trials, shown in green, starts with a series of tails, then a head, which 
raises the proportion to 0.2, etc.

The proportion of heads is quite variable at first. However, in the long run, 
and as the number of tosses increases, the proportion of heads stabilizes 
around 0.5. We say that 0.5 is the probability of a head.

It is important that you know that the proportion of heads in a small 
number of tosses can be far from the probability. Probability describes only 
what happens in the long run. How a fair coin lands when it is tossed is 
an example of a random event. One cannot predict perfectly whether the 
coin will land heads or tails. However, in repeated tosses, the fraction of 
times the coin lands heads will tend to settle down to a limit of 50%. The 
outcome of an individual toss is not perfectly predictable, but the long-
term average behaviour is predictable. Thus, it is reasonable to consider the 
outcome of tossing a fair coin to be random.

Imagine the following scenario:

I drive every day to school. Shortly before school, there is a traffic light. 
It appears that it is always red when I get there. I collected data over the 
course of one year (180 school days) and considered the green light to be a 
‘success’. Here is a partial table of the collected data.

Pr
op

or
tio

n 
of

 h
ea

ds

1
0

0.2

0.4

0.6

0.8

1

0.1

0.3

0.5

0.7

0.9

11 21 31 41 51
Number of throws

Please distinguish between 
random and haphazard (chaos). 
At first glance they might seem 
to be the same because neither 
of their outcomes can be 
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Figure 10.1



338

Probability10

Day 1 2 3 4 5 6 7 …

Light red green red green red red red …

Percentage green 0 50 33.3 50 40 33.3 28.6 …

The first day it was red, so the proportion of success is 0% (0 out of 1); 
the second day it was green, so the frequency is now 50% (1 out of 2); the 
third day it was red again, so 33.3% (1 out of 3), and so on. As we collect 
more data, the new measurement becomes a smaller and smaller fraction 
of the accumulated frequency, so, in the long run, the graph settles to the 
real chance of finding it green, which in this case is about 30%. The graph 
is shown below.

Actually, if you run a simulation for a longer period, you can see that it 
really stabilizes around 30%. See graph below.

You have to observe here that the randomness in the experiment is not 
in the traffic light itself, as it is controlled by a timer. In fact, if the system 
works well, it may turn green at the same time every day. The randomness 
of the event is the time I arrive at the traffic light.

The French Count Buffon (1707–1788) tossed a coin  
4040 times and received 2048 heads, i.e. a proportion  
of 50.69%. Also, the English statistician Karl Pearson  
(1857–1936) tossed a coin 24 000 times and received 
12 012 heads, a 50.05% proportion for heads.

The French Count Buffon
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If we ask for the probability of finding the traffic light green in the above 
example, our answer will be about 30%. We base our answer on knowing 
that, in the long run, the fraction of time that the traffic light was green is 
30%. We could also say that the long-run relative frequency of the green 
light settles down to about 30%. 

Data is obtained by observing either uncontrolled events in nature or 
controlled situations in a laboratory. We use the term experiment to 
describe either method of data collection. 

An experiment is the process by which an observation (or measurement) is obtained. A 
random (chance) experiment is an experiment where there is uncertainty concerning 
which of two or more possible outcomes will result.

Tossing a coin, rolling a die and observing the number on the top surface, 
counting cars at a traffic light when it turns green, measuring daily rainfall 
in a certain area, etc. are a few experiments in this sense of the word.

A description of a random phenomenon in the language of mathematics is 
called a probability model. For example, when we toss a coin, we cannot 
know the outcome in advance. What do we know? We are willing to say 
that the outcome will be either heads or tails. Because the coin appears to 
be balanced, we believe that each of these outcomes has probability 0.50. 
This description of coin tossing has two parts:
• A list of possible outcomes.
• A probability for each outcome.

This two-part description is the starting point for a probability model. We 
will begin by describing the outcomes of a random phenomenon and learn 
how to assign probabilities to the outcomes by using one of the definitions 
of probability. 

The sample space S of a random experiment (or phenomenon) is the set of all possible 
outcomes. 

For example, for one toss of a coin, the sample space is 

S 5 {heads, tails}, or simply {h, t}

Example 1 

Toss a coin twice (or two coins once) and record the results. What is the 
sample space?

Solution

S 5 {hh, ht, th, tt}

Basic definitions10.2
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Example 2 
Toss a coin twice (or two coins once) and count the number of heads 
showing. What is the sample space?

Solution
S 5 {0, 1, 2}

A simple event is the outcome we observe in a single repetition (trial) of the 
experiment. 

For example, an experiment is throwing a die and observing the number 
that appears on the top face. The simple events in this experiment are {1}, 
{2}, {3}, {4}, {5} and {6}. Of course, the set of all these simple events is the 
sample space of the experiment.

We are now ready to define an event. There are several ways of looking at 
it, which in essence are all the same.

An event is an outcome or a set of outcomes of a random experiment.

With this understanding, we can also look at the event as a subset of the 
sample space or as a collection of simple events.

Example 3 

When rolling a standard six-sided die, what are the sets of event A ‘observe 
an odd number’, and event B ‘observe a number less than 5’.

Solution
Event A is the set {1, 3, 5}. Event B is the set {1, 2, 3, 4}.

Sometimes it helps to visualize an experiment using some tools of set 
theory. Basically, there are several similarities between the ideas of set 
theory and probability, and it is very helpful when we see the connection. A 
simple but powerful diagram is the Venn diagram. The diagram shows the 
outcomes of the die rolling experiment.

In general, in this book, we will use a rectangle to represent the sample 
space and closed curves to represent events, as shown in Example 3.

To understand the definitions more clearly, let’s look at the following 
additional example.

4

2B

A

3
5

6

1

Set theory provides a 
foundation for all of 
mathematics. The language 
of probability is much the 
same as the language of set 
theory. Logical statements can 
be interpreted as statements 
about sets. This will enable us 
later to introduce a method of 
understanding how to set up 
probability problems that we 
need to tackle.
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Example 4 
Suppose we choose one card at random from a deck of 52 playing cards, 
what is the sample space S?

Solution

S 5 {A♣, 2♣, … K♣, A♦, 2♦, … K♦, A♥, 2♥, … K♥, A♠, 2♠,… K♠}

Some events of interest:

K 5 event of king 5{K♣, K♦, K♥, K♠}

H 5 event of heart 5 {A♥, 2♥, … K♥}

J 5 event of jack or better 

 5 {J♣, J♦, J♥, J♠, Q♣, Q♦, Q♥, Q♠, K♣, K♦, K♥, K♠, A♣, A♦, A♥, A♠}

Q 5 event of queen 5 {Q♣, Q♦, Q♥, Q♠}

Example 5 
Toss a coin three times and record the results. Show the event ‘observing 
two heads’ as a Venn diagram.

Solution

The sample space is made up of 8 possible outcomes such as hhh, hht, tht, etc.

Observing exactly two heads is an event with three elements: {hht, hth, thh}.

 1 In a large school, a student is selected at random. Give a reasonable sample 
space for answers to each of the following questions:
a) Are you left-handed or right-handed?
b) What is your height in centimetres?
c) How many minutes did you study last night?

 2 We throw a coin and a standard six-sided die and we record the number and the 
face that appear in that order. For example, (5, h) represents a 5 on the die and a 
head on the coin. Find the sample space.

Exercise 10.1 and 10.2
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 3 We draw cards from a deck of 52 playing cards.

a) List the sample space if we draw one card at a time.

b) List the sample space if we draw two cards at a time.

c) How many outcomes do you have in each of the experiments above?

 4 Tim carried out an experiment where he tossed 20 coins together and observed 
the number of heads showing. He repeated this experiment 10 times and got 
the following results:

11, 9, 10, 8, 13, 9, 6, 7, 10, 11

a) Use Tim’s data to get the probability of obtaining a head.

b) He tossed the 20 coins for the 11th time. How many heads should he expect 
to get?

c) He tossed the coins 1000 times. How many heads should he expect to see?

 5 In the game ‘Dungeons and Dragons’, a four-sided die with sides marked with 1, 
2, 3 and 4 spots is used. The intelligence of the player is determined by rolling 
the die twice and adding 1 to the sum of the spots.

a) What is the sample space for rolling the die twice? (Record the spots on the 
1st and 2nd throws.)

b) What is the sample space for the intelligence of the player?

 6 A box contains three balls, blue, green and yellow. You run an experiment where 
you draw a ball, look at its colour and then replace it and draw a second ball.

a) What is the sample space of this experiment?

b) What is the event of drawing yellow first?

c) What is the event of drawing the same colour twice?

 7 Repeat the same exercise as in question 6 above, without replacing the first ball. 

 8 Nick flips a coin three times and each time he notes whether it is heads or tails.

a) What is the sample space of this experiment?

b) What is the event that heads occur more often than tails?

 9 Franz lives in Vienna. He and his family decided that their next vacation will be 
to either Italy or Hungary. If they go to Italy, they can fly, drive or take the train. 
If they go to Hungary, they will drive or take a boat. Letting the outcome of the 
experiment be the location of their vacation and their mode of travel, list all 
the points in the sample space. Also list the sample space of the event ‘fly to 
destination.’

10 A hospital codes patients according to whether they have health insurance or no 
insurance, and according to their condition. The condition of the patient is rated 
as good (g), fair (f ), serious (s), or critical (c). The clerk at the front desk marks 0, 
for non-insured patients, and 1 for insured, and uses one of the letters for the 
condition. So, (1, c) means an insured patient with critical condition.

a) List the sample space of this experiment.

b) What is the event ‘not insured, in serious or critical condition’?

c) What is the event ‘patient in good or fair condition’?

d) What is the event ‘patient has insurance’?
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There are a few theories of probability that assign meaning to statements 
like ‘the probability that A occurs is p%’. In this book, we will primarily 
examine only the relative frequency theory. In essence, we will follow the 
idea that probability is ‘the long-run proportion of repetitions on which an 
event occurs’. This allows us to ‘merge’ two concepts into one.
• Equally likely outcomes 

In the theory of equally likely outcomes, probability has to do with 
symmetries and the indistinguishability of outcomes. If a given 
experiment or trial has n possible outcomes among which there is no 
preference, they are equally likely. The probability of each outcome 

is then   100% _____ n   or   1 __ n  . For example, if a coin is balanced well, there is no 

reason for it to land heads in preference to tails when it is tossed, so, 
accordingly, the probability that the coin lands heads is equal to the 

probability that it lands tails, and both are   100% _____ 
2

   5 50%. Similarly, if 

a die is fair, the chance that when it is rolled it lands with the side with 1 

on top is the same as the chance that it shows 2, 3, 4, 5 or 6:   100% _____ 
6

   or   1 __ 
6

  . 

In the theory of equally likely outcomes, probabilities are between 0% 
and 100%. If an event consists of more than one possible outcome, the 
chance of the event is the number of ways it can occur divided by the 
total number of things that could occur. For example, the chance that 
a die lands showing an even number on top is the number of ways it 
could land showing an even number (2, 4 or 6) divided by the total 
number of things that could occur (6, namely showing 1, 2, 3, 4, 5 or 6). 

• Frequency theory
In the frequency theory, probability is the limit of the relative frequency 
with which an event occurs in repeated trials. Relative frequencies are 
always between 0% and 100%. According to the frequency theory of 
probability, ‘the probability that A occurs is p%’ means that if you repeat 
the experiment over and over again, independently and under essentially 
identical conditions, the percentage of the time that A occurs will 
converge to p. For example, to say that the chance a coin lands heads is 
50% means that if you toss the coin over and over again, independently, 
the ratio of the number of times the coin lands heads to the total number 
of tosses approaches a limiting value of 50%, as the number of tosses 
grows. Because the ratio of heads to tosses is always between 0% and 
100%, when the probability exists it must be between 0% and 100%. 

Using Venn diagrams and the ‘equally likely’ concept, we can say that the 
probability of any event is the number of elements in an event A divided by 
the total number of elements in the sample space S. This is equivalent to 

saying: P(A) 5   
n(A)

 ____ 
n(S )

  , where n(A) represents the number of outcomes in A 

and n(S) represents the total number of outcomes. So, in Example 5, the 
probability of observing exactly two heads is: P(2 heads) 5   3 _ 8  .

Probability assignments10.3

A B

S

In all theories, probability is 
on a scale of 0% to 100%. 
‘Probability’ and ‘chance’ are 
synonymous.
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Probability rules
Regardless of which theory we subscribe to, the probability rules apply.

Rule 1
Any probability is a number between 0 and 1, i.e. the probability P(A) of 
any event A satisfies 0 < P(A) < 1. If the probability of any event is 0, the 
event never occurs. Likewise, if the probability is 1, it always occurs. In rolling 
a standard die, it is impossible to get the number 9, so P(9) 5 0. Also, the 
probability of observing any integer between 1 and 6, inclusive, is 1.

Rule 2
All possible outcomes together must have a probability of 1, i.e. the 
probability of the sample space S is 1: P(S ) 5 1. Informally, this is 
sometimes called the ‘something has to happen rule’.

Rule 3
If two events have no outcomes in common, the probability that one or the 
other occurs is the sum of their individual probabilities. Two events that 
have no outcomes in common, and hence can never occur together, are 
called disjoint events or mutually exclusive events. 

P(A or B) 5 P(A) 1 P(B)

This is the addition rule for mutually exclusive events.

For example, in tossing three coins, the events of getting exactly two heads 
or exactly two tails are disjoint, and hence the probability of getting exactly 

two heads or two tails is   3 __ 
8

   1   3 __ 
8

   5   6 __ 
8

   5   3 __ 4  .

Additionally, we can always add the probabilities of outcomes because they 
are always disjoint. A trial cannot come out in two different ways at the 
same time. This will give you a way to check whether the probabilities you 
assigned are legitimate.

Rule 4
Suppose that the probability that you receive a 7 on your IB exam is 0.2, 
then the probability of not receiving a 7 on the exam is 0.8. The event that 
contains the outcomes not in A is called the complement of A, and is 
denoted by A9.

P(A9) 5 1 2 P(A), or P(A) 5 1 2 P(A9). 
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No matter how little a chance 
you think an event has, there 
is no such thing as negative 
probability.

No matter how large a chance 
you think an event has, there is 
no such thing as a probability 
larger than 1!

You have to be careful with 
these rules. By the ‘something 
has to happen’ rule, the total of 
the probabilities of all possible 
outcomes must be 1. This is 
so because they are disjoint, 
and their sum covers all the 
elements of the sample space. 
Suppose someone reports 
the following probabilities for 
students in your high school 
(4 years). If the probability that 
a grade 1, 2, 3 or 4 student is 
chosen at random from the 
high school is 0.24, 0.24, 0.25 
and 0.19 respectively, with no 
other possibilities, you should 
know immediately that there 
is something wrong. These 
probabilities add up to 0.92. 
Similarly, if someone claims 
that these probabilities are 0.24, 
0.28, 0.25, 0.26 respectively, 
there is also something wrong. 
These probabilities add up to 
1.03, which is more than 1.
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Example 6 
Data collected for traffic violations was collected in a certain country and a 
summary is given below:

Age group 18–20 years 21–29 years 30–39 years Over 40 years

Probability 0.06 0.47 0.29 0.18

What is the probability that the offender is a) in the youngest age group,  
b) between 21 and 40, and c) younger than 40?

Solution
Each probability is between 0 and 1, and the probabilities add up to 1. 
Therefore, this is a legitimate assignment of probabilities.

a) The probability that the offender is in the youngest group is 6%.

b)  The probability that the driver is in the group 21 to 39 years is  
0.47 1 0.29 5 0.76.

c)  The probability that a driver is younger than 40 years is 1 2 0.18 5 0.82.

Example 7 
It is a striking fact that when people create codes for their cellphones, the 
first digits follow distributions very similar to the following one:

First digit 0 1 2 3 4 5 6 7 8 9

Probability 0.009 0.300 0.174 0.122 0.096 0.078 0.067 0.058 0.051 0.045

a)  Find the probabilities of the following three events:

A 5 {first digit is 1}

B 5 {first digit is more than 5}

C 5 {first digit is an odd number}

b)  Find the probability that the first digit is (i)1 or greater than 5, (ii) not 
1, and (iii) an odd number or a number larger than 5.

Solution
a) From the table:

P(A) 5 0.300

P(B)  5 P(6) 1 P(7) 1 P(8) 1 P(9)
5 0.067 1 0.058 1 0.051 1 0.045
5 0.221

P(C )  5 P(1) 1 P(3) 1 P(5) 1 P(7) 1P(9)
5 0.300 1 0.122 1 0.078 1 0.058 1 0.045
5 0.603
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b) (i) Since A and B are mutually exclusive, by the addition rule, the 
probability that the first digit is 1 or greater than 5 is

P(A or B ) 5 0.300 1 0. 221 5 0.521

(ii) Using the complement rule, the probability that the first digit is 
not 1 is

P(A9) 5 1 2 P(A) 5 1 2 0.300 5 0.700

(iii) The probability that the first digit is an odd number or a number 
larger than 5:

P(B or C )  5 P(1) 1 P(3) 1 P(5) 1 P(6) 1 P(7) 1 P(8) 1 P(9)
5 0.300 1 0.122 1 0.078 1 0.067 1 0.058 1 0.051 

   1 0.045
5 0.721

Equally likely outcomes
In some cases we are able to assume that individual outcomes are equally 
likely because of some balance in the experiment. Tossing a balanced coin 
renders heads or tails equally likely, with each having a probability of 
50%, and rolling a standard balanced die gives the numbers from 1 to 6 as 
equally likely, with each having a probability of   1 _ 6  .

Suppose in Example 7 we consider all the digits to be equally likely to 
happen, then our table would be

First digit 0 1 2 3 4 5 6 7 8 9

Probability 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P(A) 5 0.1

P(B) 5 P(6) 1 P(7) 1 P(8) 1 P(9) 5 4 3 0.1 5 0.4

P(C ) 5 P(1) 1 P(3) 1 P(5) 1 P(7) 1 P(9) 5 5 3 0.1 5 0.5

Also, by the complement rule, the probability that the first digit is not 1 is

P(A9) 5 1 2 P(A) 5 1 2 0.1 5 0.9

Tree diagrams

In an experiment to check the blood types of patients, the experiment can 
be thought of as a two-stage experiment: first we identify the type of the 
blood and then we classify the Rh factor 1 or 2.

The simple events in this experiment can be counted using another tool, 
the tree diagram, which is extremely powerful and helpful in solving 
probability problems.

 Hint: Notice here that P(B or 
C ) is not the sum of P(B ) and P(C ) 
because B and C are not disjoint.
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Our sample space in this experiment is the set {A1, A2, B1, B2, AB1, 
AB2, O1, O2} as we can read from the last column.

This data can also be arranged in a probability table:

Blood type

Rh factor A B AB O

Positive A1 B1 AB1 O1

Negative A2 B2 AB2 O2

 1 In a simple experiment, chips with integers 1–20 inclusive were placed in a box 
and one chip was picked at random.
a) What is the probability that the number drawn is a multiple of 3?
b) What is the probability that the number drawn is not a multiple of 4?

 2 The probability an event A happens is 0.37. 
a) What is the probability that it does not happen?
b) What is the probability that it may or may not happen?

 3 You are playing with an ordinary deck of 52 cards by drawing cards at random 
and looking at them.
a) Find the probability that the card you draw is

 (i) the ace of hearts
 (ii) the ace of hearts or any spade
 (iii) an ace or any heart
 (iv) not a face card.

b) Now you draw the ten of diamonds, put it on the table and draw a second 
card. What is the probability that the second card is
 (i) the ace of hearts?
 (ii) not a face card?

c) Now you draw the ten of diamonds, return it to the deck and draw a second 
card. What is the probability that the second card is
 (i) the ace of hearts?
 (ii) not a face card?

Exercise 10.3
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 4 On Monday morning, my class wanted to know how many hours students spent 
studying on Sunday night. They stopped schoolmates at random as they arrived 
and asked each, ‘How many hours did you study last night?’ Here are the answers 
of the sample they chose on Monday, 14 January, 2008.

Number of hours 0 1 2 3 4 5

Number of students 4 12 8 3 2 1

a) Find the probability that a student spent less than three hours studying 
Sunday night.

b) Find the probability that a student studied for two or three hours.
c) Find the probability that a student studied less than six hours.

 5  We throw a coin and a standard six-sided die and we record the number and the 
face that appear. Find
a) the probability of having a number larger than 3
b) the probability that we receive a head and a 6.

 6 A die is constructed in a way that a 1 has the chance to occur twice as often as 
any other number.
a) Find the probability that a 5 appears.
b) Find the probability an odd number will occur.

 7 You are given two fair dice to roll in an experiment.
a) Your first task is to report the numbers you observe. 

 (i) What is the sample space of your experiment?
 (ii) What is the probability that the two numbers are the same?
 (iii) What is the probability that the two numbers differ by 2?
 (iv) What is the probability that the two numbers are not the same?

b) In a second stage, your task is to report the sum of the numbers that appear.
 (i) What is the probability that the sum is 1?
 (ii) What is the probability that the sum is 9?
 (iii) What is the probability that the sum is 8?
 (iv) What is the probability that the sum is 13?

 8 The blood types of people can be one of four types: O, A, B or AB. The 
distribution of people with these types differs from one group of people to 
another. Here are the distributions of blood types for randomly chosen people in 
the US, China and Russia.

Blood type

Country
O A B AB

US 0.43 0.41 0.12 ?

China 0.36 0.27 0.26 0.11

Russia 0.39 0.34 ? 0.09

a) What is the probability of type AB in the US?
b) Dirk lives in the US and has type B blood. What is the probability that a 

randomly chosen US citizen can donate blood to Dirk? (Type B can only 
receive from O and B.)

c) What is the probability of randomly choosing an American and a Chinese 
(independently) with type O blood?

d) What is the probability of randomly choosing an American, a Chinese and a 
Russian (independently) with type O blood?

e) What is the probability of randomly choosing an American, a Chinese and a 
Russian (independently) with the same blood type?
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In Example 7, we talked about the following events:

B 5 {first digit is more than 5}
C 5 {first digit is an odd number}

We also claimed that these two events are not disjoint. This brings us to 
another concept for looking at combined events.

 9 In each of the following situations, state whether or not the given assignment of 
probabilities to individual outcomes is legitimate. Give reasons for your answer.
a) A die is loaded such that the probability of each face is according to the 

following assignment (x is the number of spots on the upper face and P(x) is 
its probability.)

x 1 2 3 4 5 6

P(x) 0   1 _ 6    1 _ 3    1 _ 3    1 _ 6  0

b) A student at your school categorized in terms of gender and whether they 
are diploma candidates or not.
P(female, diploma candidate) 5 0.57, P(female, not a diploma candidate) 5 0.23,
P(male, diploma candidate) 5 0.43, P(male, not a diploma candidate) 5 0.18.

c) Draw a card from a deck of 52 cards (x is the suit of the card and P(x) is its 
probability). 

x Hearts Spades Diamonds Clubs

P(x)   12 ___ 52    15 ___ 52    12 ___ 52    13 ___ 52  

10 In Switzerland, there are three ‘official’ mother tongues, German, French and 
Italian. You choose a Swiss at random and ask, ‘What is your mother tongue?’ 
Here is the distribution of responses:

Language German French Italian Other

Probability 0.58 0.24 0.12 ?

a) What is the probability that a Swiss person’s mother tongue is not one of the 
official ones?

b) What is the probability that a Swiss person’s mother tongue is not German?
c) What is the probability that you choose two Swiss independent of each other 

and they both have German mother tongue? 
d) What is the probability that you choose two Swiss independent of each other 

and they both have the same mother tongue?

11 The majority of email messages are now ‘spam.’ Choose a spam email message at 
random. Here is the distribution of topics:

Topic Adult Financial Health Leisure Products Scams

Probability 0.165 0.142 0.075 0.081 0.209 0.145

a) What is the probability of choosing a spam message that does not concern 
these topics?

Parents are usually concerned with spam messages with ‘adult’ content and scams.

b) What is the probability that a randomly chosen spam email falls into one of 
the other categories?

Operations with events10.4
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The intersection of two events B and C, denoted by the symbol B  ⋂  C or simply BC, is 
the event containing all outcomes common to B and C.

Here B  ∩  C 5 {7, 9} because these outcomes are in both B and C. Since the 
intersection has outcomes common to the two events B and C, they are not 
mutually exclusive.

The probability of B  ∩  C is 0.058 1 0.045 5 0.103. Recall from Example 
7 that we said that the probability of B or C is not simply the sum of the 
probabilities. That brings us to the next concept. How can we find the 
probability of B or C when they are not mutually exclusive? To answer this 
question, we need to define another operation.

The union of two events B and C, denoted by the symbol B ∪ C, is the event containing 
all the outcomes that belong to B or to C or to both.

Here B  ∪  C 5 {1, 3, 5, 6, 7, 8, 9}. In calculating the probability of B ∪ C, 
we observe that the outcomes 7 and 9 are counted twice. To remedy the 
situation, if we decide to add the probabilities of B and C, we subtract one 
of the incidents of double counting. So, P(B  ∪  C ) 5 0.221 1 0.603
2 0.103 5 0.721, which is the result we received with direct calculation. In 
general, we can state the following probability rule:

Rule 5

For any two events A and B, P(A  ∪  B) 5 P(A) 1 P(B) 2 P(A  ∩  B).

As you see from the diagram below, P(A  ∩  B) has been added twice, so the 
‘extra’ one is subtracted to give the probability of (A  ∪  B).

This general probability addition rule applies to the case of mutually 
exclusive events too. Consider any two events A and B. The probability of A 
or B is given by

P(A  ∪  B)  5 P(A) 1 P(B ) 2 P(A  ∩  B)
5 P(A) 1 P(B ), since P(A  ∩  B) 5 0.
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Rule 6

The simple multiplication rule.

Consider the following situation: In a large school, 55% of the students 
are male. It is also known that the percentage of smokers among males 
and females in this school is the same, 22%. What is the probability of 
selecting a student at random from this population and the student is a 
male smoker?

Applying common sense only, we can think of the problem in the 
following manner. Since the proportion of smokers is the same in both 
groups, smoking and gender are independent of each other in the sense 
that knowing that the student is a male does not influence the probability 
that he smokes!

The chance we pick a male student is 55%. From those 55% of the 
population, we know that 22% are smokers, so by simple arithmetic the 
chance that we select a male smoker is 0.22 3 0.55 5 12.1%.

This is an example of the multiplication rule for independent events. 

Two events A and B are independent if knowing that one of them occurs does not 
change the probability that the other occurs.

The multiplication rule for independent events: If two events A and B are 
independent, then P(A  ∩  B ) 5 P(A) 3 P(B ).

Example 8 
Reconsider the situation with the traffic light at the beginning of this 
chapter. The probability that I find the light green is 30%. What is the 
probability that I find it green on two consecutive days?

Solution
We will assume that my arrival and finding the light green is a random 
event, and that if it turns green on one day it does not influence how it 
turns the next day. In that case our calculation is very simple:

P(green the first and second day) 5 P(green first day) 3 P(green second day)
= 0.30 3 0.30 5 0.09.

This rule can also be extended to more than two independent events. For 
example, on the assumption of independence, what is the chance that I 
find the light green five days of the week?

P(green on five days) 5 0.3 3 0.3 3 0.3 3 0.3 3 0.3 5 0.002  43

Example 9 
Computers bought from a well-known producer require repairs quite 
frequently. It is estimated that 17% of computers bought from the 
company require one repair job during the first month of purchase, 7% 
will need repairs twice during the first month, and 4% require three or 
more repairs. 

Do not confuse independent 
with disjoint. ‘Disjoint’ means 
that if one of the events occurs 
then the other does not occur; 
while ‘independent’ means that 
knowing one of the events 
occurs does not influence the 
probability of whether the 
other occurs or not!
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a) What is the probability that a computer chosen at random from this 
producer will need

 (i) no repairs?
 (ii) no more than one repair?
 (iii) some repair?
b) If you buy two such computers, what is the probability that
 (i) neither will require repair?
 (ii) both will need repair?

Solution
a) Since all of the events listed are disjoint, the addition rule can be used.
 (i)  P(no repairs) 5 1 2 P(some repairs) 5 1 2 (0.17 1 0.07 1 0.04) 

5 1 2 (0.28) 5 0.72
 (ii)  P(no more than one repair) 5 P(no repairs or one repair) 

5 0.72 1 0.17 5 0.89
 (iii)  P(some repairs) 5 P(one or two or three or more repairs) 

5 0.17 1 0.07 1 0.04 5 0.28

b) Since repairs on the two computers are independent from one another, 
the multiplication rule can be used. Use the probabilities of events from 
part a) in the calculations.

 (i) P(neither will need repair) 5 (0.72)(0.72) 5 0.5184
 (ii)  P(both will need repair) 5 (0.28)(0.28) 5 0.0784

Conditional probability
In probability, conditioning means incorporating new restrictions on the 
outcome of an experiment: updating probabilities to take into account new 
information. This section describes conditioning, and how conditional 
probability can be used to solve complicated problems. Let us start with an 
example.

Example 10 
A public health department wanted to study the smoking behaviour of 
high school students. They interviewed 768 students from grades 10–12 
and asked them about their smoking habits. They categorized the students 
into three categories: smokers (more than 1 pack of 20 cigarettes per week), 
occasional smokers (less than 1 pack per week), and non-smokers. The 
results are summarized below:

Smoker Occasional Non-smoker Total

Male 127  73 214 414

Female  99  66 189 354

Total 226 139 403 768

If we select a student at random from this study, what is the probability 
that we select a) a girl, b) a male smoker, and c) a non-smoker?
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Solution

a) P(female) 5   354 ___ 
768

   5 0.461

So, 46.1% of our sample are females.
b) Since we have 127 boys categorized as smokers, the chance of a male 

smoker will be

P(male smoker) 5   127 ___ 
768

   5 0.165

c) P(non-smoker) 5   403 ___ 
768

   5 0.525

In the above example, what if we know that the selected student is a girl? 
Does that influence the probability that the selected student is a non-
smoker? Yes, it does!

Knowing that the selected student is a female changes our choices. The 
‘revised’ sample space is not made up of all students anymore. It is only the 
female students. The chance of finding a non-smoker among the females is 

  189 ___ 
354

   5 0.534, i.e. 53.4% of the females are non-smokers as compared to 

the 52.5% of non-smokers in the whole population.

This probability is called a conditional probability, and we write this as

P(non-smoker | female) 5   189 ___ 
354

  .

We read this as, ‘Probability of selecting a non-smoker given that we have 
selected a female’. 

The conditional probability of A given B, P(A | B), is the probability of the 
event A, updated on the basis of the knowledge that the event B occurred. 
Suppose that A is an event with probability P(A) 5 p  0, and that 
A  ∩  B 5 Ø (A and B are disjoint). Then if we learn that B occurred we 
know A did not occur, so we should revise the probability of A to be zero, 
P(A | B) 5 0 (the conditional probability of A given B is zero). 

On the other hand, suppose that A  ∩  B 5 B (B is a subset of A, so B implies 
A). Then if we learn that B occurred we know A must have occurred as 
well, so we should revise the probability of A to be 100%, P(A | B) 5 1(the 
conditional probability of A given B is 100%).

B A

S

BA

S
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Remember that the probability we assign to an event can change if 
we know that some other event has occurred. This idea is the key to 
understanding conditional probability.

Imagine the following scenario:
You are playing cards and your opponent is about to give you a card. What 
is the probability that the card you receive is a queen?

As you know, there are 52 cards in the deck, 4 of these cards are queens. 
So, assuming that the deck was thoroughly shuffled, the probability of 
receiving a queen is

P(queen) 5   4 ___ 
52

   5   1 ___ 
13

  

This calculation assumes that you know nothing about any cards already 
dealt from the deck.

Suppose now that you are looking at the five cards you have in your hand, 
and one of them is a queen. You know nothing about the other 47 cards 
except that exactly three queens are among them. The probability of being 
given a queen as the next card, given what you know, is

P(queen | 1 queen in hand) 5   3 ___ 47   ?   1 ___ 
13

  

So, knowing that there is one queen among your five cards changes the 
probability of the next card being a queen.

Consider Example 10 again. We want to express the table frequencies as 
relative frequencies or probabilities. Our table will look like this:

Smoker Occasional Non-smoker

Male 0.165 0.095 0.279

Female 0.129 0.086 0.246

To find the probability of selecting a student at random and finding that 
student is a female non-smoker, we look at the intersection of the female 
row with the non-smoking column and find that this probability is 0.246.

Looking at this calculation from a different perspective, we can think about 
it in the following manner:

We know that the percentage of females in our sample is 46.1, and among 
those females, in Example 10, we found that 53.4% of those are non-
smokers. So, the percentage of female non-smokers in the population is the 
53.4% of those 46.1% females, i.e. 0.534 3 0.461 5 0.246.

In terms of events, this can be read as:

P(non-smoker  |  female) 3 P(female) 5 P(female and non-smoker)  
 5 P(female  ∩  non-smoker).

The previous discussion is an example of the multiplication rule of any 
two events A and B.

Multiplication rule
Given any events A and B, the probability that both events happen is given by 

P(A  ∩  B ) 5 P(A | B ) 3 P(B )
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Example 11 
In a psychology lab, researchers are studying the colour preferences of 
young children. Six green toys and four red toys (identical apart from 
colour) are placed in a container. The child is asked to select two toys at 
random. What is the probability that the child chooses two red toys?

Solution
To solve this problem, we will use a tree diagram.

As you notice, every entry on the ‘branches’ has a conditional probability. 
So, Red on the second choice is actually either Red | Red or Red | Green. We 
are interested in RR, so the probability is

P(RR) 5 P(R) 3 P(R | R) 5   4 ___ 
10

   3   3 __ 
9

   5 13.3%

If P(A  ∩  B) = P(A | B) 3 P(B), as discussed above, and if P(B)  0, we can 
rearrange the multiplication rule to produce a definition of the conditional 
probability P(A | B) in terms of the ‘unconditional’ probabilities P(A  ∩  B) 
and P(B).

When P(B) ? 0, the conditional probability of A given B is P(A | B ) 5   
P(A  ∩  B )

 _______ 
P(B)

  

Why does this formula make sense?

First of all, note that it does agree with the intuitive answers we found 
above. If A  ∩  B 5 Ø, P(A  ∩  B) 5 0, so P(A | B) 5 0/P(B) 5 0; 

and if A  ∩  B 5 B, P(A | B) 5 P(B)/P(B) 5 100%. 

Now, if we learn that B occurred, we can restrict attention to just those 
outcomes that are in B, and disregard the rest of S, so we have a new 
sample space that is just B (see diagram below).

For A to have occurred in addition to B, requires that A  ∩  B occurred, 
so the conditional probability of A given B is P(A  ∩  B)/P(B), just as we 
defined it above. 

(   )

(    )

Red

RR

RG

GR

GG

First choice Second choice Outcome

Red

4
10

Green
(    )

Green 6
10

Green

3
9

(   )6
9

(   )4
9

(   )5
9

Red

S

A BA ∩ B
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Example 12 
In an experiment to study the phenomenon of colour blindness, 
researchers collected information concerning 1000 people in a small town 
and categorized them according to colour blindness and gender. Here is a 
summary of the findings:

Male Female Total

Colour-blind  40   2   42

Not colour-blind 470 488  958

Total 510 490 1000

What is the probability that a person is colour-blind given that the person 
is a woman?

Solution
To answer this question, we notice that we do not have to search the whole 
population for this event. We limit our search to the women. We have 490 
women. As we only need to consider women, then when we search for 
colour blindness, we only look for the women who are colour-blind, i.e. the 
intersection. Here we only have two women. Therefore, the chance we get a 
colour-blind person given the person is a woman is

P(C |W ) 5   
P(C  ∩  W )

 _________ 
P(W )

   5   
n(C  ∩  W )

 ________ 
n(W )

   5 0.004,  where C is for colour-
blind and W for woman.

Notice here that we used the frequency rather than the probability. 
However, these are equivalent since dividing by n(S ) will transform the 
frequency into a probability.

  
n(C  ∩  W )

 ________ 
n(W )

   5   
  
n(C  ∩  W )

 ________ 
n(S )

  
 _________ 

  
n(W )

 _____ 
n(S )

  
   5   

P(C  ∩  W )
 _________ 

P(W )
   5 P(C |W ).

Example 13 

AUA, a national airline, are known for their punctuality. The probability that 
a regularly scheduled flight departs on time is P(D) 5 0.83, the probability 
that it arrives on time is P(A) 5 0.92, and the probability that it arrives and 
departs on time, P(A  ∩  D) 5 0.78. Find the probability that a flight
a) arrives on time given that it departed on time
b) departs on time given that it arrived on time.

Solution
a) The probability that a flight arrives on time given that it departed on 

time is

P(A | D) 5   
P(A  ∩  D)

 ________ 
P(D)

   5   0.78 ____ 
0.83

   5 0.94

b) The probability that a flight departs on time given that it arrived on time

P(D | A) 5   
P(D  ∩  A)

 ________ 
P(A)

   5   0.78 ____ 
0.92

   5 0.85
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Independence
Two events are independent if learning that one occurred does not affect 
the chance that the other occurred. That is, if P(A | B) 5 P(A), and vice 
versa.

This means that if we apply our definition to the general multiplication 
rule, then

P(A  ∩  B) = P(A | B) 3 P(B) 5 P(A) 3 P(B)

which is the multiplication rule for independent events we studied earlier.

These results give us some helpful tools in checking the independence of 
events.

Two events are independent if and only if either P(A  ∩  B ) 5 P(A) 3 P(B), or 
P (A | B ) 5 P(A). Otherwise, the events are dependent.

Example 14 
Take another look at the AUA situation in Example 13. Are the events of 
arriving on time (A) and departing on time (D) independent?

Solution
We can answer this question in two different ways:
a) P(A) 5 0.92 and we found that P(A | D) 5 0.94. Since the two values 

are not the same, we can say that the two events are not independent.
b) Alternately, P(A  ∩  D) 5 0.78 and 

P(A) 3 P(D) 5 0.92 3 0.83 5 0.76  P(A  ∩  D).

Example 15 
In many countries, the police stop drivers on suspicion of drunk driving. 
The stopped drivers are given a breath test, a blood test or both. In a 
country where this problem is vigorously dealt with, the police records 
show the following:

81% of the drivers stopped are given a breath test, 40% a blood test, and 
25% both tests.
a) What is the probability that a suspected driver is given
 (i) a test?
 (ii) exactly one test?
 (iii) no test?
b) Are giving the two tests independent?

Solution S

0.15 0.56

Breath (0.81)0.04
Both

Blood (0.40)

0.25
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A Venn diagram can help explain the solution.
a) (i) The probability that a driver receives a test means that he/she 

receives either a blood test, a breath test or both tests. The 
probability as such can be calculated directly from the diagram, 
or by applying the addition rule. The diagram shows that if 81% 
receive the breath test and 25% are also given the blood test, then 
56% do not receive a blood test. Similarly, 15% of the blood test 
receivers do not get a breath test. So, the probability of receiving a 
test is 0.56 1 0.25 1 0.15 5 0.96.

Also, if we apply the addition rule,

P(breath or blood)  5 P(breath) 1 P(blood) 2 P(both) 

5 0.81 1 0.40 2 0.25 5 0.96.

 (ii)  To receive exactly one test is to receive a blood test or a breath 
test, but not both! So, from the Venn diagram it is clear that this 
probability is 0.15 1 0.56 5 0.71. To approach it differently, 
since we know that the union of the two events still contains the 
intersection, we can subtract the probability of the intersection 
from that of the union: 0.96 2 0.25 5 0.71.

 (iii)  To receive no test is equivalent to the complement of the union of 
the events. Hence, P(no test) 5 1 2 P(1 test) 5 1 2 0.96 5 0.04.

b) To check for independence, we can use any of the two methods we tried 
before. Since all the necessary probabilities are given, we can use the 
product rule. If they were independent, then 

P(both tests) 5 P(breath) 3 P(blood) 5 0.81 3 0.40 5 0.324, 
but P(both tests) 5 0.25. Therefore, the events of receiving a 
breath test and a blood test are not independent.

 1 Events A and B are given such that P(A) 5   3 _ 4  , P(A  ∪  B ) 5   4 _ 5   and P(A  ∩  B ) 5   3 __ 10  . 
Find P(B).

 2 Events A and B are given such that P(A) 5   7 __ 10  , P(A  ∪  B ) 5   9 __ 10   and P(A  ∩  B ) 5   3 __ 10  . 
Find
a) P(B) b) P(B’  ∩  A) c) P(B  ∩  A’ )
d) P(B’  ∩  A’ ) e) P(B | A’ )

 3 People with O-negative blood type are universal donors, i.e. they can donate 
blood to individuals with any blood type. Only 8% of people have O-negative. 
a) One person randomly appears to give blood. What is the probability that 

he/she does not have O-negative?

b) Two people appear independently to give blood. What is the probability that 
 (i) both have O-negative? 
 (ii) at least one of them has O-negative?
 (iii) only one of them has O-negative?

c) Eight people appear randomly to give blood. What is the probability that at 
least one of them has O-negative?

Exercise 10.4
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 4 PIN numbers for cellular phones usually consist of four digits that are not 
necessarily different.

a) How many possible PINs are there?

b) You don’t want to consider the pins that start with 0. What is the probability 
that a PIN chosen at random does not start with a zero?

c) What is the probability that a PIN contains at least one zero?

d) Given a PIN with at least one zero, what is the probability that it starts with a 
zero?

 5 An urn contains six red balls and two blue ones. We make two draws and each 
time we put the ball back after marking its colour.

a) What is the probability that at least one of the balls is red?

b) Given that at least one is red, what is the probability that the second one is 
red?

c)  Given that at least one is red, what is the probability that the second one is 
blue?

 6 Two dice are rolled and the numbers on the top face are observed.

a) List the elements of the sample space.

b) Let x represent the sum of the numbers observed. Copy and complete the 
following table.

x 2 3 4 5 6 7 8 9 10 11 12

P(x)   1 ___ 18  

c) What is the probability that at least one die shows a 6?

d) What is the probability that the sum is at most 10?

e) What is the probability that a die shows 4 or the sum is 10?

f ) Given that the sum is 10, what is the probability that one of the dice is a 4?

 7 A large school has the following numbers categorized by class and gender:

Grade

Gender
Grade 9 Grade 10 Grade 11 Grade 12 Total

Male 180 170 230 220 800

Female 200 130 190 180 700

a) What is the probability that a student chosen at random will be a female?

b) What is the probability that a student chosen at random is a male grade 12 
student?

c) What is the probability that a female student chosen at random is a grade 12 
student?

d) What is the probability that a student chosen at random is a grade 12 or 
female student?

e) What is the probability that a grade 12 student chosen at random is a male?

f ) Are gender and grade independent of each other? Explain.
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 8 Some young people do not like to wear glasses. A survey considered a large 
number of teenage students as to whether they needed glasses to correct their 
vision and whether they used the glasses when they needed to. Here are the 
results.

Used glasses when needed

Yes No

Need glasses for 
correct vision

Yes 0.41 0.15

No 0.04 0.40

a) Find the probability that a randomly chosen young person from this group
 (i) is judged to need glasses
 (ii) needs to use glasses but does not use them.

b) From those who are judged to need glasses, what is the probability that 
he/she does not use them?

c) Are the events of using and needing glasses independent?

 9 Fill in the missing entries in the following table.

P(A) P(B) Conditions for events A and B P(A  ∩  B) P(A  ∪  B) P(A  | B)

0.3 0.4 Mutually exclusive

0.3 0.4 Independent

0.1 0.5 0.6

0.2 0.5 0.1

10 In a large graduating class, there are 100 students taking the IB examination. 40 
students are doing Maths/SL, 30 students are doing Physics/SL and 12 are doing 
both.
a) A student is chosen at random. Find the probability that this student is doing 

Physics/SL given that he/she is doing Maths/SL.
b) Are doing Physics/SL and Maths/SL independent?

11 A market chain in Germany accepts only Mastercard and Visa. It estimates that 
21% of its customers use Mastercard, 57% use Visa and 13% use both cards.
a) What is the probability that a customer will have an acceptable credit card?
b) What proportion of their customers has neither card?
c) What proportion of their customers has exactly one acceptable card?

  1	 Two	independent	events	A	and	B	are	given	such	that	P(A) 5 k,	P(B	) 5 k 1 0.3	and	
P(A		∩		B	) 5 0.18

a)	 Find	k.
b)	 Find	P(A		∪		B	).
c)	 Find	P(A9		|		B9 ).

  2	 Many	airport	authorities	test	prospective	employees	for	drug	use,	with	the	intent	of	
improving	efficiency	and	reducing	accidents.	This	procedure	has	plenty	of	opponents	
who	claim	that	it	creates	difficulties	for	some	classes	of	people	and	that	it	prevents	
others	from	getting	these	jobs	even	if	they	were	not	drug	users.	The	claim	depends	on	
the	fact	that	these	tests	are	not	100%	accurate.	To	test	this	claim,	let	us	assume	that	a	

Practice questions



361

test	is	98%	accurate	in	the	sense	that	it	identifies	a	person	as	a	user	or	non-user	98%	
of	the	time.	Each	job	applicant	takes	this	test	twice.	The	tests	are	done	at	separate	times	
and	are	designed	to	be	independent	of	each	other.	What	is	the	probability	that
a)	 a	non-user	fails	both	tests?
b)	 a	drug	user	is	detected	(i.e.	he/she	fails	at	least	one	test)?
c)	 a	drug	user	passes	both	tests?

  3	 Communications	satellites	are	difficult	to	repair	when	something	goes	wrong.	One	
satellite	works	on	solar	energy	and	has	two	systems	that	provide	electricity:	the	
main	system	with	a	probability	of	failure	of	0.002,	and	a	back-up	system	that	works	
independently	of	the	main	one.	It	has	a	failure	rate	of	0.01.	What	is	the	probability	that	
the	systems	do	not	fail	at	the	same	time?

  4	 In	a	group	of	200	students	taking	the	IB	examination,	120	take	Spanish,	60	take	French	
and	10	take	both.	
a)	 If	a	student	is	selected	at	random,	what	is	the	probability	that	he/she
  (i)	 takes	either	French	or	Spanish?
	 (ii)	 takes	either	French	or	Spanish	but	not	both?
	 (iii)	 does	not	take	any	French	or	Spanish?
b)	 Given	that	a	student	takes	the	Spanish	exam,	what	is	the	chance	that	he/she	takes	

French?

  5	 In	a	factory	producing	disk	drives	for	computers,	there	are	three	machines	that	work	
independently	to	produce	one	of	the	components.	In	any	production	process,	machines	are	
not	100%	fault	free.	The	production	after	one	‘run’	from	these	machines	is	listed	below.

Defective Non-defective

Machine	I 	 6 120

Machine	II 	 4 	 80

Machine	III 10 150

a)	 A	component	is	chosen	at	random	from	the	produced	lot.	Find	the	probability	that	
the	chosen	component	is

  (i)	 from	machine	I
	 (ii)	 a	defective	component	from	machine	II
	 (iii)	 non-defective	or	from	machine	I
	 (iv)	 from	machine	I	given	that	it	is	defective.
b)	 Is	the	quality	of	the	component	dependent	on	the	machine	used?

  6	 At	a	school,	the	students	are	organizing	a	lottery	to	raise	money	for	the	needy	in	their	
community.	The	lottery	tickets	they	have	consist	of	small	coloured	envelopes	inside	
which	there	is	a	small	note.	The	note	says:	‘You	won	a	prize!’	or	‘Sorry,	try	another	
ticket.’	The	envelopes	have	several	colours.	They	have	70	red	envelopes	that	contain	two	
prizes,	and	the	rest	(130	tickets)	contain	four	other	prizes.
a)	 You	want	to	help	this	class	and	you	buy	a	ticket	hoping	that	it	does	not	have	a	prize.	

Additionally,	you	don’t	like	the	red	colour.	You	pick	your	ticket	at	random	by	closing	
your	eyes.	What	is	the	probability	that	your	wish	comes	true?

b)	 You	are	surprised	–	you	picked	a	red	envelope.	What	is	the	probability	that	you	did	
not	win	a	prize?
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  7	 You	are	given	two	events	A	and	B	with	the	following	conditions

P(A		|		B )	5	0.30,	 P(B		|		A)	5	0.60,	 P(A		∩		B	) 5 0.18

a)	 Find	P(B	).

b)	 Are	A	and	B	independent?	Why?

c)	 Find	P(B		∩		A9 ).

  8	 In	several	ski	resorts	in	Austria	and	Switzerland,	the	local	sports	authorities	use	high	
school	students	as	‘ski	instructors’	to	help	deal	with	the	surge	in	demand	during	
vacations.	However,	to	become	an	instructor,	you	have	to	pass	a	test	and	be	a	senior	at	
your	school.	Here	are	the	results	of	a	survey	of	120	students	in	a	Swiss	school	who	are	
training	to	become	instructors.	In	this	group,	there	are	70	boys	and	50	girls.	74	students	
took	the	test,	32	boys	and	16	girls	passed	the	test,	and	the	rest,	including	12	girls,	
failed	the	test.	10	of	the	students,	including	6	girls,	were	too	young	to	take	the	ski	test.	

a)	 Copy	and	complete	the	table.

Boys Girls

Passed	the	ski	test 32 16

Failed	the	ski	test 12

Training,	but	did	not	take	the	test	yet

Too	young	to	take	the	test

b)	 Find	the	probability	that
	 (i)	 a	student	chosen	at	random	has	taken	the	test
	 (ii)	 a	girl	chosen	at	random	has	taken	the	test
	 (iii)	 a	randomly	chosen	boy	and	randomly	chosen	girl	have	both	passed	the	ski	test.

  9	 Two	events	A	and	B	are	such	that	P(A)	5	​​9	__​
16

	​,	P(B	)	5	​​3	_​
8
	​,	and	P(A	|	B	)	5	​​1	_​4	​.	Find	the	

probability	that

a)	 both	events	will	happen

b)	 only	one	of	the	events	will	happen

c)	 neither	event	will	happen.

10	 Martina	plays	tennis.	When	she	serves,	she	has	a	60%	chance	of	succeeding	with	her	
first	serve	and	continuing	the	game.	She	has	a	95%	chance	on	the	second	serve.	Of	
course	if	both	serves	are	not	successful,	she	loses	the	point.	
a)	 Find	the	probability	that	she	misses	both	serves.

If	Martina	succeeds	with	the	first	serve,	her	chances	of	gaining	the	point	against	Steffy	
is	75%.	If	she	is	only	successful	with	the	second	serve,	her	chances	against	Steffy	for	
that	point	go	down	to	50%.
b)	 Find	the	probability	that	Martina	wins	a	point	against	Steffy.

11	 For	the	events	A	and	B,	P(A) 5 0.6,	P(B	) 5 0.8	and	P(A		∪		B	) 5 1.	
Find

a)	 P(A		∩		B	)

b)	 P(A9		∪		B9	)
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12	 In	a	survey,	100	students	were	asked,	‘Do	you	prefer	to	watch	television	or	play	sport?’	
Of	the	46	boys	in	the	survey,	33	said	they	would	choose	sport,	while	29	girls	made	this	
choice.

Boys Girls Total

Television

Sport 33 29

Total 46 100

By	completing	this	table	or	otherwise,	find	the	probability	that

a)	 a	student	selected	at	random	prefers	to	watch	television

b)	 a	student	prefers	to	watch	television	given	that	the	student	is	a	boy.

13	 Two	ordinary,	six-sided	dice	are	rolled	and	the	total	score	is	noted.
a)	 Complete	the	tree	diagram	by	entering	probabilities	and	listing	outcomes.

b)	 Find	the	probability	of	getting	one	or	more	sixes.

14	 The	following	Venn	diagram	shows	a	sample	space	U	and	events	A	and	B.

n	(U) 5 36,	n	(A) 5 11,	n	(B	) 5 6	and	n	(A		∪		B	)9 5 21.

a)	 On	the	diagram,	shade	the	region	(A		∪		B	)’.

b)	 Find
 (i)	 n	(A		∩		B	)
 (ii)	 P(A		∩		B	).

c)	 Explain	why	events	A	and	B	are	not	mutually	exclusive.

6

6

Outcomes

 not 6

6

not 6

not 6

A B

U
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15	 In	a	survey	of	200	people,	90	of	whom	were	female,	it	was	found	that	60	people	were	
unemployed,	including	20	males.

a)	 Using	this	information,	complete	the	table	below.

Males Females Totals

Unemployed

Employed

Totals 200

b)	 If	a	person	is	selected	at	random	from	this	group	of	200,	find	the	probability	that	
this	person	is
 (i)	 an	unemployed	female
 (ii)	 a	male	given	that	the	person	is	employed.

16	 A	bag	contains	10	red	balls,	10	green	balls	and	6	white	balls.	Two	balls	are	drawn	at	
random	from	the	bag	without	replacement.	What	is	the	probability	that	they	are	of	
different	colours?	

17	 The	following	Venn	diagram	shows	the	
universal	set	U	and	the	sets	A	and	B.

a)	 Shade	the	area	in	the	diagram	which	represents	the	set	B		∩		A9.

n	(U) 5 100,	n	(A) 5 30,	n	(B	) 5 50,	n	(A		∪		B	) 5 65.

b)	 Find	n	(B		∩		A9	).
c)	 An	element	is	selected	at	random	from	U.	What	is	the	probability	that	this	element	

is	in	B		∩		A	9?

18	 The	events	B	and	C	are	dependent,	where	C	is	the	event	‘a	student	takes	chemistry’,	
and	B	is	the	event	‘a	student	takes	biology’.	It	is	known	that

P(C	) 5 0.4,	P(B	|	C	) 5 0.6,	P(B	|	C9) 5 0.5.

a)	 Complete	the	following	tree	diagram.

b)	 Calculate	the	probability	that	a	student
takes	biology.

c)	 Given	that	a	student	takes	biology,
what	is	the	probability	that	the	student	
takes	chemistry?

B
A

U

C

0.4

Chemistry Biology

B

B�

B

B�

C�
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19	 Two	fair	dice	are	thrown	and	the	number	showing	on	each	is	noted.	The	sum	of	these	
two	numbers	is	S.	Find	the	probability	that

a)	 S	is	less	than	8

b)	 at	least	one	die	shows	a	3

c)	 at	least	one	die	shows	a	3	given	that	S	is	less	than	8.

20	 For	events	A	and	B,	the	probabilities	are	P(A) 5			3	__	11			and	P(B	)	5			4	__	11		.
Calculate	the	value	of	P(A		∩		B	)	if
a)	 P(A		∪		B	)	5			6	__	11		

b)	 events	A	and	B	are	independent.

21	 Consider	events	A	and	B	such	that	P(A)		0,	P(A)		1,	P(B	)		0	and	P(B	)		1.
In	each	of	the	situations	a),	b),	c)	below,	state	whether	A	and	B	are	mutually	exclusive	
(M	),	independent	(I	),	or	neither	(N	).
a)	 P(A	|	B	)	5	P(A)
b)	 P(A		∩		B	)	5	0
c)	 P(A		∩		B	) 5 P(A)

22	 In	a	school	of	88	boys,	32	study	economics	(E	),	28	study	history	(H	)	and	39	do	not	
study	either	subject.	This	information	is	represented	in	the	following	Venn	diagram.

a)	 Calculate	the	values	a,	b,	c.
b)	 A	student	is	selected	at	random.

 (i)	 Calculate	the	probability	that	he	studies	both	economics	and	history.
 (ii)	 Given	that	he	studies	economics,	calculate	the	probability	that	he	does	not	

study	history.	
c)	 A	group	of	three	students	is	selected	at	random	from	the	school.

 (i)	 Calculate	the	probability	that	none	of	these	students	studies	economics.
 (ii)	 Calculate	the	probability	that	at	least	one	of	these	students	studies	economics.

23	 A	painter	has	12	tins	of	paint.	Seven	tins	are	red	and	five	tins	are	yellow.	Two	tins	are	
chosen	at	random.	Calculate	the	probability	that	both	tins	are	the	same	colour.

24	 Dumisani	is	a	student	at	IB	World	College.

The	probability	that	he	will	be	woken	by	his	alarm	clock	is			7	_	8		.

If	he	is	woken	by	his	alarm	clock,	the	probability	he	will	be	late	for	school	is			1	_	4		.

If	he	is	not	woken	by	his	alarm	clock,	the	probability	he	will	be	late	for	school	is			3	_	5		.

Let	W	be	the	event	‘Dumisani	is	woken	by	his	alarm	clock’.

Let	L	be	the	event	‘Dumisani	is	late	for	school’.

a b c

E(32) H(28)
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a)	 Copy	and	complete	the	tree	diagram	below.

b)	 Calculate	the	probability	that	Dumisani	will	be	late	for	school.
c)	 Given	that	Dumisani	is	late	for	school,	what	is	the	probability	that	he	was	woken	by	

his	alarm	clock?

25	 The	diagram	shows	a	circle	divided	into	three	
sectors	A,	B	and	C.	The	angles	at	the	centre	of	
the	circle	are	90°,	120°	and	150°.	Sectors	A	
and	B	are	shaded	as	shown.

The	arrow	is	spun.	It	cannot	land	on	the	lines	
between	the	sectors.	Let	A,	B,	C	and	S	be	the	
events	defined	by

A	 :	 Arrow	lands	in	sector	A
B	 :	 Arrow	lands	in	sector	B
C	 :	 Arrow	lands	in	sector	C
S	 :	 Arrow	lands	in	a	shaded	region.

Find
a)	 P(B	)	 b)	 P(S	)	 c)	 P(A	|	S	).

26	 A	packet	of	seeds	contains	40%	red	seeds	and	60%	yellow	seeds.	The	probability	that	a	
red	seed	grows	is	0.9,	and	that	a	yellow	seed	grows	is	0.8.	A	seed	is	chosen	at	random	
from	the	packet.
a)	 Complete	the	probability	tree	diagram	below.

b)	 	 (i)	 Calculate	the	probability	that	the	chosen	seed	is	red	and	grows.
  (ii)	 Calculate	the	probability	that	the	chosen	seed	grows.
	(iii)	 Given	that	the	seed	grows,	calculate	the	probability	that	it	is	red.

W

L

L�

L

L�

W�

90°

120°
150°

C
A

B

Red

Grows
0.9

0.4
Does not grow

Grows

Does not grow

Yellow
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27	 Two	unbiased	six-sided	dice	are	rolled,	a	red	one	and	a	black	one.	Let	E	and	F	be	the	
events

E	:	the	same	number	appears	on	both	dice
F	:	the	sum	of	the	numbers	is	10.	

Find
a)	 P(E		)
b)	 P(F		)
c)	 P(E		∪		F	).

28	 The	table	below	shows	the	subjects	studied	by	210	students	at	a	college.

Year 1 Year 2 Totals

History 	 50 	 35 	 85

Science 	 15 	 30 	 45

Art 	 45 	 35 	 80

Totals 110 100 210

a)	 A	student	from	the	college	is	selected	at	random.

Let	A	be	the	event	the	student	studies	art.
Let	B	be	the	event	the	student	is	in	year	2.

  (i)	 Find	P(A).
  (ii)	 Find	the	probability	that	the	student	is	a	year	2	art	student.
 (iii)	 Are	the	events	A	and	B	independent?	Justify	your	answer.

b)	 Given	that	a	history	student	is	selected	at	random,	calculate	the	probability	that	the	
student	is	in	year	1.

c)	 Two	students	are	selected	at	random	from	the	college.	Calculate	the	probability	that	
one	student	is	in	year	1	and	the	other	in	year	2.

Questions	11–28:	©	International	Baccalaureate	Organization
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Calculus is the branch of mathematics that was developed to analyze and 
model change – such as velocity and acceleration. We can also apply it 
to study change in the context of slope, area, volume and a wide range of 
other real-life phenomena. Although mathematical techniques that you 
have studied previously deal with many of these concepts, the ability to 
model change was restricted. For example, consider the curve in Figure 
11.1. This shows the motion of an object by indicating the distance 
(y metres) travelled after a certain amount of time (t seconds). Pre-

calculus mathematics will only allow us to compute 
the average velocity between two different times 
(Figure 11.2). With calculus – specifically, techniques 
of differential calculus – we will be able to find the 
velocity of the object at a particular instant, known as 
its instantaneous velocity (Figure 11.3). The starting 
point for our study of calculus is the idea of a limit.

Introduction

11 Differential Calculus I--: 
Fundamentals

Assessment statements
6.1	 Informal	ideas	of	limits	and	convergence.	

Limit	notation.	
Definition	of	derivative	from	first	principles	f9(x)	5			lim				

h	→	0
			( 		f (x	1	h)	2	f (x)

		_____________	
h

  		)		.
Derivative	interpreted	as	gradient	function	and	as	rate	of	change.	
Tangents	and	normals,	and	their	equations.

6.2	 Derivative	of	xn (n∊핈).
The	second	derivative.

6.3	 Local	maximum	and	minimum	points;	testing	for	maximum	or	minimum.	
Points	of	inflexion	with	zero	and	non-zero	gradients.

	 Graphical	behaviour	of	functions	including	the	relationship	between	f,	f9	
and	f99.

6.6	 Kinematic	problems	involving	displacement	s,	velocity	v,	and	acceleration	a.
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A limit is one of the ideas that distinguish calculus from algebra, 
geometry and trigonometry. The notion of a limit is a fundamental 
concept of calculus. Limits are not new to us. We often use the idea of a 
‘limit’ in many non-mathematical situations. Mathematically speaking, 
we have encountered limits on at least two occasions previously in this 
book – finding the sum of an infinite geometric series (Section 3.4) and 
computing the irrational number e (Section 4.3). 

Recall from Section 3.4 that we established that if the sequence of partial 
sums for an infinite series converges to a finite number L we say that the 
infinite series has a ‘sum’ of L. Further on in that section, we used limits to 

algebraically confirm that the infinite series 2 1 1 1   1 __ 
2

   1   1 __ 4   1   1 __ 
8

   1 … has a 

sum of 4. As part of the algebra for this, we reasoned that as the value of n 
increases in the positive direction without bound (i.e. n → 1`) the 

expression  (   1 _ 2   ) 
n

 converges to zero – in other words, the limit of  (   1 _ 2   ) 
n

 as 

n goes to positive infinity is zero. We express this result more efficiently 

using limit notation, as we did in Chapter 3, by writing   lim    
n → ̀

​​( ​​1 _ 
2

   ) 
n

 5 0. 

It is beyond the requirements of this course to establish a precise formal 
definition of a limit, but a closer look at justifying this limit and a couple of 
others can lead us to a useful informal definition.

Example 1 

Evaluate   lim    
n → ̀

​​( ​​1 _ 
2

   ) 
n

 by using your GDC to analyze the behaviour of the 

function f (x) 5  (   1 _ 2   ) 
x

 for large positive values of x.
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Limits of functions11.1
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Solution

The GDC screen images show the graph and table of values for y 5  (   1 __ 
2

   ) 
x
. 

Clearly, the larger the value of x, the closer that y gets to zero. Although 
there is no value of x that will produce a value of y equal to zero, we can get 
as close to zero as we wish. For example, if we wish to produce a value of y 

within 0.001 of zero, then we could choose x 5 10 and y 5  (   1 __ 
2

   ) 
10

 5   1 ____ 
1024

   

 0.000  976  56; and if we want a result within 0.000  0001 of zero, then we 

could choose x 5 24 and y 5  (   1 __ 
2

   ) 
24

 5   1 _________ 
167  772  16

    0.000  000  059  605; and 

so on. Therefore, we can conclude that   lim    
n → ̀

​​( ​​1 _ 
2

   ) 
n

 5 0.

In calculus we are interested in limits of functions of real numbers. 
Although many of the limits of functions that we will encounter can only 
be approached and not actually reached (as in Example 1), this is not 
always the case. For example, if asked to evaluate the limit of the function 

f (x) 5   x __ 
2

   2 1 as x approaches 6, we simply need to evaluate the function 

for x 5 6. Since f (6) 5 2, then   lim    
n → 6

   (   x __ 
2

   2 1 )  5 2. 

However, it is more common that we are unable to evaluate the limit of 
f (x) as x approaches some number c because f (c) does not exist.

Example 2 

Evaluate   lim    
x → 0

    sin x ____ x   . 

Solution

We are not able to evaluate this limit by direct substitution because when 

x 5 0,   sin x ____ x    5   0 __ 
0

   and is therefore undefined. Let’s use our GDC again to 

analyze the behaviour of the function f (x) 5   sin x ____ x    as x approaches zero 

from the right side and the left side.

 Hint:  x must be in radians 
because in calculus we are 
interested in functions of real 
numbers.

Plot1

Y1=(1/2)ˆX
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=8
Xscl=1
Ymin=-.  1
Ymax=1 
Yscl=1
Xres=1

Y1

Y1=1.22070313E-4

7
8
9
10
11
12
13

X
.00781
.00391
.00195
9.8E-4
4.9E-4
2.4E-4
1.2E-4

Y1

X=0

X
1
.5
.25
.125
.0625
.03125
.01563

TABLE SETUP
TblStart=0

Indpnt: Auto Ask
Depend: Auto Ask

Tbl=1
0
1
2
3
4
5
6

The line y 5 c is a horizontal 
asymptote of the graph of a 
function y 5 f (x) if either 
  lim    
x → ̀

  f (x) 5 c or    lim     
x → 2`

  f (x) 5 c. 

For example, the line y 5 0 
(x-axis) is a horizontal 
asymptote of the graph of 

y  5   (   1 __ 2   ) 
x
 because   lim    

n → ̀
   (   1 __ 2   )  

n
 5 0.
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Although there is no point on the graph of y 5   sin x ____ x    corresponding to 

x 5 0, it is clear from the graph that as x approaches zero (from either 

direction) the value of   sin x ____ x    converges to one. We can get the value of   sin x ____ x    

arbitrarily close to 1 depending on our choice of x. If we want   sin x ____ x    to be 

within 0.001 of 1, we choose x 5 0.05 giving   sin 0.05 _______ 
0.05

    0.999  583 and 

1 2 0.999  583 5 0.000  417 , 0.001; and if we want   sin x ____ x    to be within 

0.000  001 of 1, then we choose x 5 0.002 giving    sin 0.02 _______ 
0.02

    0.999  999  3333  

and 1 2 0.999  999  3333 5 0.000  000  6667 , 0.000  001; and so on. 

Therefore,   lim    
x → 0

    sin x ____ x    5 1.

Functions do not necessarily converge to a finite value at every point – it’s 
possible for a limit not to exist.

Example 3 

Find   lim    
x → 0

    1 __ 
x 2

  , if it exists.

Solution
As x approaches zero, the value of   1 ___ 

x 2 
  becomes increasingly large in the 

positive direction. The graph of the function (left) seems to indicate that 

we can make the values of y 5   1 __ 
x 2

   arbitrarily large by choosing x close 

enough to zero. Therefore, the values of y 5   1 __ 
x 2

   do not approach a finite 

number, so   lim    
x → 0

    1 __ 
x 2

   does not exist.

Although we can describe the behaviour of the function y 5   1 __ 
x 2

   by writing 

  lim    
x → 0

    1 __ 
x 2

   5 `, this does not mean that we consider ` to represent a number 

– it does not. This notation is simply a convenient way to indicate in what 
manner the limit does not exist. 

Limit of a function
If f (x) becomes arbitrarily close to a unique finite number L as x approaches c from 
either side, then the limit of f (x) as x approaches c is L. The notation for indicating this 
is   lim    

x → c
  f (x) 5 L. 

When a function f (x) becomes arbitrarily close to a finite number L, we say that f (x) 
converges to L.

For our purposes in this course, it is also important to be able to apply 
some basic algebraic manipulation in order to evaluate the limits of some 
functions algebraically, rather than by conjecturing from a graph or table.

x

y

y �

0.5

sin x
x

1

0 2π 4π�4π �2π

x

y

y � 1
x2

0

The line x 5 c is a vertical 
asymptote of the graph of a 
function y 5 f (x) if either 
  lim    
x → c

  f (x) 5 ` or   lim    
x → c

  f (x) 5 2`. 

For example, the line x 5 0 
( y-axis) is a vertical asymptote of

the graph of y 5   1 ___ 
x 2

   because

  lim    
x → 0

     1 ___ 
x 2

   5 `.
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Example 4 

Evaluate each limit algebraically.

a)    lim    
x → ̀

    5x 2 3 ______ x   

b)    lim    
p → 0

  (3x 2 2 4px 1 p 2)

c)    lim    
h → 0

    
[(x 1 h)2 2 6] 2 (x 2 2 6)

  ______________________  
h

   

Solution

a)   lim    
x → ̀

    5x 2 3 ______ x    5    lim    
x → ̀

   (   5x __ x   2   3 __ x   )   Split the fraction into two terms and …

5    lim    
x → ̀

  5 2    lim    
x → ̀

    3 _ x   …  evaluate the limit of each term separately.

5 5 2 0 5 5 Therefore,    lim    
x → ̀

    5x 2 3 ______ x    5 5.

b)   lim    
p → 0

  (3x 2 2 4px 1 p 2) 5   lim    
p → 0

  3x 2 2   lim    
p → 0

  4px 1   lim    
p → 0

  p 2 

5 3x 2 2 0 1 0 

5 3x 2 

c)    lim    
h → 0

    
[(x 1 h)2 2 6] 2 (x 2 2 6)

  ______________________  
h

    5    lim    
h → 0

    x 2 1 2xh 1 h2 2 6 2 x 2 1 6   _______________________  
h

   

5    lim    
h → 0

    2xh 1 h2
 ________ 

h
   

5    lim    
h → 0

    
h(2x 1 h)

 _________ 
h

   

5    lim    
h → 0

  2x 1   lim    
h → 0

  h

5 2x 1 0 5 2x

Therefore,    lim    
h → 0

     
[(x 1 h)2 2 6] 2 (x 2 2 6)

  ______________________  
h

    5​2x.

The limits in parts b) and c) of Example 4 show that in some cases the  
limit of a function is itself a function.

In questions 1–4, evaluate each limit algebraically and then confirm your result by 
means of a table or graph on your GDC.

  1    lim    
n → ̀

    1 1 4n ______ n   

  2    lim    
h → 0

  (3x 2 1 2hx 1 h2)

  3    lim    
d → 0

    
(x 1 d )2 2 x 2

 ___________ 
d

   

  4    lim    
x → 3

    x 2 2 9 ______ x 2 3
  

Exercise 11.1
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Tangent lines and the slope (gradient) of a curve
In Section 1.6, we reviewed linear equations in two variables. And, later in 
Section 2.1, we established that any non-vertical line represents a function 
for which we typically assign the variables x and y for values in the domain 
and range of the function, respectively. Any linear function can be written in 
the form y 5 mx 1 c. This is the slope-intercept form for a linear equation, 
where m is the slope (or gradient) of the graph and c is the y-coordinate of 
the point at which the graph intersects the y-axis (i.e. the y-intercept). The 

value of the slope m, defined as m 5   
y2 2 y1 ______ x2 2 x1

   5   
vertical change

  _______________  
horizontal change

  , will be 

the same for any pair of points, (x1, y1) and (x2, y2), on the line. An 
essential characteristic of the graph of a linear function is that it has a 
constant slope. This is not true for the graphs of non-linear functions. 

Consider a person walking up the side of a pitched roof as shown in Figure 
11.4. At any point along the line segment PQ the person is experiencing a 
slope of   3 _ 4  . Now consider someone walking up the curve shown in Figure 
11.5, which passes through the three points A, B and C. As the person walks 

In questions 5–7, investigate the limit of the expression (if it exists) as x → ̀  by 
evaluating the expression for the following values of x: 10, 50, 100, 1000, 10  000 and 
1  000  000. Hence, make a conjecture for the value of each limit.

  5    lim    
x → ̀

    3x 1 2 ______ x 2 2 3
  

  6    lim    
x → ̀

    5x 2 6 ______ 2x 1 5  

  7    lim    
x → ̀

    3x 2 1 2 _______ x 2 3   

  8  Use the graphing or table capabilities of your GDC to investigate the values of 

  the expression  ( 1 1   1 __ c   ) 
c
 as c increases without bound (i.e. c → ̀ ). Explain the 

significance of the result.

  9  If it is known that the line y 5 3 is a horizontal asymptote for the function f (x), 
state the value of each of the following two limits:    lim    

x → ̀ ​​
 f (x) and    lim     

x → 2`
 ​​f (x).

10  If it is known that the line x 5 a is a vertical asymptote for the function g(x) and 
g(x)  .  0, what conclusion can be made about   lim    

x → a​​
 g (x)?

11  State the equations of all horizontal and vertical asymptotes for the following 
functions.

a)  f (x) 5   3x 2 1 ______ 1 1 x  

b)  g (x) 5    1 _______ 
(x 2 2)2  

c)  g (x) 5    1 _____ x 2 a   1 b

The derivative of a function: 
definition and basic rules

11.2
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along the curve from A to C, he/she will experience a steadily increasing 
slope. The slope is continually changing from one point to the next along 
the curve. Therefore, it is incorrect to say that a non-linear function, whose 
graph is a curve, has a slope – it has infinitely many slopes. We need a 
means to determine the slope of a non-linear function at a specific point on 
its graph. 

Imagine if the slope of the 
curve in Figure 11.5 stopped 
increasing (remained constant) 
after point B. From that point 
on, a person walking up the 
curve would move along a line 
with a slope equal to the slope 
of the curve at point B. This 
line – containing point D in the 
diagram – only ‘touches’ the 

curve once at B. Line (BD) is tangent to the curve at point B. Therefore, 
finding the slope of the line that is tangent to a curve at a certain point will 
give us the slope of the curve at that point. 

Finding the slope of a curve at a point – or better – finding a rule 
(function) that gives us the slope at any point on the curve is very useful 
information in many applications. The slope of a line, or of a curve at a 
point, is a measure of how fast variable y is changing as variable x changes. 
The slope represents the rate of change of y with respect to x. To find the 
slope of a tangent line, we first need to clarify what it means to say that a 
line is tangent to a curve at a point. Then we can establish a method to find 
the tangent line at a point.

The three graphs in Figure 11.6 show different configurations of tangent 
lines. A tangent line may cross or intersect the graph at one or more points.

For many functions, the graph has a tangent at every point. Informally, 
a function is said to be smooth if it has this property. Any linear function 
is certainly smooth, since the tangent at each point coincides with the 
original graph. However, some graphs are not smooth at every point. 
Consider the point (0, 0) on the graph of the function y 5 ux u (Figure 
11.7). Zooming in on (0, 0) will always produce a V-shape rather than 
smoothing out to appear more and more linear. Therefore, there is no 
tangent to the graph at this point.

4 m

3 m

A

B
D

C

 Hint:  The word ‘curve’ can often 
mean the same as ‘function’, even if 
the function is linear.
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The slope (gradient) of a curve 
at a point is the slope of the 
line that is tangent to the curve 
at that point.
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Figure 11.5

Figure 11.6

Figure 11.7
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One way to find the tangent line of a graph at a particular point is to make 
a visual estimate. Figure 11.8 reproduces the time-distance graph for an 
object’s motion from the previous section (Figure 11.1). The slope at any 
point (t, y) on the curve will give us the rate of change of the distance y 
with respect to time t, in other words the object’s instantaneous velocity 
at time t. In the figure, an estimate of the line tangent to the curve at (5,  3) 
has been drawn. Reading from the graph, the slope appears to be   4 _ 6   5   2 _ 3  . Or, 
in other words, the object has a velocity of approximately 0.667  m/s at the 
instant when t 5 5 seconds.

A more precise method of finding tangent lines makes use of a secant line 
and a limit process. Suppose that f  is any smooth function, so the tangent 
to its graph exists at all points. A secant line (or chord) is drawn through 
the point for which we are trying to find a tangent to f  and a second point 
on the graph of f, as shown in Figure 11.9a. If P is the point of tangency with 
coordinates (x, f (x)), choose a point Q to be horizontally some h units away. 
Hence, the coordinates of point Q are (x 1 h, f (x 1 h)). Then the slope of 

the secant line (PQ) is msec 5   
f (x 1 h) 2 f (x)

  _____________  
(x 1 h) 2 x

    5   
f (x 1 h) 2 f (x)

  _____________ 
h

   . 

The right side of this equation is often referred to as a difference quotient. 
The numerator is the change in y, and the denominator h is the change in x. 
The limit process of achieving better and better approximations for the 
slope of the tangent at P consists of finding the slope of the secant (PQ) 
as Q moves ever closer to P, as shown in the graphs in Figure 11.9b and 
Figure 11.9c. In doing so, the value of h will approach zero.
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By evaluating a limit of the slope of the secant lines as h approaches zero, 
we can find the exact slope of the tangent line at P(x, f (x)).

The slope (gradient) of a curve at a point
The slope of the curve y 5 f (x) at the point (x, f (x)) is equal to the slope of its tangent 
line at (x, f (x)), and is given by

mtan 5   lim    
h → 0

  msec 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

   

provided that this limit exists.

Let’s apply the definition of the slope of a curve at a point to find a rule, or 
function, for the slope of all of the tangent lines to a curve.

Example 5 

Find a rule for the slopes of the tangent lines to the graph of f (x) 5 x 2 1 1. 
Use this rule to find the exact slope of the curve at the point where x 5 0 
and at the point where x 5 1.

Solution

Let (x, f (x)) represent any point on the graph of f. By definition, the slope 
of the tangent line at (x, f (x)) is:

m 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

    5   lim    
h → 0

    
[(x 1 h)2 1 1] 2 [x 2 1 1]

  ______________________  
h

   

5   lim    
h → 0

    
[x 2 1 2xh 1 h2 1 1] 2 [x 2 1 1]

   __________________________  
h

   

5   lim    
h → 0

    x 2 2 x 2 1 2xh 1 h2 1 1 2 1   _______________________  
h

   

5   lim    
h → 0

    
h(2x 1 h)

 _________ 
h

   

5   lim    
h → 0

  (2x 1 h)

5 2x

Therefore, the slope at any point (x, f (x)) on the graph of f is 2x.

Figure 11.9c
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The word ‘secant’, as applied 
to a line, comes from the Latin 
word secare, meaning to cut. 
The word ‘tangent’ comes 
from the Latin verb tangere, 
meaning to touch.
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At the point where x 5 0, the slope is 2(0) 5 0. This makes visual sense 
because the point (0, 1) is the vertex of the parabola y 5 x 2 1 1, and we 
expect that the tangent at this point is a horizontal line with a slope of  
zero. At the point where x 5 1, the slope is 2(1) 5 2. This also makes visual 
sense because moving along the curve from (0, 1) to (1, 2) the slope is 
steadily increasing.

In Example 5, from the function f (x) 5 x 2 1 1 we used the limit process to 
derive another function with the rule 2x. With this derived function we can 
compute the slope (gradient) of the graph of f (x) at a point from simply 
inputting the x-coordinate of the point. This derived function is called the 
derivative of f at x. It is given the notation f 9(x), which is commonly read 
as ‘f prime of x’, or simply, ‘the derivative of f of x.’

The derivative and differentiation
• The derivative, f 9(x), at a point x in the domain of f is the slope (gradient) of the 

graph of f at (x, f (x)), and is given by 

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

   

provided that this limit exists.
• If the derivative exists at each point of the domain of f, we say that f is smooth.
• The process of finding the derivative, f 9(x), is called differentiation.
• If y 5 f (x), then f 9(x) is a formula for the instantaneous rate of change of y with 

respect to x. 

Differentiating from first principles
Depending on the particular purpose that you have in differentiating a 
function, you can consider the derivative as giving the slope of the graph 
of the function or the rate of change of the dependent variable (commonly 
y) with respect to the independent variable (commonly x). Both 
interpretations are useful and widely applied. 

Using the limit definition directly to find the derivative of a function (as 
we did in Example 5) is often called ‘differentiating from first principles’.
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If finding the derivative of a function indicated with the function notation f (x), then 
– as shown already – the derivative is usually denoted as f 9(x). However, there are 
two other notations with which you should be familiar. Commonly, if a function is 
given as y in terms of x, then the derivative is denoted as y 9, read as ‘y prime.’  The 

notation   
dy

 ___ 
dx   is also often used to indicate a derivative, and is read as ‘the derivative 

of y with respect to x.’  Note:   
dy

 ___ 
dx   is not a fraction. If, for example, y 5 x 2 1 1, the 

derivative can be denoted by writing   d ___ 
dx   (x 2 1 1) 5 2x. This is read as ‘the derivative 

of x 2 1 1 with respect to x is 2x.’
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Example 6 

Differentiating from first principles, find the derivative of f (x) 5 x 3.

Solution

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

    5   lim    
h → 0

    
(x 1 h)3 2 x 3

  ____________ 
h

   

5   lim    
h → 0

    
(x 1 h)(x 1 h)2 2 x 3

  __________________ 
h

   

5   lim    
h → 0

    
(x 1 h)(x 2 1 2hx 1 h2) 2 x 3

   ________________________  
h

   

5   lim    
h → 0

    x 3 1 3hx 2 1 3h2x 1 h3 2 x 3
   _______________________  

h
   

5   lim    
h → 0

    
h(3x 2 1 3hx 1 h2)

  _______________ 
h

   

5   lim    
h → 0

  (3x 2 1 3hx 1 h2)

5 3x 2

Therefore, the derivative of f (x) 5 x 3 is f 9(x) 5 3x 2.

As in Example 5, the result for Example 6 is a function that gives us the 
slope at any point on the graph of y 5 x 3. For example, the points
(1, 1) and (21, 21) both lie on y 5 x 3, and the slopes at these points 
are respectively f 9(1) 5 3(1)2 5 3 and f 9(21) 5 3(21)2 5 3. Hence, the 
tangents at these points will be parallel, as shown in Figure 11.10.

Let’s examine the relationship between the slopes of tangents to the 
curve f (x) 5 x 2 1 1 (Example 5) and slopes of tangents to g (x) 5 x 2. 
Recall that we found the derivative of f (x) to be f 9(x) 5 2x. It appears 
from the graphs of f and g, in Figure 11.11, that the slopes of tangents 
at points with the same x-coordinate will be equal. For example, the 
tangent to g at the point (1, 2) looks parallel to the tangent to f at 
(1, 1), as shown in Figure 11.11. This implies that the derivatives of 
the two functions are equal. Rather than confirming this conjecture by 
finding the derivative of g (x) 5 x 2 by first principles (i.e. using the limit 
definition), let’s use the graphical and computing power of our GDC. 
Any GDC model is capable of computing the slope of a curve at a point 
– either on the GDC’s ‘home’ screen, or its graphing screen. The screen 
images on page 379 show computing derivative values for y 5 x 2 on the 
‘home’ screen.

x

y

y � x3

�2

�1

0

1

2

slope � 3

�1 1

(1, 1)

(�1, �1)

x

y

f(x) � x2 � 1

g(x) � x2

Tangent
line at (1, 2)

Tangent
line at (1, 1)

0

1

2

3

�1�2 1 2

Figure 11.10

Figure 11.11



379

Our GDC results 
confirm our 
conjecture that the 
derivative of  
g(x) 5 x 2 is g 9(x) 5 2x.

Example 7 

From first principles, find:

a) y 9 given y 5 3x 2 1 2x b)   
dy

 ___ 
dx

   given y 5   1 __ x  

Solution
We will apply the definition of the derivative, f 9(x) 5   lim    

h → 0
    
f (x 1 h) 2 f (x)

  _____________ 
h

    , 

in both a) and b).

a) y 95   lim    
h → 0

    
[3(x 1 h)2 1 2(x 1 h)] 2 (3x 2 1 2x)

   ______________________________  
h

   

5   lim    
h → 0

    
(3x 2 1 6hx 1 3h2 1 2x 1 2h) 2 (3x 2 1 2x)

    ____________________________________  
h

   

5   lim    
h → 0

    6hx 1 3h2 1 2h  _____________ 
h

   

5   lim    
h → 0

  (6x 1 3h 1 2) ⇒ y 9 5 6x 1 2

b)   
dy

 ___ 
dx

   5   d ___ 
dx

    (   1 __ x   )  5   lim    
h → 0

    
  1 _____ 
x 1 h

   2   1 __ x  
 _________ 

h
   

5   lim    
h → 0

    
  x ________ 
x (x 1 h)

   2   x 1 h ________ 
x (x 1 h)

  
  _________________ 

h
   

5   lim    
h → 0

  (      2h ________ 
x (x 1 h)

  
 ________ 

  h __ 
1

  
   ) 

5   lim    
h → 0

   (   2h ________ 
x (x 1 h)

   ·   1 __ 
h

   ) 

5   lim    
h → 0

    (   21 _______ 
x2 1 hx

   )  ⇒   d ___ 
dx

    (   1 __ x   )  5 2​​1 __ 
x 2

   or   d ___ 
dx

   (x 21) 5 2x 22

This command finds the value of the derivative 
of y � x2 in terms of x, at the point x � 1.

MATH NUM CPX PRB
4  
5: 
6:fMin(

X

7:fMax(
8:nDeriv(
9:fnInt(
0:Solver…

MATH NUM CPX PRB
1: Frac
2: Dec
3:3

X
4:3 (
5:
6:fMin(
7 fMax(

3 (
nDeriv(X2,X,1)

2

nDeriv(X2,X,1)
2

nDeriv(X2,X,2)
4

nDeriv(X2,X,3)
6

nDeriv(X2,X,-1)
-2

6

nDeriv(X2,X,17)
34

nDeriv(X2,X,-9)
-18

The exact command name and 
syntax for computing the value 
of a derivative at a point may 
vary from one GDC model to 
another.
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Basic differentiation rules
We have now established the following results:
• If f (x) 5 x 2, then f 9(x) 5 2x.
• If f (x) 5 x 2 1 1, then f 9(x) 5 2x.
• If f (x) 5 3x 2 1 2x, then f 9(x) 5 6x 1 2.
• If f (x) 5 x 3, then f 9(x) 5 3x 2.
• If f (x) 5 x 21, then f 9(x) 5 2x 22.

In addition, we know that if f (x) 5 x, then f 9(x) 5 1, since the line y 5 x 
has a constant slope equal to 1; and that if f (x) 5 1, then f 9(x) 5 0 because 
the line y 5 1 is horizontal and thus has a constant slope equal to 0. 
Furthermore, the graph of any function f (x) 5 c, where c is a constant, is a 
horizontal line, confirming that if f (x) 5 c, c [ 핉, then f 9(x) 5 0. In other 
words, the derivative of a constant is zero. This leads to our first basic rule 
of differentiation.

The constant rule
The derivative of a constant function is zero. That is, given c is a real number, and if f (x) 5 c, 
then f 9(x) 5 0.

These following results:  f (x) 5 x 21  ⇒  f 9(x) 5 2x 22

 f (x) 5 x 0 5 1  ⇒  f 9(x) 5 0
 f (x) 5 x 1 5 x  ⇒  f 9(x) 5 1
 f (x) 5 x 2  ⇒  f 9(x) 5 2x
 f (x) 5 x 3  ⇒  f 9(x) 5 3x 2

can be summarized in the single statement:

if f (x) 5 x n then f 9(x) 5 nx n 21 for n 5 21, 0, 1, 2, 3

In fact, this statement is true not just for these values but for any value of 
n that is a rational number (n [ 핈). This leads to our second basic rule of 
differentiation.

The derivative of xn
Given n is a rational number, and if f (x) 5 xn, then f 9(x) 5 nx n 2 1.

Another basic rule of differentiation is suggested by our result that the 
derivative of f (x) 5 x 2 1 1 is f 9(x) 5 2x. The derivative of a sum of a 
number of terms is obtained by differentiating each term separately – i.e. 
differentiating ‘term-by-term’. That is,

   d ___ 
dx

   (x 2 1 1) 5    d ___ 
dx

   (x 2) 1   d ___ 
dx

   (1) 5 2x 1 0 5 2x.

The sum and difference rule
If f (x) 5 g(x) 6 h(x) then f 9(x) 5 g9(x) 6 h9(x). 

A fourth basic rule of differentiation is illustrated by our result that the 
derivative of f (x) 5 3x 2 1 2x is f 9(x) 5 6x 1 2. Using the sum rule, 

f 9(x) 5   d ___ 
dx

   (3x 2 1 2x) 5   d ___ 
dx

   (3x 2) 1   d ___ 
dx

   (2x) 5 6x 1 2. The fact that 

  d ___ 
dx

   (3x 2) 5 6x suggests that 3    d ___ 
dx

   (x 2) 5 3  2x 5 6x. In other words, the 

derivative of a function being multiplied by a constant is equal to the 
constant multiplying the derivative of the function.

Functions of the form f (x) 5 x n 
are called power functions, so 
the differentiation rule 

  d ___ 
dx   (x n ) 5 nx n 2 1 gives the 

rule for differentiating power 
functions – and is often 
referred to as the power rule.
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The constant multiple rule
If f (x) 5 c · g(x) then f 9(x) 5 c · g9(x).

As mentioned before, and as you have seen, there are different notations 
used for indicating a derivative or differentiation. These can be traced back 
to the fact that calculus was first developed by Isaac Newton (1642–1727) 
and Gottfried Leibniz (1646–1716) independently of each other – and 
hence, introduced different symbols for methods of calculus. The ‘prime’ 
notations y 9 and f 9(x) come from notations that Newton used for 

derivatives. The   
dy

 ___ 
dx

   notation is similar to that used by Leibniz for 

indicating differentiation. Each has its advantages and disadvantages. For 
example, it is often easier to write our four basic rules of differentiation 
using Leibniz notation as shown below.

Constant rule:   d ___ 
dx

   (c) 5 0, c [ 핉

Power rule:   d ___ 
dx

   (x n) 5 nx n 2 1, n [ 핈

Sum and difference rule:   d ___ 
dx

   [g(x) 1 h(x)] 5   d ___ 
dx

   [g(x)] 1   d ___ 
dx

   [h(x)]

Constant multiple rule:   d ___ 
dx

   [c  f (x)] 5 c    d ___ 
dx

   [ f (x)], c [ 핉

Example 8 

For each function: (i) find the derivative using the basic differentiation  
rules; (ii) find the slope of the graph of the function at the indicated points; 
and (iii) use your GDC to confirm your answer for (ii). 

Function Points

a) f (x) 5 x 3 1 2x 2 2 15x 2 13 (23, 23), (3, 213)

b) f (x) 5 (2x 2 7)2 (2, 9), (  7 _ 2  , 0)

c) f (x) 5 3 √
__

 x   2 6 (4, 0), (9, 3)

d) f (x) 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x ___ 
2

   1   3 __ 4   (5, 243), (0, 0)

Solution

a)  (i)   d ___ 
dx

   (x 3 1 2x 2 2 15x 2 13) 5   d ___ 
dx

   (x 3) 1 2 ·   d ___ 
dx

   (x 2) 2 15 ·   d ___ 
dx

   (x) 2   d ___ 
dx

   (13) 

5 3x 2 1 2(2x) 2 15(1) 2 0
5 3x 2 1 4x 2 15

Therefore, the derivative of f (x) 5 x 3 1 2x 2 2 15x 2 13 is 
f 9(x) 5 3x 2 1 4x 2 15.

 (ii)  Slope of curve at (23, 23) is f 9(23) 5 3(23)2 1 4(23) 2 15 
5 27 2 12 2 15 5 0.
We should observe a horizontal tangent (slope 5 0) to the curve at 
(23, 23).
Slope of curve at (3, 213) is f 9(3) 5 3(3)2 1 4(3) 2 15 
5 27 1 12 2 15 5 24.
We should observe a very steep tangent (slope 5 24) to the curve at 
(3, 213).
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  (iii)  Not only can we use the GDC to compute the value of the 
derivative at a particular value of x on the ‘home’ screen, but we 
can also do it on the graph screen.

The GDC computes a slope of 1E26 at the point (23, 23). 
(1E26 5 1 3 1026 5 0.000  001)

Although the method the GDC uses is very accurate, sometimes there is 
a small amount of error in its calculation. This most commonly occurs 
when performing calculus computations (e.g. the value of the derivative at 
a point). 1E26 5 0.000  001 is very close to zero which is the exact value of 
the derivative. Observe that the graph of y 5 x 3 1 2x 2 2 15x 2 13 appears 
to have a ‘turning point’ at (23, 23), confirming that a line tangent to the 
curve at that point would be horizontal.

Let’s check on our GDC that the slope of the curve is 24 at (3, 213). Again, 
the GDC exhibits a small amount of error in its result.

Most GDCs are also capable of drawing a tangent at a point and displaying 
its equation as shown in the final screen image below.

The equation of the tangent line at (3, 213) is y 5 24x 2 85. We will look 
at finding the equations of tangent lines analytically in the last section of 
the chapter.

b)  (i)   d ___ 
dx

   [(2x 2 7)2] 5   d ___ 
dx

   [(2x 2 7)(2x 2 7)] differentiate term-by-term 
 after expanding

5   d ___ 
dx

   (4x 2 2 28x 1 49)

5 4   d ___ 
dx

   (x 2) 2 28   d ___ 
dx

   (x ) 1   d ___ 
dx

   (49)

5 8x 2 28 1 0

Therefore, the derivative of f (x) 5 (2x 2 7)2 is f 9(x) 5 8x 2 28.

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

X=3

Y1=Xˆ3+2X2-15X-13

y=24.000001X+-85.000003
X=3

dy/dx=24.000001

dy/dx=1E-6

horizontal tangent
’turning point’
(�3, 23)

Plot1

Y1= X̂ 3+2X2-15X-
13

Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
X=-3

Y1=Xˆ3+2X2-15X-13

7: f(x)dx

5:intersect

WINDOW
Xmin=-6
Xmax=6
Xscl=1
Ymin=-40
Ymax=40
Yscl=5
Xres=1

dy/dx=1E-6
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  (ii)  Slope of curve at (2, 9) is f 9(2) 5 8(2) 2 28 5 212.

Slope of curve at  (   7 __ 
2

  , 0 )  is f 9​( ​​7 __ 
2

   )  5 8 (   7 __ 
2

   )  2 28 5 0.

Thus, we should observe a horizontal tangent to the curve at  (    7 __ 
2

  , 0 ) .
  (iii) 

There’s no error this time in the GDC’s computation of the slope 

at (2, 9). The vertex of the parabola is at  (    7 __ 
2

  , 0 ) , confirming that it 

has a horizontal tangent at that point.

c)  (i)   d ___ 
dx

   (3 √
__

 x   2 6) 5 3   d ___ 
dx

   ( x     
1
 _ 2   ) 2   d ___ 

dx
   (6)

5 3 (   1 __ 
2

     x2    
1
 _ 2    )  2 0

5 3 (   1 __ 
2

     x2    
1
 _ 2    )  2 0 5   3 ___ 

 2x    
1
 _ 2   
  

Therefore, the derivative of f (x) 5 3 √
__

 x   2 6 is f 9(x) 5   3 ___ 
2 x    

1
 _ 2   
   or f 9(x) 5   3 ____ 

2 √
__

 x  
  .

  (ii) Slope of curve at (4, 0) is f 9(4) 5   3 ____ 
2 √

__
 4  
   5   3 __ 4  .

Slope of curve at (9, 3) is f 9(9) 5   3 ____ 
2 √

__
 9  
   5   1 __ 

2
  .

Thus, because the slope at x 5 9 is less than that at x 5 4, we 
should observe the graph of the equation becoming less steep as  
we move along the curve from x 5 4 to x 5 9.

  (iii) 

The slope of the graph of y 5 3 √
__

 x   2 6 appears to steadily decrease 
as x increases. Let’s check the results for (ii) by evaluating the 
derivative at a point on the ‘home’ screen. The GDC confirms the 
slopes for the curve when x 5 4 and x 5 9, but again the GDC 
computations have incorporated a small amount of error.

d)  (i)   d ___ 
dx

    (   x 4 __ 4   2   3x 3 ___ 
2

   2 2x   2 1   15x ___ 
2

   1   3 __ 4   ) 

5   1 __ 4     d ___ 
dx

   (x 4) 2   3 __ 
2

     d ___ 
dx

   (x 3) 2 2   d ___ 
dx

   (x 2) 1   15 ___ 
2

     d ___ 
dx

   (x) 1   d ___ 
dx

    (   3 __ 4   ) 

5   1 __ 4   (4x 3) 2   3 __ 
2

   (3x 2) 2 2   d ___ 
dx

   (2x) 1   15 ___ 
2

   (1) 1 0

5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

  

X=3.5 Y=0

Y1=(2X-7)2Plot1

Y1=(2X-7)2
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=6
Xscl=1
Ymin=-2
Ymax=12
Yscl=1
Xres=1 dy/dx=-12

(2,9)

Plot1

Y1= 3 (X)-6
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=10
Xscl=1
Ymin=-7
Ymax=4
Yscl=1
Xres=1

nDeriv(3 (X)-6,X
,4)

.750000006

.5000000009
X=4

Y1=3 (X)- 6

Y=0

nDeriv(3 (X)-6,X
,9)
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Therefore, the derivative of f (x) 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x ___ 
2

   1   3 __ 4   

is f 9(x) 5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

   .

  (ii) Slope of curve at (5, 243) is f 9(5) 5 5 3 2   
9(5)2

 _____ 
2

   2 4(5) 1   15 ___ 
2

   5 0.

Thus, there should be a horizontal tangent to the curve at (5, 243).

Slope of curve at (0, 0) is f 9(0) 5   15 ___ 
2

  .

  (iii)  Your GDC is not capable of computing the derivative function 
– only the specific value of the derivative for a given value of x. 
However, we can have the GDC graph the values of the derivative 
over a given interval of x. We can then graph the derivative 
function found from differentiation rules (result from (i)) and see 
if the two graphs match.

The command nDeriv(Y1, X, X) computes the value of the 
 
   
derivative of function Y1 in terms of x for all x. 

Values of the derivative of f (x) will be graphed as Y2, and the derivative 

function, f 9(x) 5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

  , determined by manual application 

of differentiation rules (part (i)), will be graphed as Y3. Note that the graph 
of Y3 will be in bold style to distinguish it from Y2, and that the equation 
Y1 has been turned ‘off.’

Since the two graphs match, this confirms that the derivative found in part 
(i) using differentiation rules is correct.

Plot1

Y1= Xˆ4/4-(3Xˆ3)
Plot2 Plot3

dy/dx=3.5E-6

Y2=
Y3=
Y4=
Y5=

WINDOW

Horizontal
tangent at
(5, �43)

Xmin=-4
Xmax=8
Xscl=1
Ymin=-50
Ymax=50
Yscl=10
Xres=1

/2-2Xˆ2+15X/2+3/
4

Plot1

Y1= Xˆ4/4-(3Xˆ3)
Plot2 Plot3

Y2= nDeriv(Y1,X,
X)

4X+15/2
Y3= Xˆ3-(9X2)/2-

/2-2Xˆ2+15X/2+3/
4

Y1 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x ___ 
2

   1   3 __ 4   Y2 5 nDeriv(Y1,  X, X ) Y3 5 x 3 2   9x2
 ___ 

2
   2 4x 1   15 ___ 

2
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Example 9 

The curve y 5 ax 3 1 7x 2 2 8x 2 5 has a turning point at the point where 
x 5 22. Determine the value of a.

Solution

There must be a horizontal tangent, and a slope of zero, at the point where 
the graph has a turning point.

  
dy

 ___ 
dx

   5   d ___ 
dx

   (ax 3 1 7x 2 2 8x 2 5)

   5 a   d ___ 
dx

   (x 3) 1 7   d ___ 
dx

   (x 2) 2 8   d ___ 
dx

   (x) 1   d ___ 
dx

   (25) 5 3ax 2 1 14x 2 8

  
dy

 ___ 
dx

   5 0 when x 5 22: 3a (22)2 1 14(22) 2 8 5 0

    ⇒ 12a 2 28 2 8 5 0 ⇒ 12a 5 36 ⇒ a 5 3

Recall that the derivative of a function is a formula for the instantaneous 
rate of change of the dependent variable (commonly y) with respect to the 
dependent variable (x). In other words, as illustrated earlier in this section, 
the slope of the tangent at a point gives the slope, or rate of change, of the 
curve at that point. The slope of a secant line (that crosses the curve at two 
points) gives the average rate of change between the two points.

Example 10 

Boiling water is poured into a cup. The temperature of the water in degrees 

Celsius, C, after t minutes is given by C 5 19 1   182 ___ 
 t    

3
 _ 2   
  , for times t > 1 minute.

a) Find the average rate of change of the temperature from t 5 2 to t 5 6.

b) Find the rate of change of the temperature at the instant that t 5 4.

Solution
a) 

 

When t 5 2, C  83.35° and when t 5 6, C  31.38°. The average rate 
of change from t 5 2 to t 5 6 is the slope of the line through the points 
(2, 83.35) and (6, 31.38).

Average rate of change 5   83.35 2 31.38  ____________ 
2 2 6

   5   51.97 _____ 
24   5 212.9925. 

To an accuracy of 3 significant figures, the average rate of change from 
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t 5 2 to t 5 6 is 213.0  °C per minute. During that period of time the 
water is, on average, becoming 13 degrees cooler every minute.

b) Let’s compute the derivative   dC ___ 
dt

  , i.e. the rate of change of degrees 

C with respect to time t, from which we can compute the rate the 
temperature is changing at the moment when t 5 4.

  dC ___ 
dt

   5   d __ 
dt

    ( 19 1   182 ___ 
 t    

3
 _ 2   
   )  5   d __ 

dt
   (19 1 182 t 2   

3
 _ 2   ) 5   d __ 

dt
   (19) 1 182   d __ 

dt
   ( t 2   

3
 _ 2   ) 

​ ​​​​5 0 1 182 2   3 __ 
2

    t  2   3 _ 2    2 1  5 2273 t 2   
5
 _ 2   

  dC ___ 
dt

   5 2   273 ___ 
 t    

5
 _ 2   
   5 2 ​​273 ___ 

 √
__

 t 5  
  

At t 5 4: 

  dC ___ 
dt

   5 2   273 ____ 
 √

__

 45  
   5 2   273 ___ 

32
    28.53

Therefore, the temperature’s instantaneous rate of change at t 5 4 
minutes is 28.53  °C per minute.

In questions 1–4, find the derivative of the function by applying the limit definition 

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  ____________ 
h

   .

  1  f (x) 5 1 2 x 2

  2  g(x) 5 x 3 1 2

  3  h(x) 5  √
__

 x  

  4  r (x) 5   1 __ x 2
  

  5  Using your results from questions 1–4, find the slope of the graph of each 
function in 1–4 at the point where x 5 1. Sketch each function and draw a line 
tangent to the graph at x 5 1.

Exercise 11.2
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In questions 6–12, a) find the derivative of the function, and b) compute the slope of 
the graph of the function at the indicated point. Use a GDC to confirm your results.

  6  y 5 3x 2 2 4x  point (0, 0)

  7  y = 1 2 6x 2 x 2  point (23, 10)

  8  y 5   2 __ x 3
    point (21, 2)

  9  y 5 x 5 2 x 3 2 x  point (1, 21)

10  y 5 (x 1 2)(x 2 6)  point (2, 216)

11  y 5 2x 1   1 __ x   2   3 __ x 3
    point (1, 0)

12  y 5   x
3 1 1 ______ x 2

     point (21, 0)

13  The slope of the curve y 5 x 2 1 ax 1 b at the point (2, 24) is 21. Find the value 
of a and the value of b.

In questions 14–17, find the coordinates of any points on the graph of the function 
where the slope is equal to the given value.

14  y 5 x 2 1 3x  slope 5 3

15  y 5 x 3  slope 5 12

16  y 5 x 2 2 5x 1 1  slope 5 0

17  y 5 x 2 2 3x  slope 5 21

18  Use the graph of f to answer each question.

a)  Between which two consecutive points is the average rate of change of the 
function greatest?

b)  At what points is the instantaneous rate of change of f positive, negative and 
zero?

c)  For which two pairs of points is the average rate of change approximately 
equal?

19  The slope of the curve y 5 x 2 2 4x 1 6 at the point (3, 3) is equal to the slope of 
the curve y 5 8x 2 3x 2 at (a, b). Find the value of a and the value of b.

20  The graph of the equation y 5 ax 3 2 2x 2 2 x 1 7 has a slope of 3 at the point 
where x 5 2. Find the value of a.

y
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The relationship between a function and its 
derivative
The derivative, written in Newton notation as f 9(x) or in Leibniz notation 

as   
dy

 ___ 
dx

  , is a function derived from a function f that gives the slope of the 

graph of f at any x in the function’s domain (given that the curve is 
‘smooth’ at the value of x). The derivative is a slope, or rate of change, 
function. Knowing the slope of a function at different values in its domain 
tells us about properties of the function and the shape of its graph.

In the previous section, we observed that if a graph ‘turns’ at a particular 
point (for example, at the vertex of a parabola), then it has a horizontal 
tangent (slope 5 0) at the point. Hence, the derivative will equal zero at 
a ‘turning point’. In Section 2.5, we found the vertex of the graph of a 
quadratic function by using the technique of completing the square to 
write its equation in vertex form. We can also find the vertex by means 
of differentiation. As we look at the graph of a parabola moving from left 
to right (i.e. domain values increasing), it either turns from going down 
to going up (decreasing to increasing), or from going up to going down 
(increasing to decreasing) (Figure 11.12).

21  Find the coordinates of the point on the graph of y 5 x 2 2 x at which the 
tangent is parallel to the line y 5 5x.

22 Let f (x) 5 x 3 1 1.

a)  Evaluate   
f (2 1 h) 2 f (2)

  ____________ 
h

    for h 5 0.1.

b)  What number does   
f (2 1 h) 2 f (2)

  ____________ 
h

    approach as h approaches zero?

23  From first principles, find the derivative for the general quadratic function, 
f (x) 5 ax 2 1 bx 1 c. Confirm your result by checking that it produces:

  (i)  the derivative of x 2 when a 5 1, b 5 0, c 5 0
  (ii)  the derivative of 3x 2 2 4x 1 2 when a 5 3, b 5 24, c 5 2.

24  A car is parked with the windows and doors closed for five hours. The 
temperature inside the car in degrees Celsius, C, is given by C 5 2 √

__

 t 3   1 17 with t 
representing the number of hours since the car was first parked.

a)  Find the average rate of change of the temperature from t 5 1 to t 5 4.

b)  Find the function that gives the instantaneous rate of change of the 
temperature for any time t, 0 , t , 5.

c)  Find the time t at which the instantaneous rate of change of the temperature 
is equal to the average rate of change from t 5 1 to t 5 4.

Maxima and minima – first and 
second derivatives

11.3

vertex horizontal
tangent

Figure 11.12

If the graph of a function is 
‘smooth’ at a particular point, 
the function is considered to 
be differentiable at this point. 
In other words, a tangent line 
exists at this point. All functions 
that will be differentiated in this 
course will be differentiable 
at all values in the function’s 
domain.
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Example 11 

Using differentiation, find the vertex of the parabola with the equation  
y 5 x 2 2 8x 1 14.

Solution

Find the value of x for which the derivative,   
dy

 ___ 
dx

  , is zero. 

  
dy

 ___ 
dx

   5   d ___ 
dx

   (x 2 2 8x 1 14) 5 2x 2 8 5 0 ⇒ x 5 4

Thus, the x-coordinate of the vertex is 4.

To find the y-coordinate of the vertex, we substitute x 5 4 into the 
equation, giving y 5 42 2 8(4) 1 14 5 22. Therefore, the vertex has 
coordinates (4, 22).

We know that the parabola in Example 11 will ‘open up’ because the 
coefficient of the quadratic term, x 2, is positive. The parabola has a negative 
slope (decreasing) to the left of the vertex and a positive slope (increasing) to 
the right of the vertex (Figure 11.13). As the values of x increase, the derivative 
of y 5 x 2 2 8x 1 14 will change from negative to zero to positive, accordingly. 

  
dy

 ___ 
dx

   5 2x 2 8 ⇒   
dy

 ___ 
dx

   , 0 for x , 4 and   
dy

 ___ 
dx

   5 0 for x 5 4 and   
dy

 ___ 
dx

   . 0 for x . 4

In other words, the function f (x) 5 x 2 2 8x 1 14 is decreasing for all x , 4; it 
is neither decreasing nor increasing at x 5 4; and it is increasing for all x . 4. 
A point at which a function is neither increasing nor decreasing (i.e. there is a 
horizontal tangent) is called a stationary point. A convenient way to 
demonstrate where a function is increasing or decreasing and the location of 
any stationary points is with a sign chart for the function and its derivative, as 
shown in Figure 11.14 for f (x) 5 x 2 2 8x 1 14. The derivative f 9(x) 5 2x 2 8 
is zero only at x 5 4, thereby dividing the domain of f (i.e. 핉) into two 
intervals: x , 4 and x . 4. f 9(x) 5 2x 2 8 is a continuous function (i.e. no 
‘gaps’ in the domain) so it is only necessary to test one point in each 
interval in order to determine the sign of all the values of the derivative in 
that interval. f 9(x) can only change sign at x 5 4. For example, the fact that 
f 9(3) 5 2(3) 2 8 5 22 , 0 means that f 9(x) , 0 for all x when x , 4. 
Therefore, f is decreasing for all x in the open interval (2`, 4).

x

↘ ↗f(x)

f �(x) 0 ��

4

f(x) � x2 � 8x � 14
f�(x) � 2x � 8

�∞�∞

Figure 11.14 Sign chart for f 9(x) 
and f (x).

x

y

y � x2 � 8x � 14

0

5

10

15

�2 �1 1 2 3 4 5 6
(4, �2)

x � 4 x � 4

y decreases
as x increases

y increases
as x increases

7 8

Figure 11.13 x increases from left 
to right along the x-axis.
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Increasing and decreasing functions and stationary points
If f 9(x) . 0 for a , x , b, then f (x) is increasing on the interval a , x , b.
If f 9(x) , 0 for a , x , b, then f (x) is decreasing on the interval a , x , b.
If f 9(x) 5 0 for a , x , b, then f (x) is constant on the interval a , x , b.
If f 9(x) 5 0 for a single value x 5 c on some interval a , c , b, then f (x) has a 
stationary point at x 5 c. The corresponding point (c, f (c)) on the graph of f is called a 
stationary point.

It is at stationary points, or endpoints of the domain if the domain is not 
all real numbers, where a function may have a maximum or minimum 
value. These points at which extreme values of a function may occur are 
often referred to as critical points. Whether a function is increasing or 
decreasing on either side of a stationary point will indicate whether the 
stationary point is a maximum, minimum or neither. 

Example 12 

Consider the function f (x) 5 2x 3 1 3x 2 2 12x 2 4, x [ 핉.
a) Find any stationary points of f.
b) Using the derivative of f, classify any stationary points as a maximum 

or minimum.

Solution

a) f 9(x) 5 6x 2 1 6x 2 12 5 0 ⇒ 6(x 2 1 x 2 2) 5 0 
 ⇒ 6(x 1 2)(x 2 1) 5 0 ⇒ x 5 22 or x 5 1

With a domain of all real numbers there are no domain endpoints that 
may be an extreme value. Thus, f  has two critical points: one at x 5 22 
and the other at x 5 1.

When x 5 22: y 5 2(22)3 1 3(22)2 2 12(22) 2 4 5 16  ⇒ f  has a 
stationary point at (22, 16).

When x 5 1: y 5 2(1)3 1 3(1)2 2 12(1) 2 4 5 211  ⇒ f  has a 
stationary point at (1, 211).

b) Construct a sign chart for f 9(x) and f (x) (right) to show where f  is 
increasing or decreasing. The derivative f 9(x) has two zeros, at x 5 22 
and x 5 1, thereby dividing the domain of f  into three intervals that need 
to be tested. Since f 9(23) 5 6(21)(24) 5 24 . 0, then f 9(x) . 0 for all
x , 22. Likewise, since f 9(2) 5 6(4)(1) 5 24 . 0, then f 9(x) . 0 for all 
x . 1. Thus, f  is increasing on the open intervals (2`, 22) and 
(1, `). Since f 9(0) 5 212 , 0, then f 9(x) , 0 for all x such that 
22 , x , 1. Thus, f  is decreasing on the open interval (22, 1), i.e. 
22 , x , 1. From this information, we can visualize for increasing 
values of x that the graph of f  is going up for all x , 22, then turning 
down at x 5 22, then going down for values of x from 22 to 1, then 
turning up at x 5 1, and then going up for all x . 1. The basic shape of 
the graph of f  will look something like the rough sketch shown right. 
Clearly, the stationary point (22, 16) is a maximum and the stationary 
point (1, 211) is a minimum.

x

f (x)

f �(x)

f �(x) � 6(x � 2)(x � 1)

f (x) � 2x3� 3x2 � 12x � 4

�2 1

0 0� ��

↔ ↔↘ ↗↗

stationary

stationary

decreasing

increasing

increasing

f(x)

x � �2

x � 1

Geometrically speaking, a 
function is continuous if there 
is no break in its graph; and a 
function is differentiable (i.e. 
a derivative exists) at any points 
where it is ‘smooth’.
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The graph of f (x) 5 2x 3 1 3x 2 2 12x 2 4 from Example 12 (Figure 11.15) 
visually confirms the results acquired from analyzing the derivative of f. 

For Example 12, we can express the result for part b) most clearly by saying 
that f (x) has a relative maximum value of 16 at x 5 22, and f (x) has a 
relative minimum value of 211 at x 5 1. The reason that these extreme 
values are described as ‘relative’ (sometimes described as ‘local’) is because 
they are a maximum or minimum for the function in the immediate 
vicinity of the point, but not for the entire domain of the function. A point 
that is a maximum/minimum for the entire domain is called an absolute, 
or global, maximum/minimum.

The first derivative test
From Example 12, we can see that a function f  has a maximum at some 
x 5 c if f 9(c) 5 0 and f  is increasing immediately to the left of x 5 c and 
decreasing immediately to the right of x 5 c. Similarly, f  has a minimum at 
some x 5 c if f 9(c) 5 0 and f  is decreasing immediately to the left of 
x 5 c and increasing immediately to the right of x 5 c. It is important to 
understand, however, that not all stationary points are either a maximum 
or minimum.

Example 13 

For the function f (x) 5 x 4 2 2x 3, find all stationary points and describe 
them completely.

Solution

f 9(x) 5   d ___ 
dx

   (x 4 2 2x 3) 5 4x 3 2 6x 2 5 0 ⇒ 2x 2(2x 2 3) 5 0

⇒ x 5 0 or x 5   3 __ 
2

  

The implied domain is all real numbers, so x 5 0 and x 5   3 __ 
2

   are the critical 
points of f.

When x 5 0, y 5 f (0) 5 0.

When x 5   3 __ 
2

  , y 5 f  (   3 __ 
2

   )  5  (   3 __ 
2

   ) 
4
 2 2 (   3 __ 

2
   ) 

3
 5   81 ___ 

16
   2   54 ___ 

8
   5 2   27 ___ 

16
   .

Therefore, f has stationary points at (0, 0) and  (   3 __ 
2

  , 2 ​​27 ___ 
16

   ) .

x

y

y � 2x3 � 3x2 � 12x � 4

�20

�15

�10

�5

5

0

10

15
(�2, 16)

(1, �11)

20

�2�3�4 �1 1 2 3 4

Figure 11.15

The plural of ‘maximum’ is 
‘maxima’, and the plural of 
‘minimum’ is ‘minima’. Maxima 
and minima are collectively 
referred to as ‘extrema’ – the 
plural of ‘extremum’ (extreme 
value). Extrema of a function 
that do not occur at domain 
endpoints will be ‘turning 
points’ of the graph of the 
function.
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Because f  has two stationary points, there are three intervals for which to 
test the sign of the derivative. We could use some form of a sign chart as 
shown previously, or we can use a more detailed table that summarizes the 
testing of the three intervals and the two critical points as shown below.

Interval/point x , 0 x 5 0 0 , x ,   3 __ 2   x 5   3 __ 2   x .   3 __ 2  

Test value x 5 21 x 5 1 x 5 2

Sign of f 9(x) f 9(21) 5 210 , 0 0 f 9(1) 5 22 , 0 0 f 9(2) 5 8 . 0

Conclusion f decreasing ↘ none f decreasing ↘ abs. min. f increasing ↗

On either side of x 5 0, f  does not change from either decreasing to 
increasing or from increasing to decreasing. Although there is a horizontal 
tangent at (0, 0), it is not an extreme value (turning point). The function 
steadily decreases as x approaches zero, then at x 5 0 the function has a 
rate of change (slope) of zero for an instant and then continues on 

decreasing. As x approaches   3 __ 
2

  , f  is decreasing and then switches to 

increasing at x 5   3 __ 
2

  . 

Therefore, the stationary point (0, 0) is neither a maximum nor a minimum; 

and the stationary point  (   3 __ 
2

  , 2 ​​27 ___ 
16

   )  is an absolute minimum. Or, in other 

words, f  has an absolute (global) minimum value of 2 ​​27 ___ 
16

   at x 5   3 __ 
2

  . 

The reason that an absolute, rather than a relative, minimum value occurs 

at x 5   3 __ 
2

   is because for all x ,   3 __ 
2

   the function f  is either decreasing or 

constant (at x 5 0) and for all x ,   3 __ 
2

    f  is increasing.

x

y

y � x4 � 2x3

�3

�2

�1

1

0

2

3

4

5

6

�1 1 2

, �

3

(            )3
2

27
16

First derivative test for maxima and minima of a function
Suppose that x 5 c is a critical point of a continuous and smooth function f. That is, f (c) 5 0 and x 5 c is a stationary point or 
x 5 c is an endpoint of the domain.

I.  At a stationary point x 5 c:
1.  If f 9(x) changes sign from positive to negative as x increases through x 5 c, then f has a relative maximum at x 5 c.

2.  If f 9(x) changes sign from negative to positive as x increases through x 5 c, then f has a relative minimum at x 5 c.

relative
maximum

f �(x) � 0

c

f �(x) � 0

c

relative
minimum

f �(x) � 0 f �(x) � 0



393

Example 14 

Apply the first derivative test to find any local extreme values for f (x). 
Identify any absolute extrema.

f (x) 5 4x 3 2 9x 2 2 120x 1 25

Solution

f 9(x) 5   d ___ 
dx

   (4x 3 2 9x 2 2 120x 1 25) 5 12x 2 2 18x 2 120

f 9(x) 5 12x 2 2 18x 2 120 5 0  ⇒ 6(2x 2 2 3x 2 20) 5 0 
⇒ 6(2x 1 5)(x 2 4) 5 0

Thus, f  has stationary points at x 5 2 ​​5 __ 
2

   and x 5 4.

To classify the stationary point at x 5 2 ​​5 __ 
2

  , we need to choose test points on 

either side of 2 ​​5 __ 
2

  , for example, x 5 23 (left) and x 5 0 (right). Then we 
have

f 9(23) 5 6(21)(27) 5 42 . 0

f 9(0) 5 6(5)(24) 5 2120 , 0

3.  If f 9(x) does not change sign as x increases through x 5 c, then f has neither a relative maximum nor a relative minimum 
at x 5 c.

II.  At a domain endpoint x 5 c:
If x 5 c is an endpoint of the domain, then x 5 c will be a relative maximum or minimum of f if the sign of f 9(x) is always positive 
or always negative for x . c (at a left endpoint), or for x , c (at a right endpoint), as illustrated below.

If it is possible to show that a relative maximum/minimum at x 5 c is the greatest/least value for the entire domain of f, then it is 
classified as an absolute maximum/minimum.

c

no
extreme

f �(x) � 0 f �(x) � 0

relative
minimum

relative
maximum

cc

f �(x) � 0

f �(x) � 0
relative

minimum

relative
maximum

cc

f �(x) � 0

f �(x) � 0



394

Differential Calculus I--: Fundamentals11

So f  has a relative maximum at x 5 2 ​​5 __ 
2

  . 

f  ( 2 ​​5 __ 
2

   )  5 4 ( 2 ​​5 __ 
2

   ) 
3
 2 9 ( 2 ​​5 __ 

2
   ) 

2
 2 120 ( 2 ​​5 __ 

2
   )  1 25 5 206.25

Therefore, f  has a relative maximum value of 206.25 at x 5 2 ​​5 __ 
2

  .

To classify the stationary point at x 5 4, we need to choose test points on 
either side of 4, for example, x 5 0 (left) and x 5 5 (right). Then we have

f 9(0) 5 2120 , 0

f 9(5) 5 6(15)(1) 5 90 . 0

So f  has a relative minimum at x 5 4. 

f (4) 5 4(4)3 2 9(4)2 2 120(4) 1 25 5 2343

Therefore, f  has a relative minimum value of 2343 at x 5 4.

Change in displacement and velocity
Consider the motion of an object such that we know its position s relative 
to a reference point or line as a function of time t given by s(t). The 
displacement of the object over the time interval from t1 to t2 is:

change in s 5 displacement 5 s(t2) 2 s(t1)

The average velocity of the object over the time interval is:

vavg 5   
displacement

  ____________  
change in time

   5   
s(t2) 2 s(t1)

 __________ t2 2 t1
  

The object’s instantaneous velocity at a particular time, t, is the value of 
the derivative of the position function, s, with respect to time at t.

velocity 5   ds __ 
dt

   5 s9(t)

Example 15 

A rocket is launched upwards into the air. 
Its vertical position, s metres, above the 
ground at t seconds is given by 
s(t) 5 25t 2 1 18t 1 1. 

a) Find the average velocity over the time 
interval from t 5 1 second to 
t 5 2 seconds.

b) Find the instantaneous velocity at  
t 5 1 second.

c) Find the maximum height reached by 
the rocket and the time at which this 
occurs.
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Solution

a) vavg 5   
s(2) 2 s(1)

 _________ 
2 2 1

   5   
[25(2)2 1 18(2) 1 1] 2 [25 1 18 1 1]

    _________________________________  
1

   

​ ​ ​ ​​5 3 metres per second (or m  s21)
b) s9(t) 5 210t 1 18 ⇒ s9(1) 5 210 1 18 5 8  m  s21

c) s9(t) 5 210t 1 18 5 0 ⇒ t 5 1.8

 Thus, s has a stationary point at t 5 1.8. t must be positive and ranges 
from time of launch (t 5 0) to when the rocket hits the ground, i.e. h 5 0. 

s(t) 5 25t 2 1 18t 1 1 5 0 ⇒ t 5   
218 6  √

_____________

  182 2 4(25)(1)  
  ____________________  

2(25)
   

⇒ t  20.5472 or t  3.655 

So, the rocket hits the ground about 3.66 seconds after the time 
of launch. Hence, the domain for the position (s) and velocity (v) 
functions is 0 < t < 3.66. Therefore, the function s has three critical 
points: t 5 0, t 5 1.8 and t  3.66.

The maximum of the function, i.e. the maximum height, most likely 
occurs at the critical point t 5​1.8. Let’s confirm this. 

Applying the first derivative test, we determine the sign of the derivative, 
s9(t), for values on either side of t 5 1.8, for example, t 5 0 and t 5 2. 
s9(0) 5 18 . 0 and s9(2) 5 22 , 0. Neither of the domain endpoints, 
t 5 0 and t  3.66, are at a maximum or minimum because the function 
is not constantly increasing or constantly decreasing before or after the 
endpoint. Since the function changes from increasing to decreasing at  
t 5 1.8 and s(1.8) 5 25(1.8)2 1 18(1.8) 1 1 5 17.2, then the rocket 
reaches a maximum height of 17.2 metres 1.8 seconds after it was 
launched.

The relationship between a function and its 
second derivative
You may have wondered why the strategy we are applying to locate and 
classify extrema for a function focuses on using the first derivative of the 
function. This implies that we are interested in using some other type of 
derivative, namely the second derivative. There is another useful test for the 
purpose of analyzing the stationary point of a function that makes use of 
the derivative of the derivative, i.e. the second derivative, of the function.

When we differentiate a function y 5 f (x), we obtain the first derivative 

f 9(x)  ( also denoted as   
dy

 ___ 
dx

   ) . Often this is a function that can also be 

differentiated. The result of doing so is the derivative of f 9(x), which is 

denoted in Newton notation as f  0(x) or in Leibniz notation as   
d 2y

 ___ 
dx 2

   and 

called the second derivative of f  with respect to x. For example, if f (x) 5 x 3,

then f 9(x) 5 3x 2 and f  0(x) 5 6x  ( or   
d 2y

 ___ 
dx 2

   5 6x ) .
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Second derivatives, like first derivatives, occur often in methods of 
applying calculus. In Example 15, the function s(t) gave the position, in 
metres above the ground, of a projectile (toy rocket) where t, in seconds, 
is the time since the projectile was launched. The function s 9(t), the 
first derivative of the position function, then gives the rate of change 
of the object’s position, i.e. its velocity, in metres per second (m  s21). 
Differentiation of this function gives the rate of change of the object’s 
velocity, i.e. its acceleration, measured in metres per second per second 
(m  s22).

The graphs of the position, velocity and acceleration functions for Example 
15 aligned vertically (Figure 11.16) nicely illustrate the relationships 
between a function, its first derivative and its second derivative. The slope 
of the graph of s (t) is initially a large positive value (graph is steep), but 
steadily decreases until it is zero (horizontal tangent) at t 5 1.8 and then 
continues to decrease, becoming a large negative value (again, steep, but 
in the other direction). This corresponds to the real-life situation in which 
the rocket is launched with a high initial velocity (v (0) 5 18  m  s21) and 
then its velocity decreases steadily due to gravity. The rocket’s velocity is 
zero for just an instant when it reaches its maximum height at t 5 1.8 and 
then its velocity becomes more and more negative because it has changed 
direction and is moving back (negative direction) to the ground. The rate 
of change of the velocity, v 9(t), is constant and it is negative because the 
velocity is decreasing from positive values to zero to negative values. This is 
clear from the fact that the graph of the velocity function, v (t), is a straight 
line with a negative slope. It follows then that the acceleration function – 
the rate of change of velocity – is a negative constant, a 5 210 in this case, 
and its graph is a horizontal line.

In Example 15, it is not possible to have a negative function value for s (t) 
because the rocket’s position is always above, or at, ground level. In many 
motion problems in calculus, we consider a simplified version by limiting 
an object’s motion to a line with its position given as its displacement 
from a fixed point (usually the origin). At a position left of the fixed point, 
the object’s displacement is negative, and at a position right of the fixed 
point, the displacement is positive. Velocity can also be positive or negative 
depending on the direction of travel (i.e. the sign of the rate of change of 
the object’s displacement). Likewise, acceleration is positive if velocity is 
increasing (i.e. rate of change of velocity is positive) and negative if velocity 
is decreasing.

Position function:
s(t) � �5t2 � 18t � 1

t

s

5

0

�5

�10

�15

�20

10

15

20

1 2 3 4

t

v

5
0

�5
�10
�15
�20

10
15
20

1

Velocity function:
v(t) � s�(t) � �10t � 18

2 3 4

Acceleration function:
a(t) � v�(t) � s�(t) � �10

t

a

5

0

�5

�10

�15

�20

10

15

20

1 2 3 4

A common misconception is that acceleration is positive for motion in the positive 
direction (usually ‘right’ or ‘up’) and negative for motion in the negative direction 
(usually ‘left’ or ‘down’). Acceleration indicates how velocity is changing. Even 
though an object may be moving in a positive direction (e.g. to the right) if it is 
slowing down, then its acceleration is acting in the opposite direction and would 
be negative. In Example 15, the rocket was always accelerating in the negative 
direction, 210  m  s22, due to the force of gravity. Note: A more accurate value for the 
acceleration of a free-falling object due to gravity is 29.8  m  s22.

It would be incorrect to graph 
a function and its first and/
or second derivative on the 
same axes. For example, the 
position s(t), velocity v (t) and 
acceleration a(t) functions 
graphed on separate axes in 
Figure 11.16 will have different 
units on each vertical axis: 
metres for s(t), metres per 
second for v(t) and metres per 
second per second for a(t).

Figure 11.6
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Motion along a line
If an object moves in a straight line such that at time t its displacement (position) from a 

fixed point is s (t), then the first derivative s9(t), also written as   ds __ 
dt

  , gives the velocity v (t) at 
time t. 

The second derivative s 0(t), also written as   d 2s ___ 
dt 2

  , is the first derivative of v (t). Hence, the 

second derivative of the displacement, or position, function is a measure of the rate at 
which the velocity is changing, i.e. it represents the acceleration of the object, which we 
express as

a (t) 5 v9(t) 5 s 0(t)  or  a (t) 5   dv __ 
dt

   5   d 2s ___ 
dt 2

  

Example 16 

An object moves along a straight line so that after t seconds its 
displacement from the origin is s metres. Given that s (t) 5 22t 3 1 6t 2, 
answer the following:

a) Find expressions for the (i) velocity and (ii) acceleration at time  
t seconds.

b) Find the (i) initial velocity and (ii) initial acceleration of the object (i.e. 
at time when t 5 0).

c) Find the (i) maximum displacement and (ii) maximum velocity for the 
interval 0 < t < 3.

Solution

a)  (i) v (t) 5   ds __ 
dt

   5   d __ 
dt

   (22t 3 1 6t 2) 5 26t 2 1 12t

 (ii) a (t) 5   d 2s ___ 
dt 2

   5   dv __ 
dt

   5   d __ 
dt

   (26t 2 1 12t) 5 212t 1 12

b)  (i) v (0) 5 26(0)2 1 12(0) 5 0 ⇒  The object’s initial velocity is 
0  m  s21.

 (ii) a (0) 5 212(0) 1 12 5 12 ⇒  The object’s initial acceleration 
is 12  m  s22.

c)  (i)  To find the maximum displacement, we can apply the first 
derivative test to s (t). Since the first derivative of displacement, 
s (t), is velocity, v (t), then the critical points of s (t) are where the 
velocity is zero (stationary points) and domain endpoints.

s 9(t) 5 v (t) 5 26t 2 1 12t 5 0  ⇒ 6t (2t 1 2) 5 0 
⇒ v (t) 5 0 when t 5 0 or t 5 2

For the interval 0 < t < 3, the critical points to be tested for 
finding the maximum displacement are at t 5 0, t 5 2 and t 5 3. 
Check whether the velocity is increasing or decreasing on either 
side of the stationary point at t 5 2 by finding the sign of v (t) for 
t 5 1 and t 5 2.5. 
v (1) 5 26(1)2 1 12(1) 5 6 and v (2.5) 5 26(2.5)2 1 12(2.5) 5 27.5 

Displacement can be 
negative, positive or zero. 
Distance is the absolute value 
of displacement. Velocity can 
be negative, positive or zero. 
Speed is the absolute value of 
velocity.
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Hence, the displacement s is increasing for 0 , t , 2 and 
decreasing for 2 , t , 3. This indicates that the stationary point at 
t 5 2 must be an absolute maximum for s in the interval 
0 < t < 3.

s (2) 5 22(2)3 1 6(2)2 5 8

Therefore, the object has a maximum displacement of 8 metres at  
t 5 2 seconds.

 (ii)  To find the maximum velocity, we can apply the first derivative 
test to v (t). The first derivative of v (t) is acceleration a (t), which is 
the second derivative of s (t). Hence, where s 0(t) 5 0 (acceleration 
is zero) indicates critical points for v (t), i.e. where velocity may 
change from increasing to decreasing, or vice versa.

s 0(t) 5 a (t) 5   d __ 
dt

   (26t 2 1 12t) 5 212t 1 12 

 ⇒ 12(2t 1 1) 5 0 ⇒ a (t) 5 0 when t 5 1

For the interval 0 < t < 3, the critical points to be tested for 
finding the maximum velocity are at t 5 0, t 5 1 and t 5 3. Check 
whether the velocity is increasing or decreasing on either side of  
t 5 1 by finding the sign of a (t) for t 5 0.5 and t 5 2.
a (0.5) 5 212(0.5) 1 12 5 6 and a (2) 5 212(2) 1 12 5 212 
Hence, the velocity v is increasing for 0 , t , 1 and decreasing for 
1 , t , 3. This indicates that the point at t 5 1 must be an absolute 
maximum for v in the interval 0 < t < 3.

v (1) 5 26(1)2 1 12(1) 5 6

Therefore, the object has a maximum velocity of 6 metres per 
second at t 5 1 second.

The second derivative of a function tells us how the first derivative of the 
function changes. From this we can use the second derivative, as we did 
the first derivative, to reveal information about the shape of the graph of 
a function. Note in Example 16 that the object’s velocity changed from 
increasing to decreasing when the object’s acceleration was zero at t 5 1. 
Let’s examine graphically the significance of the point where acceleration 
is zero (i.e. velocity changing from increasing to decreasing) in connection 
to the displacement graph for Example 16. In other words, what can the 
second derivative of a function tell us about the shape of the function’s 
graph?

Figure 11.17 shows the graphs of the displacement, velocity and 
acceleration functions for the motion of the object in Example 16. A 
dashed vertical line highlights the nature of the three graphs where  
t 5 1. At this point, velocity has a maximum value and acceleration is zero. 
It is also where velocity changes from increasing to decreasing, which has a 
corresponding effect on the shape of the displacement function s (t). 
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At the point where t 5 1, the graph of s (t) changes from curving 
‘upwards’ (concave up) to curving ‘downwards’ (concave down) 
because its slope (corresponding to velocity) changes from 
increasing to decreasing. This can only occur when velocity 
(first derivative) has a maximum and, hence, where acceleration 
(second derivative) is zero. We can see from this illustration 
that for a general function f (x), finding intervals where the first 
derivative f 9(x) is increasing (positive acceleration) or decreasing 
(negative acceleration) can be used to determine where the graph 
of f (x) is curving upward or curving downward. A point at which 
a function’s curvature (concavity) changes – as at t 5 1 for the 
graph of s (t) above – is called a point of inflexion.

Concavity and the second derivative
The graph of f (x) is concave up where f 9(x) is increasing and concave down 
where f 9(x) is decreasing. It follows that:

 (i)   if f 0(x) . 0 for all x in some interval of the domain of f, the graph of f is 
concave up in the interval

 (ii)   if f 0(x) , 0 for all x in some interval of the domain of f, the graph of f is 
concave down in the interval.

If f (x) is a continuous function, its graph can only change concavity (up to 
down, or down to up) where f 0(x) 5 0. Hence, for a continuous function, an 
inflexion point may only occur where f 0(x) 5 0.

Note: Concavity is not defined for a line – it is neither concave up nor concave 
down.

Example 17 

Determine the intervals on which the graph of y 5 x 4 2 4x 3 is concave up 
or concave down and identify any inflexion points.

Solution

We first note that the function is continuous for its domain of all real 
numbers. To locate points of inflexion, we then find for what value(s) the 
second derivative is zero.

  
dy

 ___ 
dx

   5   d ___ 
dx

   (x 4 2 4x 3) 5 4x 3 2 12x 2 

 ⇒   
d 2y

 ___ 
dx 2

   5   d ___ 
dx

   (4x 3 2 12x 2) 5 12x 2 2 24x  5 12x (x 2 2)
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Setting   
d 2y

 ___ 
dx 2

   5 0, it follows that inflexion points may occur at t 5 0 and 

t 5 2. These two values divide the domain of the function into three 
intervals that we need to test. Let’s choose t 5 21, t 5 1 and t 5 3 as our 

test values. At t 5 21,   
d 2y

 ___ 
dx 2

   5 36 . 0; at t 5 1,   
d 2y

 ___ 
dx 2

   5 212 , 0; and at 

t 5 3,   
d 2y

 ___ 
dx 2

   5 36 . 0. These results can be organized in a sign chart, 

illustrating that the graph of y 5 x 4 2 4x 3 is concave up for the open 
intervals (2`, 0) and (2, `), and concave down on the open interval (0, 2).

At t 5 0, y 5 0 and at t 5 2, y 5 24 2 4(2)3 5 216. Therefore, (0, 0) and 
(2, 216) are inflexion points because it is at these points the concavity of 
the graph changes.

The graph of the function (Figure 11.18) from Example 17 reveals two 
different types of inflexion points. The slope of the curve at (0, 0) is zero 
– i.e. it is a stationary point. The slope of the curve at the other inflexion 
point, (2, 216), is negative. 

For either type of inflexion point, the graph crosses its tangent line at the 
point of inflexion, as shown in Figure 11.19. 

The fact that the second derivative of a function is zero at a certain point 
does not guarantee that an inflexion point exists at the point. 

The functions y 5 x 3 and y 5 x 4 will serve to illustrate that   
d 2y

 ___ 
dx 2

   5 0 is a 

necessary but not sufficient condition for the existence of an inflexion point.
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• For y 5 x 3:   
dy

 ___ 
dx

   5   d ___ 
dx

   (x 3) 5 3x 2 ⇒   
d 2y

 ___ 
dx 2

   5   d ___ 
dx

   (3x 2) 5 6x  ⇒    
d 2y

 ___ 
dx 2

   5 0

at x 5 0. We can conclude from this that there may be an inflexion point

at x 5 0. We need to investigate further by checking to see if   
d 2y

 ___ 
dx 2

   changes 

sign at x 5 0. At x 5 21,   
d 2y

 ___ 
dx 2

   5 26 and at x 5 1,   
d 2y

 ___ 
dx 2

   5 6. 

Thus, there is an inflexion point at x 5 0 (confirmed by graph) because 
the second derivative changes sign at x 5 0.

• For y 5 x 4:   
dy

 ___ 
dx

   5   d ___ 
dx

   (x 4) 5 4x 3 ⇒   
d 2y

 ___ 
dx 2

   5   d ___ 
dx

   (4x 3) 5 12x 2  ⇒    
d 2y

 ___ 
dx 2

   5 0 

at x 5 0. Again, we need to see if   
d 2y

 ___ 
dx 2

   changes sign at x 5 0. 

At x 5 21,   
d 2y

 ___ 
dx 2

   5 12 and at x 5 1,   
d 2y

 ___ 
dx 2

   5 12. Thus, there is no inflexion 

point at x 5 0 (confirmed by graph) because the second derivative does 
not change sign at x 5 0. 

The second derivative test
Earlier in this section, we developed the first derivative test for locating 
maxima and minima of a function. Instead of using the first derivative 
to check whether a function changes from increasing to decreasing 
(maximum) or decreasing to increasing (minimum) at a stationary point, 
we can simply evaluate the second derivative at the stationary point. If the 
graph is concave up at the stationary point then it will be a minimum, and 
if it is concave down then it will be a maximum. If the second derivative is 
zero at a stationary point (as for y 5 x 3 and y 5 x 4), no conclusion can be 
made and we need to go back to the first derivative test. Using the second 
derivative in this way is a very efficient method for telling us whether a 
stationary point is a relative maximum or minimum.
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The second derivative test

1.  If f 9(c) 5 0 and f 0(c) , 0, then f has a relative maximum at x 5 c.

2.  If f 9(c) 5 0 and f 0(c) . 0, then f has a relative minimum at x 5 c.

If f 0(c) 5 0, the test fails and the first derivative test should be applied.
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Example 18 

Find any relative extrema for f (x) 5 3x 5 2 25x 3 1 60x 1 20.

Solution

The implied domain of f  is all real numbers. Solve f 9(x) 5 0 to obtain 
possible extrema. 

f 9(x) 5  15x 4 2 75x 2 1 60 5 0
15(x 4 2 5x 2 1 4) 5 0
15(x 2 2 4)(x 2 2 1) 5 0
15(x 1 2)(x 2 2)(x 1 1)(x 2 1) 5 0

Therefore, f  has four stationary points: x 5 22, x 5 21, x 5 1 and x 5 2.

Applying the second derivative test:

f  0(x) 5  60x 3 2 150x 5 30x (2x 2 2 5)
f  0(22) 5 2180 , 0 ⇒ f  has a relative maximum at x 5 22
f  0(21) 5 90 . 0 ⇒ f  has a relative minimum at x 5 21
f  0(1) 5 290 , 0 ⇒ f  has a relative maximum at x 5 1
f  0(2) 5 180 . 0 ⇒ f  has a relative minimum at x 5 2

In questions 1–3, find the vertex of the parabola using differentiation.

  1  y 5 x 2 2 2x 2 6    2  y 5 4x 2 1 12x 1 17    3  y 5 2x 2 1 6x 2 7

For questions 4–7, a) find the derivative, f 9(x), b) indicate the interval(s) for which f (x) 
is increasing, and c) the interval(s) for which f (x) is decreasing.

  4  y 5 x 2 2 5x 1 6    5  y 5 7 2 4x 2 3x 2

  6  y 5   1 _ 3   x 3 2 x    7  y 5 x 4 2 4x 3

For questions 8–13: 
a)  find the coordinates of any stationary points for the graph of the equation
b)  state, with reasoning, whether each stationary point is a minimum, maximum 

or neither
c)  sketch a graph of the equation and indicate the coordinates of each 

stationary point on the graph.

  8  y 5 2x 3 1 3x 2 2 72x 1 5    9  y 5   1 _ 6   x3 2 5

10  y 5 x (x 2 3)2  11  y 5 x 4 2 2x 3 2 5x 2 1 6

12  y 5 x 3 2 2x 2 2 7x 1 10  13  y 5 x 2  √
__

 x  

14  An object moves along a line such that its displacement, s metres, from the 
origin O is given by s (t) 5 t 3 2 4t 2 1 t.
a)  Find expressions for the object’s velocity and acceleration in terms of t.
b)  For the interval 21 < t < 3, sketch the displacement-time, velocity-time, 

and acceleration-time graphs on separate sets of axes, vertically aligned as in 
Figure 11.17.

c)  For the interval 21 < t < 3, find the time at which the displacement is a 
maximum and find its value.

d)  For the interval 21 < t < 3, find the time at which the velocity is a minimum 
and find its value.

e)  In words, accurately describe the motion of the object during the interval  
21 < t < 3.

Exercise 11.3
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In many areas of mathematics and physics, it is useful to have an accurate 
description of a line that is tangent or normal (perpendicular) to a curve. 
The most complete mathematical description we can obtain is to find 
the algebraic equation of such lines. In this chapter, much of our work 
has been in connection to the slopes of tangent lines, so this will be our 
starting point.

Finding equations of tangents
We now make use of the basic differentiation rules that we established 
earlier to determine the equation of lines that are tangent to a curve at a 
point. The first example shows how we can approximate the square root of 
a number quite accurately without a calculator by making use of a tangent 
line.

For each function f (x) in questions 15–20, find any relative extrema and points of 
inflexion. State the coordinates of any such points. Use your GDC to assist you in 
sketching the function.

15  f (x) 5 x 3 2 12x

16  f (x) 5   1 _ 4   x 4 2 2x 2

17  f (x) 5 x 1   4 __ x  

18  y 5 x 2 2   1 __ x  

19  f (x) 5 23x 5 1 5x 3

20  f (x) 5 3x 4 2 4x 3 2 12x 2 1 5

21  An object moves along a line such that its displacement, s metres, from a fixed 
point P is given by s (t) 5 t (t 2 3)(8t 2 9).
a)  Find the initial velocity and initial acceleration of the object.
b)  Find the velocity and acceleration of the object at t 5 3 seconds.
c)  Find for what values of t the object changes direction. What significance do 

these times have in connection to the displacement of the object?
d)  Find for what value of t the object’s velocity is a minimum. What significance 

does this time have in connection to the acceleration of the object?

22  The delivery cost per tonne of bananas, D (in thousands of dollars), when x tonnes

  of bananas are shipped is given by D 5 3x 1   100 ____ x   , x . 0. Find the value of x for 

  which the delivery cost per tonne of bananas is a minimum, and find the value 
of the minimum delivery cost. Explain why this cost is a minimum rather than a 
maximum.

23  The curve y 5 x 4 1 ax 2 1 bx 1 c passes through the point (21, 28) and at that 

point   
d 2y

 ___ 
dx 2

   5   
dy

 ___ 
dx   5 6. Find the values of a, b and c and sketch the curve.

24  Find any maxima, minima or stationary points of inflexion of the function 

f (x) 5   x 3 1 3x 2 1 ___________ x 2
   , stating, with explanation, the nature of each point. 

Sketch the curve, indicating clearly what happens as x → 6`.

Tangents and normals11.4
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Example 19 
a) Find the equation of the line tangent to y 5  √

__
 x   at x 5 9.

b) Use this tangent line to approximate  √
___

 10  .

Solution
a) We can find the equation of any line if we know its slope and a point it 

passes through. Since y 5 3 when x 5 9, the point of tangency is (9, 3). 
We differentiate to find the slope of the curve at x 5 9, thus giving us 
the slope of the tangent line.

  
dy

 ___ 
dx

   5   d ___ 
dx

   ( √
__

 x  ) 5   d ___ 
dx

   ( x    
1
 _ 2   ) 5   1 __ 

2
    x  2 ​​1 _ 2    5   1 ____ 

2 √
__

 x  
  

At x 5 9:   
dy

 ___ 
dx

   5   1 ____ 
2 √

__
 9  
   5   1 __ 

6
   ⇒  The slope of the curve and 

tangent line at x 5 9 is   1 _ 6  .

Now that we have a point and a slope for the line we can substitute in 
the point-slope form for the equation of a line.

y 2 3 5   1 _ 6   (x 2 9) ⇒ y 5   1 _ 6   x 1   3 _ 2  

The equation of the line tangent to y 5  √
__

 x   at x 5 9 is y 5   x __ 
6

    1   3 __ 
2

  .

b) For values of x near 9, y 5  √
__

 x      x __ 
6

    1   3 __ 
2

  .

 3.1 
_

 6 
 √

___
 10      10 ___ 

6
   1   3 __ 

2
   5   19 ___ 

6
      6 ) 

_____
 19.00  

The actual value of  √
___

 10   to 4 significant figures is 3.162. Our 
approximation expressed to 3 significant figures is 3.167. The 
percentage error is less than 0.2%.

The graphs of y 5  √
__

 x   and its tangent at x 5 9, y 5   x __ 
6

   1   3 __ 
2

  , in Figure 11.20 

illustrate that the tangent is a very good approximation to the curve in the 
interval 5 , x , 13 centred on the point of tangency (9, 3).

Finding the tangent to a curve was a challenge that motivated many of the initial 
developments of calculus in the 17th century. In one of his books on mathematics, 
Descartes wrote the following about the problem of how to find a tangent to a 
curve:

And I dare say that this is not only the most useful and most general problem in 
geometry that I know, but even that I have ever desired to know.

x

y

y �

y �   �

�1
0
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2

3
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�2 2 4 6 8 10
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12 14 16 18 20

  x

x
6

3
2

Figure 11.20
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Example 20 

Find the equation of the tangent to f (x) 5 x 1   1 __ x   at the point  (   1 __ 
2

  ,   5 __ 
2

   ) .

Solution

f (x) 5 x 1   1 __ x   5 x 1 x 21

f 9(x) 5 1 2 x 22 5 1 2   1 __ 
x 2  

When x 5   1 __ 
2

  , f 9 ​( ​​1 __ 
2

   )  5 1 2   1 ____ 
 (   1 __ 
2

   ) 2
   5 23.  Hence, the slope of the tangent is 

23.

y 2   5 __ 
2

   5 23  ( x 2   1 __ 
2

   )  ⇒ y 5 23x 1   3 __ 
2

   1   5 __ 
2

   ⇒ y 5 23x 1 4

The equation of the line tangent to f (x) 5 x 1   1 __ x   at x 5   1 __ 
2

   is y 5 23x 1 4.

Example 21 

Consider the function g (x) 5 x 2 (x 2 1).
a) Find the two points on the graph of g at which the slope of the curve is 8.

b) Find the equations of the tangents at both of these points.

Solution

a) In order to differentiate by applying the power rule term-by-term, we 
first need to write the equation for g in expanded form: 
g (x) 5 x 2 (x 2 1) 5 x 3 2 x 2

g 9(x) 5   d ___ 
dx

   (x 3 2 x 2) 5 3x 2 2 2x

g 9(x) 5 3x 2 2 2x 5 8 ⇒ 3x 2 2 2x 2 8 5 0

(3x 1 4)(x 2 2) 5 0 ⇒ x 5 2 ​​4 __ 
3

   or x 5 2

g ( 2 ​​4 __ 
3

   )  5  ( 2 ​​4 __ 
3

   ) 
3
 2  ( 2 ​​4 __ 

3
   ) 

2
 5 2   112 ___ 

27
   and g (2) 5 23 2 22 5 4

Thus, the slope of the curve is equal to 8 at the points  ( 2 ​​4 __ 
3

  , 2 ​​112 ___ 
27

   )  and
(2, 4).

b) Tangent at  ( 2   4 __ 
3

  , 2   112 ___ 
27

   ) :

y 2  ( 2 ​​112 ___ 
27

   )  5 8  [ x 2​( 2   4 __ 
3

   )  ]  ⇒ y 5 8x 1   32 ___ 
3

   2   112 ___ 
27

  

⇒ y 5 8x 1   176 ___ 
27

  

Therefore, the equation of the tangent at  ( 2 ​​4 __ 
3

  , 2 ​​112 ___ 
27

   )  is y 5 8x 1   176  ____ 
27

   .

Tangent at (2, 4):

y 2 4 5 8(x 2 2) ⇒ y 5 8x 2 16 1 4 ⇒ y 5 8x 2 12

Therefore, the equation of the tangent at (2, 4) is y 5 8x 2 12.
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Figure 11.21 shows the results for Example 21 – the graph of 
the function g and the two tangent lines to the graph of the 
function that have a slope of 8. Note that the scales on the x- 
and y-axes are not equal which causes the slope of the tangent 
lines to appear less than 8 for this particular graph.

The normal to a curve at a point
Another line we often need to find is the line that is ‘perpendicular’ 
to a curve at a certain point, which we define to be the line that 
is perpendicular to the tangent at that point. In this particular 
context, we apply the adjective ‘normal’ rather than ‘perpendicular’ 
to denote that two lines are at right angles to one another.

A normal to a graph of a function at 
a point is the line through the point 
that is at a right angle to the tangent 
at the point. In other words, the 
tangent and normal to a curve at a 
certain point are perpendicular. 

Example 22 

Find the equation of the normal to the graph of y 5 2x 2 2 6x 1 3 at the 
point (1, 21).

Solution

  
dy

 ___ 
dx

   5   d ___ 
dx

   (2x 2 2 6x 1 3) 5 4x 2 6

Slope of tangent at (1, 21) is 4(1) 2 6 5 22. Hence, slope of normal is 1​​1 __ 
2

  .

Equation of normal: y 2 (21) 5   1 __ 
2

   (x 2 1) ⇒ y 5   1 __ 
2

   x 2   3 __ 
2

  

Figure 11.22 shows the results for Example 22 with the 
curve at both its tangent and normal at the point (1, 21). 
Please be aware that if you graph a function with its tangent 
and normal at a certain point, the normal will only appear 
perpendicular if the scales on both the x- and y-axes are 
equal. Regardless of whether the scales are equal or not, the 
tangent will always appear tangent to the curve.
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P
Recall that two perpendicular 
lines have slopes that are 
opposite reciprocals. If the 
slopes of two perpendicular 
lines are m1 and m2, then 

m1 5 2​​1 ___ 
m2

   or m1m2 5 21. 

The exception is if one of the 
lines is horizontal (slope is zero) 
and the other is vertical (slope 
is undefined).

Figure 11.22

                    Figure 11.21
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Example 23 

Consider the parabola with equation y 5   1 _ 4   x 2.

a) Find the equation of the normals at the points (22, 1) and (24, 4).
b) Show that the point of intersection of these two normals lies on the 

parabola.

Solution

a)   
dy

 ___ 
dx

   5   1 __ 
2

   x

Slope of tangent at (22, 1) is   1 _ 2   (22) 5 21, so the slope of the normal 
at that point is 11.

Then equation of normal at (22, 1) is: y 2 1 5 x 2 (22) ⇒ y 5 x 1 3

Slope of tangent at (24, 4) is   1 _ 2   (24) 5 22, so the slope of the normal 

at that point is   1 _ 2  .

Then equation of normal at (24, 4) is: y 2 4 5   1 _ 2   [x 2 (24)] 

⇒ y 5   1 _ 2   x 1 6

b) Set the equations of the two normals equal to each other to find their 
intersection.

x 1 3 5   1 _ 2   x 1 6 ⇒   1 _ 2   x 5 3 ⇒ x 5 6 then y 5 9 

⇒ intersection point is (6, 9)

Substitute the coordinates of the points into the equation for the 
parabola.

y 5   1 _ 4   x 2 ⇒ 9 5   1 _ 4   (6)2 ⇒ 9 5   1 _ 4    36 ⇒ 9 5 9

This confirms that the intersection point, (6, 9), of the normals is also a 
point on the parabola.

  1  Find an equation of the tangent line to the graph of the equation at the 
indicated value of x.
a)  y 5 x 2 1 2x 1 1  x 5 23 

b)  y 5 x 3 1 x 2  x 5 2   2 __ 3  

c)  y 5 3x 2 2 x 1 1  x 5 0

d)  y 5 2x 1   1 __ x    x 5   1 __ 2  

  2  Find the equations of the normal to the functions in question 1 at the indicated 
value of x.

  3  Find the equations of the lines tangent to the curve y 5 x 3 2 3x 2 1 2x at any 
point where the curve intersects the x-axis.

  4  Find the equation of the tangent to the curve y 5 x 2 2 2x  that is perpendicular 
to the line x 2 2y 5 1.

Exercise 11.4
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  5  Using your GDC for assistance, make accurate sketches of the curves 
y 5 x 2 2 6x 1 20 and y 5 x 3 2 3x 2 2 x on the same set of axes. The two curves 
have the same slope at an integer value for x somewhere in the interval 0 < x <   3 _ 2  . 
a)  Find this value of x. 
b)  Find the equation for the line tangent to each curve at this value of x.

  6  Find the equation of the normal to the curve y 5 x 2 1 4x 2 2 at the point 
where x 5 23. Find the coordinates of the other point where this normal 
intersects the curve again.

  7  Consider the function g (x) 5   1 2 x 3 ______ x 4   . Find the equation of both the tangent and 

the normal to  the graph of g at the point (1, 0).

  8  The normal to the curve y 5 a x    
1
 _ 2    1 bx at the point where x 5 1 has a slope of 1 

and intersects the y-axis at (0, 24). Find the value of a and the value of b.

  9  a)  Find the equation of the tangent to the function f (x) 5 x 3 1   1 __ 2   x 2 1 1 at the 

point  ( 21,   1 __ 2   ) . 

b)  Find the coordinates of another point on the graph of f where the tangent is 
parallel to the tangent found in a).

10  Find the equation of both the tangent and the normal to the curve 
y 5  √

__
 x   (1 2  √

__
 x   ) at the point where x 5 4.

  1	 The	function	f	is	defined	as	f	(x)	5	x	2.
a)	 Find	the	gradient	(slope)	of	f	at	the	point	P,	where	x	5	1.5.
b)	 Find	an	equation	for	the	tangent	to	f	at	the	point	P.
c)	 Draw	a	diagram	to	show	clearly	the	graph	of	f	and	the	tangent	at	P.
d)	 The	tangent	of	part	b)	intersects	the	x-axis	at	the	point	Q	and	the	y-axis	at	the	

point	R.	Find	the	coordinates	of	Q	and	R.
e)	 Verify	that	Q	is	the	midpoint	of	[PR	].
f)	 Find	an	equation,	in	terms	of	a,	for	the	tangent	to	f	at	the	point	S	(a,	a	2),	a		0.
g)	 The	tangent	of	part	f)	intersects	the	x-axis	at	the	point	T	and	the	y-axis	at	the	point	

U.	Find	the	coordinates	of	T	and	U.
h)	 Prove	that,	whatever	the	value	of	a,	T	is	the	midpoint	of	SU.

  2	 The	curve	with	equation	y	5	Ax	1	B	1			C	__	x 	,	x	[	핉,	x		0,	has	a	minimum	at	P	(1,	4)	
and	a	maximum	at	Q	(21,	0).	Find	the	value	of	each	of	the	constants	A,	B	and	C.

  3	 Differentiate:
a)	 x	2	(2	2	3x	3)

b)	 		1	__	x 	

  4	 Consider	the	function	f	(x)	5			8	__	x 		1	2x,	 x	.	0.

a)	 Solve	the	equation	f	9(x)	5	0.	Show	that	the	graph	of	f	has	a	turning	point	at	(2,	8).
b)	 Find	the	equations	of	the	asymptotes	to	the	graph	of	f,	and	hence	sketch	the	graph.

  5	 Find	the	coordinates	of	the	stationary	point	on	the	curve	with	equation	y	5	4x	2	1			1	__	x 	.

  6	 The	curve	y	5	ax	3	2	2x	2	2	x	1	7	has	a	gradient	(slope)	of	3	at	the	point	where	x	5	2.

	 Determine	the	value	of	a.

Practice questions
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  7	 If	f​(2)	5	3	and	f	9(2)	5	5,	find	an	equation	of	a)	the	line	tangent	to	the	graph	of	f	at	
x	5	2,	and	b)	the	line	normal	to	the	graph	of	f	at	x	5	2.

  8	 The	function	g	(x)	is	defined	for	23	<	x	<	3.	The	behaviour	of	g	9(x	)	and	g	0(x	)	is	given	
in	the	tables	below.

x 23	,	x	,	22 22 22	,	x	,	1 1 1	,	x	,	3

g	9(x) negative 0 positive 0 negative

x 23	,	x	,	2 ​​1 _	2 	 2 ​​1 _	2 	 2 ​​1 _	2 		,	x	,	3

g	0(x) positive 0 negative

Use	the	information	above	to	answer	the	following.	In	each	case,	justify	your	answer.
a)	 Write	down	the	value	of	x	for	which	g	has	a	maximum.
b)	 On	which	intervals	is	the	value	of	g	decreasing?
c)	 Write	down	the	value	of	x	for	which	the	graph	of	g	has	a	point	of	inflexion.
d)	 Given	that	g	(23)	5	0,	sketch	the	graph	of	g.	On	the	sketch,	clearly	indicate	the	

position	of	the	maximum	point,	the	minimum	point	and	the	point	of	inflexion.
©	International	Baccalaureate	Organization,	2005

  9	 Given	the	function	f	(x)	5	x	2	2	3bx	1	(c	1	2),	determine	the	values	of	b	and	c	such	
that	f​(1)	5	0	and	f	9(3)	5	0.

10	 Figure 1	shows	the	graphs	of	the	functions	f1,	f2,	f3,	f4.	Figure 2	includes	the	graphs	
of	the	derivatives	of	the	functions	shown	in	Figure 1.

 Figure 1 Figure 2
	 a)
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	 c)
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	 e)
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Complete	the	table	below	by	matching	each	function	with	its	derivative.

Function Derivative diagram

f1

f2

f3

f4
©	International	Baccalaureate	Organization,	2002

11	 Consider	the	function	y	5			3x	2	2	______	x  	.	The	graph	of	this	function	has	a	vertical	and	a		
horizontal	asymptote.
a)	 Write	down	the	equation	of	

  (i)	 the	vertical	asymptote
  (ii)	 the	horizontal	asymptote.

b)	 Find			
dy

	___	
dx 	.

c)	 Indicate	the	intervals	for	which	the	curve	is	increasing	or	decreasing.
d)	 How	many	stationary	points	does	the	curve	have?	Explain	using	your	result	to	b).

12	 Show	that	there	are	two	points	at	which	the	function	h(x)	5	2x	2	2	x	4	has	a	maximum	
value,	and	one	point	at	which	h	has	a	minimum	value.	Find	the	coordinates	of	these	
three	points,	indicating	whether	it	is	a	maximum	or	minimum.

13	 The	normal	to	the	curve	y	5		x			
1
	_	2				1		x			

1
	_	3				at	the	point	(1,	2)	meets	the	axes	at	(a,	0)	and	

(0,	b).	
	 Find	a	and	b.

14	 The	displacement,	s	metres,	of	a	car,	t	seconds	after	leaving	a	fixed	point	A,	is	given	by	
s(t)	5	10t	2			1	_	2			t	2.

a)	 Calculate	the	velocity	when	t	=	0.
b)	 Calculate	the	value	of	t	when	the	velocity	is	zero.
c)	 Calculate	the	displacement	of	the	car	from	A	when	the	velocity	is	zero.

15	 A	ball	is	thrown	vertically	upwards	from	ground	level	such	that	its	height	h	metres	at	
t	seconds	is	given	by	h	5	14t	2	4.9t	2.	
a)	 Write	expressions	for	the	ball’s	velocity	and	acceleration.
b)	 Find	the	maximum	height	the	ball	reaches	and	the	time	it	takes	to	reach	the	

maximum.
c)	 At	the	moment	the	ball	reaches	its	maximum	height,	what	is	the	ball’s	velocity	and	

acceleration?
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You have seen vectors in the plane in Chapter 8. We will limit our 
discussion to mainly three-dimensional space in this chapter. If you need 
to refresh your knowledge of the plane case, refer to Chapter 8.

Because we live in a three-dimensional world, it is essential that we study 
objects in three dimensions. To that end, we consider in this section a 
three-dimensional coordinate system in which points are determined 
by ordered triples. We construct the coordinate system in the following 
manner: Choose three mutually perpendicular axes, as shown in Figure 
12.1, to serve as our reference. The orientation of the system is right-
handed in the sense that if you stand with your back to the z-axis and 
stretch your arms out with a right angle between them, then the right hand 
will point towards the x-axis and the left hand towards the y-axis. That is, 
if you are looking straight at the system, the yz-plane is the plane facing 
you, and the xz-plane is perpendicular to it and extending out of the page 
towards you, and the xy-plane is the bottom part of that picture. The xy-,
xz- and yz-planes are called the coordinate planes. Points in space are 
assigned coordinates in the same manner as in the plane. So, the point P 
(next page) is assigned the ordered triple (x, y, z) to indicate that it is x, y 
and z units from the yz-, xz- and xy-planes (Figure 12.2).
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Assessment statements
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Algebraic	and	geometric	approaches	to	the	following	topics:
the	sum	and	difference	of	two	vectors;	the	zero	vector;	the	vector	2v;
multiplication	by	a	scalar,	kv;	parallel	vectors;
magnitude	of	a	vector,	|v|;
unit	vectors;	base	vectors,	i,	j	and	k;
position	vectors	OA	5	a;
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›
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4.2	 The	scalar	product	of	two	vectors.
Perpendicular	vectors;	parallel	vectors.
The	angle	between	two	vectors.

4.3	 Vector	equation	of	a	line	in	two	and	three	dimensions:	r	5	a	1	tb.
The	angle	between	two	lines.
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In this chapter, we will extend our study of vectors to space. The good news 
is that many of the rules you know from the plane also apply to vectors 
in space. So, we will only have to introduce few new concepts. Some of 
the material will either be a repeat of what you have learned for two-
dimensional space or an extension.

Vectors can be represented geometrically by arrows in two- or three-
dimensional space; the direction of the arrow specifies the direction of the 
vector, and the length of the arrow describes its magnitude. The first point 
on the arrow is called the initial point of the vector and the tip is called the 
terminal point. We shall denote vectors in lower-case boldface type, such 
as v, when using one letter to name the vector, and we will use  

 ___
 
›
 AB​ to denote 

the vector from A to B. The handwritten notation will be the latter too. 

If the initial point of a vector is at the origin, the vector is said to be in 
standard position. It is also called the position vector of point P. The 
terminal point will have coordinates of the form (x, y, z). We call these 
coordinates the components of v and we write v 5 (x, y, z).

The length (magnitude) of a vector v is also known as its modulus or its 
norm and it is written as |v|.

Using Pythagoras’ theorem, we can show that the magnitude of a vector v, 

|v| 5  √
___________

 x 2 1 y 2 1 z 2  

Let  
 ___

 
›
 OP​ 5 v, then 

|v| 5  | 
 ___

 
›
 OP​| 5  √

__________

 OB 2 1 BP 2  , since the triangle OBP is right-angled at B. 
Now, consider triangle OAB, which is right-angled at A:

OB 2 5 OA 2 1 AB 2 5 x 2 1 y 2, and, therefore,

|v| 5  √
__________

 OB 2 1 BP 2   5  √
____________

  (x 2 1 y 2) 1 z 2   5  √
___________

 x 2 1 y 2 1 z 2  

Two vectors like v and  
 ___

 
›
 AB​ are equal (equivalent) if they have the 

same length (magnitude) and the same direction; we write v 5  
 ___

 
›
 AB​. 

Geometrically, two vectors are equal if they are translations of one another 
as you see in Figures 12.3 and 12.4. Notice in Figure 12.4 that the four 
vectors are equal, even though they are in different positions.

Vectors from a geometric viewpoint12.1
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Because vectors are not affected by translation, the initial point of a vector 
v can be moved to any convenient position by making an appropriate 
translation.

Two vectors are said to be opposite if they have equal modulus but 
opposite direction (Figure 12.5).

If the initial and terminal points of a vector coincide, the vector has length 
zero; we call this the zero vector and denote it by 0. 

The zero vector does not have a specific direction, so we will agree that it 
can be assigned any convenient direction in a specific problem.

Addition and subtraction of vectors
As you recall from Chapter 8, according to the triangular rule, if u and v 
are vectors, the sum u 1 v is the vector from the initial point of u to the 
terminal point of v, when the vectors are positioned so that the initial 
point of v is the terminal point of u, as shown in Figure 12.6.

Equivalently, u 1 v is also the diagonal of the parallelogram whose sides 
are u and v, as shown in Figure 12.7.

The difference of the two vectors u and v can be dealt with in the same 
manner. So, the vector w 5 u – v is a vector such that u 5 v 1 w. 

In Figure 12.8, we can clearly see that the difference is along the diagonal 
joining the two terminal points of the vectors and in the direction from v to u.

If k is a real positive number, k v is a vector of magnitude k|v| and in the same 
direction as v. It follows that when k is negative, k v has magnitude |k​| 3 |v| 
and is in the opposite direction to v (Figure 12.9).
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v

Figure 12.4
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M(x2 � x1, y2 � y1, z2 � z1)

Figure 12.3
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Figure 12.5

 Hint:  When we discuss vectors, 
we will refer to real numbers as 
scalars.
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A result of the previous situation is the necessary and sufficient condition 
for two vectors to be parallel:

Two vectors are parallel if one of them is a scalar multiple of the other.
For example, the vector (23, 4, 22) is parallel to the vector (4.5, 26, 3) since 
(23, 4, 22) 5 2 ​​2 _ 3   (4.5, 26, 3).

Components provide a simple way to algebraically perform several 
operations on vectors. First, by definition, we know that two vectors are 
equal if they have the same length and the same magnitude. So, if we 
choose to draw the two equal vectors u 5 (u1, u2, u3) and v 5 (v1, v2, v3) 
from the origin, their terminal points must coincide, and hence  
u1 5 v1, u2 5 v2 and u3 5 v3. So, we showed that equal vectors have the 
same components. The converse is obviously true, i.e. if u1 5 v1, u2 5  v2 
and u3 5 v3, the two vectors are equal. The following results are also 
obvious from the simple geometry of similar figures:

If u 5 (u1, u2, u3) and v 5 (v1, v2, v3) and k is any real number, then

u 1 v 5 (u1 1 v1, u2 1 v2, u3 1 v3) and k​u 5 (ku1, ku2, ku3)

If the initial point of the vector is not at the origin, the following theorem 
generalizes the previous notation to any position:

If  
 ___

 
›
 AB​ is a vector with initial point A(x1, y1, z1) and terminal point B(x2, y2, z2), 

then  
 ___

 
›
 AB​ 5  

 ___
 
›
 OB​ 2  

 ___
 
›
 OA​ 5 (x2 2 x1, y2 2 y1, z2 2 z1), as you see in Figure 12.10.

As illustrated in Figure 12.10, either by applying the distance formula or by 

using the equality of vectors v and  
 ___

 
›
 AB​,

|​
​___

​
›
​AB​​| 5  √

_____________________________

   (x2 2 x1)2 1 (y2 2 y1)2 1 (z2 2 z1)2  

Additionally, the following results can follow easily from properties of real 
numbers: u 1 v 5 v 1 u; (u 1 v) 1 w 5 u 1 (v 1 w); k​(u 1 v) 5 ku 1 kv; 
and the other obvious relationships.

O

v
A(x1, y1, z1)

B(x2, y2, z2)

M(x2 � x1, y2 � y1, z2 � z1)

Figure 12.10
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Example 1 
Given the points A(22, 3, 5) and B(1, 0, 24), 

a) find the components of vector  
 ___

 
›
 AB​

b) find the components of vector  
 ___

 
›
 BA​

c) find the components of vector 3 
 ___

 
›
 AB​

d) find the components of vector  
 ___

 
›
 OA​ 1  

 ___
 
›
 OB​

e) calculate | 
 ___

 
›
 AB​​| and | 

 ___
 
›
 BA​|

f) calculate|3 
 ___

 
›
 AB​​| and | 

 ___
 
›
 OA​ 1  

 ___
 
›
 OB​​|.

Solution

a)  
 ___

 
›
 AB​ 5  

 ___
 
›
 OB​ 2  

 ___
 
›
 OA​  5 (x2 2 x1, y2 2 y1, z2 2 z1) 
5 (1 2 (22), 0 2 3, 24 2​5) 5 (3, 23, 29)

b) Since  
 ___

 
›
 BA​ is the opposite of  

 ___
 
›
 AB​, then  

 ___
 
›
 BA​ 5 (23, 3, 9).

c) 3 
 ___

 
›
 AB​ 5 3(3, 23, 29) 5 (9, 29, 227)

d)  
 ___

 
›
 OA​ 1  

 ___
 
›
 OB​ 5 (22 1 1, 3 1 0, 5 2 4) 5 (21, 3, 1)

e) | 
 ___

 
›
 AB​​| 5  √

_____________________________

   (x2 2 x1)2 1 (y2 2 y1)2 1 (z2 2 z1)2   5  √
__________

 9 1 9 1 81   5 3 √
___

 11  

| 
 ___

 
›
 BA​| 5  √

_____________________________

   (x2 2 x1)2 1 (y2 2 y1)2 1 (z2 2 z1)2   5  √
__________

 9 1 9 1 81   5 3 √
___

 11  

f) |3 
 ___

 
›
 AB​ | 5  √

_____________________________

   (x2 2 x1)2 1 (y2 2 y1)2 1 (z2 2 z1)2    5  √
_____________

  81 1 81 1 729  

​ ​ 5  √
____

 891   5 9 √
___

 11  

Obviously, |3 
 ___

 
›
 AB​ | 5 3| 

 ___
 
›
 AB​ |!

| 
 ___

 
›
 OA​ 1  

 ___
 
›
 OB​ | 5 |(21, 3, 1)| 5  √

_________
 1 1 9 1 1   5  √

___
 11  

Notice that | 
 ___

 
›
 OA​ 1  

 ___
 
›
 OB​ |  5  √

___
 11    | 

 ___
 
›
 OA​​| 1 | 

 ___
 
›
 OB​ | 

5  √
__________

 4 1 9 1 25   1  √
__________

 1 1 0 1 16   5  √
___

 38   1  √
___

 17  

Example 2 
Determine the relationship between the coordinates of point M(x, y, z) so 
that the points M, A(0, 21, 5) and B(1, 2, 3) are collinear.

Solution
For the points to be collinear, it is enough to make  

 ___
 
›
 AM​ parallel to  

 ___
 
›
 AB​. 

If the two vectors are parallel, then one of them is a scalar multiple of the 
other. Say  

 ___
 
›
 AM​ 5 t​

​___
​
›
​AB​.

​
​___

​
›
​AM​ 5 (x, y 1 1, z 2 5) 5 t​(1, 2, 3) 5 (t, 2t, 3t)

So, x 5 t, y 1 1 5 2t, and z 2 5 5 3t.

Unit vectors
A vector of length 1 is called a unit vector. So, in two-dimensional space, 
the vectors i 5 (1, 0) and j 5 (0, 1) are unit vectors along the x- and y-axes, 
and in three-dimensional space, the unit vectors along the axes are i 5
(1, 0, 0), j 5 (0, 1, 0) and k 5(0, 0, 1). The vectors i, j and k are called the 
base vectors of the 3-space.

j

k

i

Figure 12.11
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It follows immediately that each vector in 3-space can be expressed 
uniquely in terms of i, j and k as follows:

u  5 (x, y, z) 5 (x, 0, 0) 1 (0, y, 0) 1 (0, 0, z) 
5 x (1, 0, 0) 1 y (0, 1, 0) 1 z (0, 0, 1) 5 xi 1 yj 1 zk

So, in the previous example,  
 ___

 
›
 AB​ 5 (3, 23, 29) 5 3i 2 3j 2 9k.

Unit vectors can be found in any direction, not only in the direction of the 
axes. For example, if we want to find the unit vector in the same direction 
as u, we need to find a vector parallel to u, which has a magnitude of 1. Since 
u has a magnitude of |u|, it is enough to multiply this vector by 1/|u| to 
‘normalize’ it. So, the unit vector v in the same direction as u is 

v 5   1 ___ 
|u|

   u 5   u ___ 
|u|

  . This is a unit vector since its length is 1. This is why:

Recall that |u| is a real number (scalar), and so is 1/|u|. 

Let 1/|u| 5 k ⇒ v 5   1 ___ 
|u|

   u 5 ku ⇒ |v| 5 |ku| 5 k|u| 5   1 ___ 
|u|

    |u| 5 1.

Example 3 
Find a unit vector in the direction of v 5 i 2 2j 1 3k.

Solution

The length of the vector v is  √
___________

 12 1 22 1 32   5  √
___

 14  , so the unit vector is

  1 ____ 
 √

___
 14  
   (i 2 2j 1 3k) 5   i ____ 

 √
___

 14  
   2   

2j
 ____ 

 √
___

 14  
   1   3k ____ 

 √
___

 14  
   

To verify that this is a unit vector, we find its length: 

 √
________________________

    (   1 ____ 
 √

___
 14  
   ) 2 1  (   2 ____ 

 √
___

 14  
   ) 2 1  (   3 ____ 

 √
___

 14  
   ) 2   5  √

____________

    1 ___ 
14

   1   4 ___ 
14

   1   9 ___ 
14

     5 1

The unit vector plays another important role: it determines the direction of 
the given vector. 

Recall from Chapter 8 that, in 2-space, we can write the vector in a 
form that gives us its direction (in terms of the angle it makes with the 
horizontal axis, called the direction angle) and its magnitude.

 Hint:  The terms ‘2-space’ and 
‘3-space’ are short forms for two-
dimensional space and three-
dimensional space respectively.
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In the diagram below, u is the angle with the horizontal axis. 

The unit vector v, in the same direction as u, is:

v 5 1  cosu i 1 1 sinu j

and from the results above, 

v 5   1 ___ 
|u|

   u ⇒ 

u 5 |u| (v)

5 |u|cosu i 1 |u|sinu j 

5 |u|(cosu i 1 sinu j).

Example 4 
Find the vector with magnitude 2 that makes an angle of 60° with the 
positive x-axis.

Solution

v 5 |v | (cos  60° i 1 sin  60° j) 5 2 (   1 __ 
2

   i 1   
 √

__
 3  
 ___ 

2
   j )  5 i 1  √

__
 3  j

Example 5 
Find the direction and magnitude of the vector v 5 2 √

__
 3  i 2 2j.

Solution

|v | 5  √
__________

  ( 2 √
__

 3   ) 2 1 4   5 4

cos u 5   
2 √

__
 3  
 ____ 4   5   

 √
__

 3  
 ___ 

2
  , sin u 5   22 ___ 4   5 2​​1 __ 

2
   ⇒ u 5 2​​p​__ 

6
  

Example 6 
a) Find the unit vector that has the same direction as v 5 i 1 2j 2 2k.
b) Find a vector of length 6 that is parallel to v 5 i 2 2j 1 3k.

Solution
a) The vector v has magnitude |v| 5  √

_____________

  1 1 22 1 (22)2   5 3,
so the unit vector v in the same direction as v is

v 5   1 __ 
3

   v 5   1 __ 
3

   i 1   2 __ 
3

   j 2   2 __ 
3

   k

b) Let u be the vector in question and v be the unit vector in the direction of v.

u 5 6 .v 5 6 3   1 ____ 
 √

___
 14  
   (i 2 2j 1 3k) 5   6i ____ 

 √
___

 14  
   2   

12j
 ____ 

 √
___

 14  
   1   18k ____ 

 √
___

 14  
  

  1  Write the vector  
 __

 
›
 AB  in component form in each of the following cases.

a)  A ( 2 ​​3 __ 2  , 2 ​​1 __ 2   ) , 1; B ( 1, 2​​5 __ 
2

  , 1 )   b)  A ( 22, 2​√
__

 3  , 2​​1 __ 
2

   ) ; B ( 1,  √
__

 3  , 2​​1 __ 
2

   ) 

c)  A(2, 23, 5); B(1, 21, 3)  d)  A(a, 2a, 2a); B(2a, 22a, a)

  2  Given the coordinates of point P or Q and the components of  
 ___

 
›
 PQ , find the 

missing items.

a)  P ( 2​​3 __ 
2

  , 2​​1 __ 
2

   ) , 1;  
 ___

 
›
 PQ   ( 1, 2  5 __ 2  , 1 )   b)   

 ___
 
›
 PQ   ( 2  3 __ 2  , 2  1 __ 2  , 1 ) ; Q ( 1, 2  5 __ 2  , 1 ) 

c)  P(a, 22a, 2a);  
 ___

 
›
 PQ  (2a, 22a, a)

Exercise 12.1

y

θ
x

u

|u|
uv �

sin θ

cos θ |u| cos θ

|u| sin θ



418

Vectors I-- I
-
-12

  3  Determine the relationship between the coordinates of point M(x, y, z) so that 
the points M, A and B are collinear.

a)  A(0, 0, 5); B(1, 1, 0)

b)  A(21, 0, 1); B(3, 5, 22)

c)  A(2, 3, 4); B(22, 23, 5)

  4  Given the coordinates of the points A and B, find the symmetric image C of B 
with respect to A.

a)  A(3, 24, 0); B(21, 0, 1)

b)  A(21, 3, 5); B ( 21,   1 __ 2  ,   1 __ 3   ) 

c)  A(1, 2, 21); B(a, 2a, b)

  5  Given a triangle ABC and a point G such that  
 ___

 
›
 GA  1  

 ___
 
›
 GB  1  

 ___
 
›
 GC  5 0, find the 

coordinates of G in each of the following cases.

a)  A(21, 21, 21); B(21, 2, 21); C(1, 2, 3)

b)  A(2, 23, 1); B(1, 22, 25); C(0, 0, 1)

c)  A(a, 2a, 3a); B(b, 2b, 3b); C(c, 2c, 3c)

  6  Determine the fourth vertex D of the parallelogram ABCD having AB and BC as 
adjacent sides.
a)  A( √

__
 3  , 2, 21); B(1, 3, 0); C(2​√

__
 3  , 2, 25)

b)  A( √
__

 2  ,  √
__

 3  ,  √
__

 5  ); B(3 √
__

 2  , 2​√
__

 3  , 5 √
__

 5  ); C(22 √
__

 2  ,  √
__

 3  , 23 √
__

 5  )

c)  A ( 2  1 __ 2  ,   1 __ 3  , 0 ) ; B (   1 __ 2  ,   2 __ 3  , 5 ) ; C (   7 __ 2  , 2  1 __ 3  , 1 ) 

  7  Determine the values of m and n such that the vectors v(m 2 2, m 1 n, 22m 1 
n) and w(2, 4, 26) have the same direction.

  8  Find a unit vector in the same direction as each vector.

a)  v 5 2i 1 2j 2 k
b)  v 5 6i2 4j 1 2k
c)  v 5 2i 2 j 2 2k

  9  Let u 5 i 1 3j 2 2k and v 5 2i 1 j. Find

a)  |u 1 v|
b)  |u| 1 |v|
c)  |23u| 1 |3v|

d)     1 ___ 
|u|

   u

e) 
 
   1 ___ 
|u|

   u 

10  Find the terminal points for each vector.

a)  w 5 4i 1 2j – 2k, given the initial point (21, 2, 23)

b)  v 5 2i 2 3j 1 k, given the initial point (22, 1, 4)

11  Find vectors that satisfy the stated conditions:

a)  opposite direction of u 5 (23, 4) and third the magnitude of u
b)  length of 12 and same direction as w 5 4i 1 2j 2 2k
c)  of the form xi 1 yj 2 2k and parallel to w 5 i 2 4j 1 3k

12  Let u, v and w be the vectors from each vertex of a triangle to the midpoint of 
the opposite side. Find the value of u 1 v 1 w.
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If u 5 (u1, u2, u3) and v 5 (v1, v2, v3) are two vectors, the dot product (scalar) is written as 
uv and is defined as

uv 5 u1v1 + u2v2 + u3v3

Result 1: u2 5 uu 5 u1 u1 1 u2 u2 1 u3 u3 5 u 2 
 
 1  1 u 2 

 
 2  1 u 2 

 
 3  5 |u|2

From this definition, we can deduce another geometric ‘definition’ of the 
dot product:

uv 5 |u||v| cos u, where u is the angle between the two vectors

Proof:

Let u and v be drawn from the same point, as shown in Figure 12.13. Then

|u 2 v|2 5 (u 2 v)(u 2 v) 5 u2 1 v2 2 2uv

5 |u|2 1 |v|2 2 2uv

Also, using the law of cosines,

|u 2 v|2 5 |u|2 1 |v|2 2 2|u||v| cos u

By comparing the two results above, we can conclude that uv 5 |u||v| cos u.

The scalar product can be used, among other things, to find angles between 
vectors.

Example 7 
Find the angle between the vectors u 5 i 2 2j 1 2k and v 5 23i 1 6j 1 2k.

Solution
From the previous results, we have

cos u 5   uv _____ 
|u||v|

   5   23 2 12 1 4  _____________________  
 √

_________
 1 1 4 1 4    √

__________
 9 1 36 1 4  
   5   211 ____ 

21
   

⇒ u 5 cos21 (    211 ____ 
21

   )   2.12 radians

Result 2: A direct conclusion of the previous definitions is that if two vectors are 
perpendicular, the dot product is zero.

This is so because when the two vectors are perpendicular the angle between them is 
690° and, therefore,

uv 5 |u||v| cos u 5 |u||v| cos 90° 5 |u||v| 0 5 0

Result 3: If two vectors u and v are parallel, then uv 5 6|u||v|.

Again, this is so because when the vectors are parallel the angle between them is either 
0° or 180° and, therefore,

uv 5 |u||v| cos u 5 |u||v| cos 0° 5 |u||v|1 5 |u||v|, or

uv 5 |u||v| cos u 5 |u||v| cos 180° 5 |u||v|(21) 5 2|u||v|

Scalar (dot) product12.2

θ
u

v u � v

Figure 12.13
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Example 8 
Determine which, if any, of the following vectors are orthogonal.

u 5 7i 1 3j 1 2k, v 5 23i 1 5j 1 3k, w 5 i 1 k

Solution
uv 5 7(23) 1 3 3 5 1 2 3 3 5 0; orthogonal vectors

uw 5 7 3 1 1 3 3 0 1 2 3 1 5 9; not orthogonal

vw 5 23 3 1 1 5 3 0 1 3 3 1 5 0; orthogonal vectors

Example 9 
A(1, 2, 3), B(23, 2, 4) and C(1, 24, 3) are the vertices of a triangle. Show 
that the triangle is right-angled and find its area.

Solution

​
​__

​
›
​AB​ 5 (23 2 1)i 1 (2 2 2)j 1 (4 2 3)k 5 24i 1 k

​
​___

​
›
​AC​ 5 (1 2 1)i 1 (24 2 2)j 1 (3 2 3)k 5 26j

​
​___

​
›
​BC​ 5 (1 2 (23))i 1 (24 2 2)j 1 (3 2 4)k 5 4i 2 6j 2 k

Since  
 ___

 
›
 AB​​ 
 ___

 
›
 AC​ 5 24 3 0 1 0 3 26 1 1 3 0 5 0, the vectors are 

perpendicular. So the triangle is right-angled at A.

The area of this right triangle is half the product of the legs.

Area 5   1 __ 
2

   |  
 ___

 
›
 AB​​||​​

​___
​
›
​AC​ |5   1 __ 

2
   √

_________

 (24)2 1 1   6 5 3 √
___

 17  

Direction angles, direction cosines
Figure 12.14 shows a non-zero vector v. The angles a, b and g that the 
vector makes with the unit coordinate vectors are called the direction 
angles of v, and cos a, cos b and cos g are called the direction cosines. 

Let v 5 x​i 1 y​j 1 z​k. Considering the right triangles OAP, OCP and 
ODP, the hypotenuse in each of these triangles is OP, i.e. |v|. From your 
trigonometry chapters, you know that the side adjacent to an angle u in a 
right triangle is related to it by

cos u 5   
adjacent

 __________ 
hypotenuse

   ⇔ adjacent 5 hypotenuse  cos u, so in this case

x 5 |v| cos a, y 5 |v| cos b, z 5 |v| cos g, and so 

v 5 (|v| cos a) i 1 (|v| cos b) j 1 (|v| cos g) k 5 |v|(cos a i 1 cos b j 1 cos g k)

Taking the magnitude of both sides,

|v| 5 |v|  √
____________________

  cos2 a 1 cos2 b 1 cos2 g​​

Therefore,
cos2 a 1 cos2 b 1 cos2 g 5 1, i.e. the sum of the squares of the direction cosines is always 1.
For a unit vector, the expression will be of the form

u 5 |u|(cos a i 1 cos b j 1 cos g k) 5 cos a i 1 cos b j 1 cos g k (|u| 5 1)

This means that for a unit vector its x-, y- and z-coordinates are its direction cosines.

z

y

B(�3, 2, 1)

A(1, 2, 3)

C(1, �4, 3)

x

A

D

B

C

P

xi

yj

v
zk

α β
γ

It is also important that you 

remember that cos a 5   x ___ 
|v|

  , 

cos b 5   
y
 ___ 

|v|
  , cos g 5    z ___ 

|v|
  .

Figure 12.14
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Example 10 
Find the direction cosines of the vector v 5 4i – 2j 1 4k, and then 
approximate the direction angles to the nearest degree.

Solution

|v| 5  √
______________

  42 1 (22)2 1 42   5 6 ⇒ v 5   v ___ 
|v|

   5   2 __ 
3

   i 2   1 __ 
3

   j 1   2 __ 
3

   k, thus

cos a 5   2 __ 
3

  , cos b 5 2 ​​1 __ 
3

  , cos g 5   2 __ 
3

  

From your GDC you will obtain

a  5  cos21  (   2 __ 
3

   )   48°, b  5  cos21 ( 2 ​​1 __ 
3

   )   109°, g 5 cos21 (    2 __ 
3

   )     48°

Example 11 
Find the angle that a main diagonal of a cube with side a makes with the 
adjacent edges.

Solution
We can place the cube in a coordinate system such that three of its adjacent 
edges lie on the coordinate axes as shown (left). The diagonal, represented 
by the vector v has a terminal point (a, a, a). Hence,

|v| 5  √
___________

 a2 1 a2 1 a2   5 a​√
__

 3  . Take angle b, for example:

b 5 cos21 (   a​____ 
a​√

__
 3  
   )  5 cos21 (   1 ___ 

 √
__

 3  
   )   54.7°

  1  Find the dot product and the angle between the vectors.

a)  u 5 (3, 22, 4), v 5 2i 2 j 2 6k

b)  u 5​(    2
 

  
 26    

0
  ) , v 5  (  21

 
  

 3    
5

  ) 

c)  u 5 3i 2 j, v 5 5i 1 2j
d)  u 5 i 2 3j, v 5 5j 1 2k

e)  |u| 5 3, |v| 5 4, the angle between u and v is   p​__ 3  

f )  |u| 5 3, |v| 5 4, the angle between u and v is   2p​___ 3   

  2  State whether the following vectors are orthogonal. If not orthogonal, is the 
angle acute?

a)  u 5​( ​ 2
    26    

4
  ) , v 5  (  21

 
  

 3    
5

  ) 

b)  u 5 3i 2 7j, v 5 5i 1 2j
c)  u 5 i 2 3j 1 6k, v 5 6j 1 3k

  3  a)  Show that the vectors v 5 2yi 1 xj and w 5 yi 2 xj are both perpendicular to

 u 5 xi 1 yj.
b)  Find two unit vectors that are perpendicular to u 5 2i 2 3j. Plot the three 

vectors in the same coordinate system.

Exercise 12.2

z

ya

a

a
β

(a,  a,  a)

x

v

 Hint:  Orthogonal means ‘at right 
angles to each other’.
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  4   (i)  Find the direction cosines of v. 
   (ii)  Show that they satisfy cos2 a 1 cos2 b 1 cos2 g 5 1.
   (iii) Approximate the direction angles to the nearest degree.

a)  v 5 2i 2 3j 1 k  b)  v 5 i 2 2j 1 k
c)  v 5 3i 2 2j 1 k  d)  v 5 3i 2 4k

  5  Determine m so that u and v are perpendicular.
a)  u 5 (3, 5, 0); v 5 (m 2 2, m 1 3, 0)

b)  u 5 (2m, m 2 1, m 1 1); v 5 (m 2 1, m, m 2 1)

  6  Given the vectors u 5 (23, 1, 2), v 5 (1, 2, 1), and w 5 u 1 mv, determine the 
value of m so that the vectors u and w are orthogonal.

  7  Given the vectors u 5 (22, 5, 4) and v 5 (6, 23, 0), find, to the nearest degree, 
the measures of the angles between the following vectors.
a)  u and v  b)  u and u 1 v  c)  v and u 1 v

  8  Consider the following three points: A(1, 2, 23), B(3, 5, 22) and C(m, 1, 210m). 
Determine m so that

a)  A, B and C are collinear

b)   
 __

 
›
 AB  and  

 ___
 
›
 AC  are perpendicular.

  9  Consider the triangle with vertices A(4, 22, 21), B(3, 25, 21) and C(3, 1, 2). Find 
the vector equations of each of its medians and then find the coordinates of its 
centroid (i.e. where the medians meet).

10  Consider the tetrahedron ABCD with 
vertices as shown in the diagram. Find, to 
the nearest degree, all the angles in the 
tetrahedron.

11  In question 10 above, use the angles you found to calculate the total surface area 
of the tetrahedron.

12  In question 10, what angles does  
 ___

 
›
 DC  make with each of the coordinate axes?

13  In question 10, find ( 
 ___

 
›
 DA  2  

 ___
 
›
 DB )   

 ___
 
›
 AC .

14  Find k such that the angle between the vectors  (   3
 

  
 2k    

21
  )  and  (   1

 
  

 23    
k

   )  is   p​__ 3  .

15  Find x and y such that  (    2 
 

  x   
y
   )  is perpendicular to both  (   3

 
  

 1    
21

  )  and  (   4
 

  
 21    

2
  ) .

16  Consider the vectors  (   1 2 x
 

   
 2x 2 2     

3 1 x
   )  and  (  2 2 x

 
   

 1 1 x     
1 1 x

  ) . Find the value(s) of x such that the 

  two vectors are parallel.

z

y

B(�3, 2, 1)

D(3, 2, �3)

A(1, 2, 3)

C(1, �4, 3)

x
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A straight line in space can be determined uniquely by specifying a point 
on it and a direction given by a non-zero vector parallel to it. The following 
theorem gives parametric equations of the line through a point A and 
parallel to the vector v.

The line that passes through the point A(x0, y0, z0) and parallel to the vector v 5 (a, b, c) 
has parametric equations:

x 5 x0 1 at, y 5 y0 1 bt, z 5 z0 1 ct

If L is the line that passes through A and is parallel to the non-zero vector 
v, then L consists of all the points M(x, y, z) for which the vector  

 ___
 
›
 AM​ is 

parallel to v. Also, a result we established in Chapter 8 and in this chapter 
enables us to state:

Two vectors are parallel if one of them is a scalar multiple of the other.

This means that for the point M to be on L,  
 ___

 
›
 AM​ must be a scalar multiple 

of v, i.e.  
 ___

 
›
 AM​ 5 t​v, where t is a scalar.

The previous equation can be written in coordinate form as

(x 2 x0, y 2 y0, z 2 z0) 5 t(a, b, c) 5 (ta, tb, tc)

For two vectors to be equal, their components must be the same, then

x 2 x0 5 ta, y 2 y0 5 tb, z 2 z0 5 tc

This leads to the previous result:

x 5 x0 1 at, y 5 y0 1 bt, z 5 z0 1 ct

17  In triangle ABC,  
 ___

 
›
 OA  5  (  2 

 
 3   

1
  ) ,  

 ___
 
›
 OB  5  (  3 

 
 5   

4
  )  and  

 __
 
›
 BC  5  (  21

 
  

 4    
0

  ) .

Find the measure of AB̂C.

Find  
 ___

 
›
 AC  and use it to find the measure of BÂC.

18  Find the value(s) of b such that the vectors are orthogonal.

a)  (b, 3, 2) and (1, b, 1)

b)  (4, 22, 7) and (b2, b, 0)

19  If two vectors p and q are such that |p| 5 |q|, show that p 1 q and p 2 q are 
perpendicular. (This proves that the diagonals of a rhombus are perpendicular to 
each other!)

20  Shortly after take-off, a plane is rising at a rate of 300  m/min. It is heading at an 
angle of 45° north-west with an airspeed of 200  km/h. Find the components of 
its velocity vector. The x-axis is in the east direction, the y-axis north and the z-
axis is the elevation.

Equations of lines12.3

O

A

v

L
M(x, y, z)
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Example 12 
a) Find parametric equations of the line through A(1, 22, 3) and parallel 

to v 5 5i 1 4j 2 6k.

b) Find parametric equations of the line through the points A(1, 22, 3) 
and B(2, 4, 22).

Solution
a) From the previous theorem, x 5 1 1 5t, y 5 22 1 4t, z 5 3 2 6t.

b) We need to find a vector parallel to the given line. The vector  
 ___

 
›
 AB​ 

provides a good choice:  
 ___

 
›
 AB​ 5 (1, 6, 25). So the equations are 

x 5 1 1 t, y 5 22 1 6t, z 5 3 2 5t

Another set of equations could be

x 5 2 1 t, y 5 4 1 6t, z 5 22 2 5t

Other sets are possible by considering any vector parallel to  
 ___

 
›
 AB​.

Symmetric (Cartesian) equations of lines (optional)

If a  0, b  0 and c  0, the set of parametric equations can be arranged 
differently:

x 2 x0 5 ta ⇔   
x 2 x0 ______ a​ ​ 5 t

y 2 y0 5 tb ⇔   
y 2 y0 ______ 

b
​ ​ 5 t   ⇔ ​​

x 2 x0 ______​a​ ​ 5 ​​
y 2 y0 ______​

b
​ ​ 5 ​​

z 2 z0 _____​c​ ​

z 2 z0 5 tc ⇔   
z 2 z0 _____ c​ ​ 5 t

If any of the components a, b or c is zero, the equations are written in a 
mixed form. For example, if c 5 0, then we write

​​
x 2 x0 ______​a​ ​ 5 ​​

y 2 y0 ______​
b

​ ​, z 5 z0

Intersecting, parallel and skew straight lines
In the plane, lines can coincide, intersect or be parallel. This is not 
necessarily so in space. In addition to the three cases above, there is the case 
of skew straight lines. Although these lines are not parallel, they do not 
intersect either. They lie in different planes.

Figure 12.15a Two 
intersecting straight lines.

Figure 12.15b Two 
parallel lines.

Figure 12.15c Two skew 
straight lines.

L

M

L
M

L

M
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How do we know whether two lines are parallel?
If the ‘direction’ vectors are parallel, then the lines are. Check to see if one 
of the vectors is a scalar multiple of the other. Alternatively, you can find 
the angle between them, and if it is 0° or 180°, the lines are either parallel 
or coincident. The case for coincidence is always there, and you need to 
check it by examining a point on one of the lines to see whether it is also 
on the other line.

Example 13 

Show that the following two lines are parallel.

L1: x 5 2 2 3t, y 5 t, z 5 21 1 2t

L2: x 5 1 1 6s, y 5 2 2 2s, z 5 2 2 4s

Solution
Let l1 be the vector parallel to L1 and l2 be the vector parallel to L2.

l1 5 23i 1 j 1 2k and l2 5 6i 2 2j 2 4k.

Now you can easily see that l 2 5 22l1, and hence the vectors are parallel. 

To check whether the lines coincide, we examine the point (2, 0, 21), 
which is on the first line, and see whether it lies on the second line too.

If we choose y 5 0, then 0 5 2 2 2s, so s 5 1; and when we substitute s 5 1 
into x 5 1 1 6s we find out that x must be 7 in order for the point (2, 0, 21) 
to be on L2. Therefore, the lines cannot intersect, and their ‘direction’ vectors 
are parallel, so they must be parallel.

Are the lines intersecting or skew?

If the direction vectors are not parallel, the lines either intersect or are 
skew. For the purposes of this course, the method starts by examining 
whether the lines intersect. If they do, we can find the coordinates of 
the point of intersection; if they do not intersect, we cannot find the 
coordinates of the point of intersection. Finding the coordinates of the 
point of intersection is a straightforward method that you already know: 
solving systems of equations. This can best be explained with an example.

Example 14 

The lines L1 and L2 have the following equations:

L1 : x 5 1 1 4t, y 5 5 2 4t, z 5 21 1 5t
L2 : x 5 2 1 8s, y 5 4 2 3s, z 5 5 1 s

Show that the lines are skew.

Solution

We first examine whether the lines are parallel. Since the vector parallel to 
L1 is l1 5 (4, 24, 5) and the vector parallel to L2 is l2 5 (8, 23, 1), they are 
not scalar multiples of each other and the vectors and consequently the lines 
are not parallel. 

 Hint:  There are more elegant 
methods, but they are beyond the 
scope of this course.
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For the lines to intersect, there should be some point M(x0, y0, z0) which 
satisfies the equations of both lines for some values of t and s. That is

x0 5 1 1 4t 5 2 1 8s​; y0 5 5 2 4t 5 4 2 3s​; z0 5 21 1 5t 5 5 1 s

This leads to a set of three simultaneous equations in two unknowns:  
s and t.

By solving the first two equations:

1 1 4t 5 2 1 8s 
 ⇒ 6 5 6 1 5s ⇒ s 5 0, t 5 

  1 _ 
4
  

5 2 4t 5 4 2 3s

For the system to be consistent, these values must satisfy the third 

equation, i.e. 21 1   5 __ 4   5 5 1 0, which is false. Hence, the system is 

inconsistent and the lines are skew.

Example 15 

The lines L1 and L2 have the following equations:

L1 : x 5 1 1 2t, y 5 3 2 4t, z 5 22 1 4t
L2 : x 5 4 1 3s, y 5 4 1 s, z 5 24 2 2s

Show that the lines intersect.

Solution
We first examine whether the lines are parallel. Since the vector parallel to L1 
is l1 5 (2, 24, 4) and the vector parallel to L2 is l2 5 (3, 1, 22), they are not 
scalar multiples of each other and the vectors and consequently the lines are 
not parallel.

For the lines to intersect, there should be some point M(x0, y0, z0) which 
satisfies the equations of both lines for some values of t and s. That is,

x0 5 1 1 2t 5 4 1 3s​; y0 5 3 2 4t 5 4 1 s​; z0 5 22 1 4t 5 24 2 2s

This leads to a set of three simultaneous equations in two unknowns:  
s and t.

By solving the first two equations:

1 1 2t 5 4 1 3s  ⇒ 5 5 12 1 7s ⇒ s 5 21, t 5 0
3 2 4t 5 4 1 s

For the system to be consistent, these values must satisfy the third 
equation, i.e. 22 1 4(0) 5 24 22(21) ⇒ 22 5 22, which is a correct 
statement. Hence, the two lines intersect.

The point of intersection can be found through substitution of the value of 
the parameter into the corresponding line equation:

L1: (1 , 3, 22) and L2: (4 2 3, 4 2 1, 24 2 2(21)) 5 (1, 3, 22)
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Vector equation of a line
A concept that is closely related to the parametric equation approach is the 
use of vector notation in expressing the equation of a line. In the previous 
part, we studied the parametric form of the equation of a line and found

(x 2 x0, y 2 y0, z 2 z0) 5 t(a, b, c) 5 (ta, tb, tc)

where the left-hand side represented the vector from a fixed point on the 
line to any point on the line. The right-hand side gives a scalar multiple of 
the vector v parallel to the given line. This equation can be transformed 
into another form:

(x 2 x0, y 2 y0, z 2 z0) 5 t(a, b, c)

⇔ (x, y, z) 2 (x0, y0, z0) 5 t(a, b, c)

⇔ (x, y, z) 5 (x0, y0, z0) 1 t(a, b, c)

⇔ r 5 r0 1 t​v

The last equation is the vector equation of the line: r is the position vector 
of any point on the line, while r0 is the position vector of a fixed point (A 
in this case) on the line and v is the vector parallel to the given one. See 
Figure 12.16.

You can interpret this equation in several ways. One of these has to do with 
displacement. That is, to reach point M from point O, you first arrive at A, 
and then go towards M along the line a multiple of v, t​v.

By observing Figure 12.17, you will notice, for example, that for each value 
of t you describe a point on the line. When t . 0, the points are in the same 
direction as v. When t , 0, the points are in the opposite direction.

Example 16 

Find a vector equation of the line that contains (21, 3, 0) and is parallel to 
v 5 3i 2 2j 1 k.

Solution
From the discussion above, 

r 5 (2i 1 3j) 1 t(3i 2 2j 1 k)

When t 5 0, the equation gives the point (21, 3, 0). When t 5 1, the 
equation yields r 5 (2i 1 3j) 1 (3i 2 2j 1 k) 5 2i 1 j 1 k, a point 
shifted by 1v down the line. Similarly, when t 5 3,

r 5 (2i 1 3j) 1 3(3i 2 2j 1 k) 5 8i 2 3j 1 3k, a point 3v down the line, 
etc.

Alternatively, the equation can be written as

r 5 (21 1 3t)i 1 (3 2 2t)j 1 t​k

This last form allows us to recognize the parametric equations of the line 
by simply reading the components of the vector on the right-hand side of 
the equation.

O

A 3v 6v

�5v
v

v

r0 L

Figure 12.17

O

A

v

v tv

tv

rr0
L

M(x, y, z)

Figure 12.16
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Example 17 

Find a vector equation of the line passing through A(2, 7) and B(6, 2).

Solution

We let the vector  
 ___

 
›
 AB​ 5 (6 2 2, 2 2 7) 5 (4, 25) be the vector giving the 

direction of the line, so

r 5 (2, 7) 1 t​(4, 25) or, equivalently,

r 5 2i 1 7j 1 t​(4i – 5j)

Application of lines to motion
The vector equation, as discussed before, gives rise to an 
interpretation of the equation that describes motions of objects 
placed in an appropriate coordinate system. See Figure 12.18. 
Generally speaking, you find an object at an initial location A, 
represented by r0. The object moves on its path with a velocity 
vector v 5 (a, b, c). The object’s position at any point in time after 
the start can then be described by r 5 r0 1 t​v.

Assuming the unit of time is seconds, the equation tells us that for every 
second, the object moves a units in the x direction, b in the y direction and 
c in the z direction. So, for example, after 2 seconds you find the object at 
r 5 r0 1 2v.

The speed of the object is then |v| in the v direction. Let us clarify this with 
an example.

Example 18 

An object is moving in the plane of an appropriately fitted coordinate 
system such that its position is given by 

r 5 (3, 1) 1 t​(22, 3), 

where t stands for time in hours after start and distances are measured in km.

a) Find the initial position of the object.
b) Show the position of the object on a graph at start, 1 hour and 3 hours 

after start.
c) Find the velocity and speed of the object.

O

A 3v 6v

v

v

r0

r3 r6

L

Figure 12.18
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Solution
a) Initial position is when t 5 0. This is the point (3, 1).
b) See graph.

c) The velocity vector is v 5 (22, 3), which means that every hour the 
object moves 2 units west and 3 units north.

The speed is |v | 5  √
__________

 (22)2 1 32   5  √
___

 13    km/h.

We can also express the velocity as  √
___

 13    km/h in the direction of (22, 3).

Note: We can also express the direction in terms of the unit vector in the 
direction of v instead. That is, we can say that the speed is  √

___
 13    km/h in the 

direction of  (   22 ____ 
 √

___
 13  
  ,   3 ____ 

 √
___

 13  
   ) , or, equivalently, at an angle of cos21  (   22 ____ 

 √
___

 13  
   )   124° 

to the positive x-direction.

Example 19 
At 12:00 midday a plane A is passing in the vicinity of an airport at a height 
of 12  km and a speed of 800  km/h. The direction of the plane is  
(4, 3, 0). [Consider that (1, 0, 0) is a displacement of 1  km due east, (0, 1, 0) 
due north, and (0, 0, 1) is an altitude of 1  km.]
a) Using the airport as the origin, find the position vector r of the plane t 

hours after midday.
b) Find the position of the plane 1 hour after midday.
c) Another plane B is heading towards the airport with velocity vector 

(2300, 2400, 0) from a location (600, 480, 12). Is there a danger of 
collision?

Solution
a) The position vector at midday is (0, 0, 12). The direction of the velocity 

vector is given by the unit vector   1 __ 5   (4, 3, 0). So, the velocity vector of 

this plane is 800     1 __ 5   (4, 3, 0) 5 (640, 480, 0).

The position vector of the plane is r 5 (0, 0, 12) 1 t​(640, 480, 0).

x

y

1

2

3

4

5

6

7

8

9

10

11

12r � (3, 1) � 3(�2, 3) � (�3, 10)

r � (3, 1) � 1(�2, 3) � (1, 4)

r � (3, 1) � 0(�2, 3) � (3, 1)

�2�3�4 �1 0 1 2 3 4
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b) r 5 (0, 0, 12) 1 (640, 480, 0) 5 (640, 480, 12)

c) A collision can happen if the two planes pass the same point at the 
same time.  
The position vector for the second plane is r 5 (600, 480, 12) 1 
t​(2300, 2400, 0). 

If the two paths intersect, they may intersect at instances 
corresponding to t1 and t2 and they should have the same position, i.e.

(0, 0, 12) 1 t1(640, 480, 0) 5 (600, 480, 12) 1 t2(2300, 2400, 0)

This gives rise to a set of three equations in two variables:

640t1 5 600 2 300t2

480t1 5 480 2 400t2 
  12 5 12

Solving the system of equations simultaneously will give t1 5   6 __ 7   and 

t2 5   6 ___ 
35

  .

This means that the planes’ paths will cross at (548.57, 411.43, 12). 
There is no collision though because plane A will pass that point at 
12:51 while plane B will pass this point at 12.10!

  1  Find the vector equation as well as the parametric equations of the line 
containing the point A and parallel to the vector u.

a)  A(21, 0, 2), u 5 (1, 5, 24)

b)  A(3, 21, 2), u 5 (2, 5, 21)

c)  A(1, 22, 6), u 5 (3, 5, 211)

  2  Find the equation of the line that passes through the points A and B.

a)  A(21, 4, 2), B(7, 5, 0)

b)  A(4, 2, 23), B(0, 22, 1)

c)  A(1, 3, 23), B(5, 1, 2)

  3  a)  Write the equation of the line through the points (3, 22) and (5, 1) in the form 
r 5 a 1 t b.

b)  Write the equation of the line through the points (0, 22) and (5, 0) in the form 
r 5 a 1 t b.

  4  The equation of a line in 2-space is given by r 5 (2, 1) 1 t (3, 22).

Write the equation in the form ax 1 by 5 c.

  5  Find the equation of a line through (2, 23) that is parallel to the line with 
equation r 5 3i 2 7j 1 l(4i – 3j).

  6  Find the equation of a line through (22, 1, 4) and parallel to the vector 3i 2 4j 1 7k.

Exercise 12.3
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  7   In each of the following, find the point of intersection of the two given lines, and
if they do not intersect, explain why.

a)  L1: r 5 (2, 2, 3) 1 t(1, 3, 1) 
L2: r 5 (2, 3, 4) 1 t(1, 4, 2)

b)  L1: r 5 (21, 3, 1) 1 t(4, 1, 0) 
L2: r 5 (213, 1, 2) 1 t(12, 6, 3)

c)  L1: r 5 (1, 3, 5) 1 t(7, 1, 23) 
L2: r 5 (4, 6, 7) 1 t(21, 0, 2)

d)  L1:  (  x 
 

 y   
z

   )  5  (  3 
 

 4   
6

  )  1 t (  22
 

  
 1    

21
  ) 

L2:  (  x 
 

 y   
z

   )  5  (   5
 

  
 22    

7
  )  1 s (  24

 
  

 2    
22

  ) 

  8  Find the vector and parametric equations of each line:

a)  through the points (2, 21) and (3, 2)

b)  through the point (2, 21) and parallel to the vector  (  23    7  ) 

c)  through the point (2, 21) and perpendicular to the vector  (  23    7  ) 

d)  with y-intercept (0, 2) and in the direction of 2i 2 4j

  9  Consider the line with equation

 (  x 
 

 y   
z

   )  5  (  3 
 

 4   
6

  )  1 t (  22
 

  
 1    

21
  ) 

a)  For what value of t does this line pass through the point  ( 0,   11 ___ 2  ,   9 __ 2   ) ?

b)  Does the point (21, 4, 6) lie on this line?

c)  For what value of m does the point  (   1 2 2m _______ 2   , 2m, 3 )  lie on the given line?

10  Consider the following equations representing the paths of cars after starting 
time t > 0, where distances are measured in km and time in hours. For each car, 
determine

  (i)  starting position
  (ii)  the velocity vector
  (iii)  the speed.

a)  r 5 (3, 24) 1 t (    7   24  ) 

b)   (  x   y  )  5  (  23    1  )  1 t (    5    
212  ) 

c)  (x, y) 5 (5, 22) 1 t(24, 27)

11  Find the velocity vector of each of the following racing cars taking part in the 
Paris–Dakar rally:

a)  direction  (  23    4  )  with a speed of 160  km/h

b)  direction  (    12    
25  )  with a speed of 170  km/h

12  After leaving an intersection of roads located at 3  km east and 2  km north of a 
city, a car is moving towards a traffic light 7  km east and 5  km north of the city at 
a speed of 30  km/h. (Consider the city as the origin for an appropriate coordinate 
system.)

a)  What is the velocity vector of the car?

b)  Write down the equation of the position of the car after t hours.

c)  When will the car reach the traffic light?
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13  Consider the vectors u 5 (1, a, b), v 5 i 2 3j 1 2k and w 5 22i 1 j 2 k.

a)  Find a and b so that u is perpendicular to both v and w.

b)  If O is the origin, P a point whose position vector is v and Q is with position 
vector w, find the cosine of the angle between v and w.

c)  Hence, find the sine of the angle and use it to find the area of the triangle 
OPQ.

14  The triangle ABC has vertices at the points A(21, 2, 3), B(21, 3, 5) and C(0, 21, 1).

a)  Find the size of the angle u between the vectors  
 __

 
›
 AB  and  

 ___
 
›
 AC .

b)  Hence, or otherwise, find the area of triangle ABC.

Let L1 be the line parallel to  
 __

 
›
 AB  which passes through D(2, 21, 0), and L2 be the 

line parallel to  
 ___

 
›
 AC  which passes through E(21, 1, 1).

c)   (i)  Find the equations of the lines L1 and L2.
    (ii)  Hence, show that L1 and L2 do not intersect.

© International Baccalaureate Organization, 2001

15  Consider the points A(1, 3, 217) and B(6, 27, 8) which lie on the line l.

a)  Find an equation of line l, giving the answer in parametric form.

b)  The point P is on l such that  
 ___

 
›
 OP  is perpendicular to l. Find the coordinates of P.

  1	 ABCD	is	a	rectangle	and	O	is	the	midpoint	of	[AB].	
Express	each	of	the	following	vectors	in	terms		
of		

	___
	
›
	OC		and		

	___
	
›
	OD	

a)	 	
	___

	
›
	CD	

b)	 	
	___

	
›
	OA	

c)	 	
	___

	
›
	AD	

  2	 The	vectors	i	and	j	are	unit	vectors	along	the	x-axis	and	y-axis	respectively.
The	vectors	u	5	2i	1	j	and	v	5	3i	1	5j	are	given.
a)	 Find	u	1	2v	in	terms	of	i	and	j.
A	vector	w	has	the	same	direction	as	u	1	2v,	and	has	a	magnitude	of	26.
b)	 Find	w	in	terms	of	i	and	j.

  3	 The	circle	shown	has	centre	O	and	radius	6.		
	___

	
›
	OA		is	the	vector		( 	6			

0
		)	,		

	___
	
›
	OB		is	the	vector		( 	26				

0
		)		

	 and		
	___

	
›
	OC		is	the	vector		( 		 5				

	√
___

	11		
		)	.

a)	 Verify	that	A,	B	and	C	lie	on	the	circle.
b)	 Find	the	vector		

	___
	
›
	AC	.

c)	 Using	an	appropriate	scalar	product,	or	
otherwise,	find	the	cosine	of	angle	OAC.

d)	 Find	the	area	of	triangle	ABC,	giving	your	
answer	in	the	form	a	√

___
	11		,	where	a		핅.
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  4	 The	quadrilateral	OABC	has	vertices	with	coordinates	O(0,	0),	A(5,	1),	B(10,	5)	and	C(2,	7).

a)	 Find	the	vectors		
	___

	
›
	OB		and		

	___
	
›
	AC	.

b)	 Find	the	angle	between	the	diagonals	of	the	quadrilateral	OABC.

  5	 The	vectors	u	and	v	are	given	by	u	5	3i	1	5j	and	v	5	i	–	2j.
Find	scalars	a	and	b	such	that	a	(u	1	v)	5	8i	1	(b	2	2)j.

  6	 Find	a	vector	equation	of	the	line	passing	through	(21,	4)	and	(3,	21).	Give	your	
answer	in	the	form	r	5	p	1	t	d,	where	t		핉.

  7	 In	this	question,	the	vector		( 	1			
0
		)		represents	a	displacement	due	east	and	the	vector		( 	0			

1
		)		

a	displacement	due	north.	Distances	are	in	kilometres	and	time	in	hours.
Two	crews	of	workers	are	laying	an	underground	cable	in	a	north-south	direction	across	
a	desert.	At	06:00	each	crew	sets	out	from	their	base	camp,	which	is	situated	at	the	
origin	(0,	0).	One	crew	is	in	a	Toyundai	vehicle	and	the	other	in	a	Chryssault	vehicle.

The	Toyundai	has	velocity	vector		( 	18			
24

		)		and	the	Chryssault	has	velocity	vector		( 		 36				
216

		)	.

a)	 Find	the	speed	of	each	vehicle.
b)	 	(i)	 Find	the	position	vectors	of	each	vehicle	at	06:30.
	  (ii)	 Hence,	or	otherwise,	find	the	distance	between	the	vehicles	at	06:30.
c)	 At	this	time	(06:30)	the	Chryssault	stops	and	its	crew	begin	their	day’s	work,	

laying	cable	in	a	northerly	direction.	The	Toyundai	continues	travelling	in	the	same	
direction,	at	the	same	speed,	until	it	is	exactly	north	of	the	Chryssault.	The	Toyundai	
crew	then	begin	their	day’s	work,	laying	cable	in	a	southerly	direction.	At	what	time	
does	the	Toyundai	crew	begin	laying	cable?

d)	 Each	crew	lays	an	average	of	800		m	of	cable	in	an	hour.	If	they	work	non-stop	until	
their	lunch	break	at	11:30,	what	is	the	distance	between	them	at	this	time?

e)	 How	long	would	the	Toyundai	take	to	return	to	base	camp	from	its	lunchtime	
position,	assuming	it	travelled	in	a	straight	line	and	with	the	same	average	speed	as	
on	the	morning	journey?	(Give	your	answer	to	the	nearest	minute.)

  8	 The	line	L	passes	through	the	origin	and	is	parallel	to	the	vector	2i	1	3j.	
Write	down	a	vector	equation	for	L.

  9	 The	triangle	ABC	is	defined	by	the	following	information:

	
	___

	
›
	OA		5		( 		 2				

23
		)	,		

	__
	
›
	AB		5		( 	3			

4
		)	,		

	__
	
›
	AB		 	

	__
	
›
	BC		5	0,		

	___
	
›
	AC		is	parallel	to		( 	0			

1
		)	

a)	 On	the	grid	below,	draw	an	accurate	diagram	of	triangle	ABC.

b)	 Write	down	the	vector		
	___

	
›
	OC	.
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10	 In	this	question,	the	vector		( 	1			
0
		)		represents	a	displacement	due	east	and	the	vector		( 	0			

1
		)		

represents	a	displacement	due	north.		
The	point	(0,	0)	is	the	position	of	Shipple	Airport.	The	position	vector	r1	of	an	aircraft,	
Air	One,	is	given	by

r1	5		( 	16			
12

		)		1	t		( 		 12				
25

		)	,

where	t	is	the	time	in	minutes	since	12:00.
a)	 Show	that	Air	One	

	   (i)	 is	20		km	from	Shipple	Airport	at	12:00
	   (ii)	 has	a	speed	of	13		km/min.

b)	 Show	that	a	Cartesian	equation	of	the	path	of	Air	One	is:

5x	1	12y	5	224.

The	position	vector	r2	of	an	aircraft,	Air	Two,	is	given	by

r2	5		( 		 23				
25

		)		1	t		( 	2.5				
6
	 		)	,

where	t	is	the	time	in	minutes	since	12:00.
c)	 Find	the	angle	between	the	paths	of	the	two	aircraft.
d)	 	(i)	 Find	a	Cartesian	equation	for	the	path	of	Air	Two.

	   (ii)	 Hence,	find	the	coordinates	of	the	point	where	the	two	paths	cross.
e)	 Given	that	the	two	aircraft	are	flying	at	the	same	height,	show	that	they	do	not	

collide.

11	 Find	the	size	of	the	angle	between	the	two	vectors		( 	1			
2
		)		and		( 		 6				

28
		)	.	Give	your	answer	to	

the	nearest	degree.

12	 A	line	passes	through	the	point	(4,	21)	and	its	direction	is	perpendicular	to	the	vector

	 		( 	2			
3
		)	.	Find	the	equation	of	the	line	in	the	form	ax	1	by	5	p,	where	a,	b	and	p	are	

	 integers	to	be	determined.

13	 In	this	question,	the	vector		( 	1			
0
		)		represents	a	displacement	due	east	and	the	vector		( 	0			

1
		)	

represents	a	displacement	due	north.	Distances	are	in	kilometres.		
The	diagram	shows	the	path	of	the	oil	tanker	Aristides	relative	to	the	port	of	Orto,	
which	is	situated	at	the	point	(0,	0).
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The	position	of	the	Aristides	is	given	by	the	vector	equation

	( 	x 		y		)		5		( 		 0			
28

		)		1	t		( 		 6				
28

		)	

at	a	time	t	hours	after	12:00.
a)	 Find	the	position	of	the	Aristides	at	13:00.
b)	 Find

	   (i)  the	velocity	vector
    (ii)	 the	speed	of	the	Aristides.

c)	 Find	a	Cartesian	equation	for	the	path	of	the	Aristides	in	the	form	ax	1	by	5	g.

Another	ship,	the	cargo	vessel	Boadicea,	is	stationary,	with	position	vector		( 	18			
4
		)	.

d)	 Show	that	the	two	ships	will	collide,	and	find	the	time	of	collision.

To	avoid	collision,	the	Boadicea	starts	to	move	at	13:00	with	velocity	vector		( 		 5			
12

		)	.

e)	 Show	that	the	position	of	the	Boadicea	for	t	>	1	is	given	by

	( 	x 		y		)		5		( 		 13				
28

		)		1	t		( 		 5			
12

		)	

f)	 Find	how	far	apart	the	two	ships	are	at	15:00.

14	 Find	the	angle	between	the	following	vectors	a	and	b,	giving	your	answer	to	the	
nearest	degree.

a	5	24i	2	2j
b	5	i	2	7j

15	 In	this	question,	a	unit	vector	represents	a	displacement	of	1	metre.	
A	miniature	car	moves	in	a	straight	line,	starting	at	the	point	(2,	0).	After	t	seconds,	its	
position,	(x	,	y),	is	given	by	the	vector	equation

	( 	x 		y		)		5		( 	2			
0
		)		1	t		( 	0.7				

1
	 		)	

a)	 How	far	from	the	point	(0,	0)	is	the	car	after	2	seconds?
b)	 Find	the	speed	of	the	car.
c)	 Obtain	the	equation	of	the	car’s	path	in	the	form	ax	1	by	5	c.
Another	miniature	vehicle,	a	motorcycle,	starts	at	the	point	(0,	2)	and	travels	in	a	
straight	line	with	constant	speed.	The	equation	of	its	path	is

y	5	0.6x	1	2,	 x	>	0

Eventually,	the	two	miniature	vehicles	collide.
d)	 Find	the	coordinates	of	the	collision	point.
e)	 If	the	motorcycle	left	point	(0,	2)	at	the	same	moment	the	car	left	point	(2	,	0),	find	

the	speed	of	the	motorcycle.

16	 The	diagram	right	shows	a	line	passing	
	 through	the	points	(1,	3)	and	(6,	5).

Find	a	vector	equation	for	the	line,	giving		
your	answer	in	the	form

	( 	x 		y		)		5		( 		a			
b
		)		1	t		( 		c			

d
		)	,	

where	t	is	any	real	number.
x

y
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17	 The	vectors		( 		 2x 			x	2	5
		)		and		( 	x	1	1				

5
		)		are	perpendicular	for	two	values	of	x.

a)	 Write	down	the	quadratic	equation	which	the	two	values	of	x	must	satisfy.
b)	 Find	the	two	values	of	x.

18	 The	diagram	below	shows	the	positions	of	towns	O,	A,	B	and	X.

Town	A	is	240		km	east	and	70		km	north	of	O.		
Town	B	is	480		km	east	and	250		km	north	of	O.		
Town	X	is	339		km	east	and	238		km	north	of	O.

A	plane	flies	at	a	constant	speed	of	300		km	h21	from	O	towards	A.

a)	 	 (i)	 Show	that	a	unit	vector	in	the	direction	of		
	___

	
›
	OA		is		( 	0.96				

0.28
		)	.

	   (ii)	 Write	down	the	velocity	vector	for	the	plane	in	the	form		( 	v1			v2
		)	.

	 	 (iii)	 How	long	does	it	take	for	the	plane	to	reach	A?
At	A	the	plane	changes	direction	so	it	now	flies	towards	B.	The	angle	between	the	
original	direction	and	the	new	direction	is	u,	as	shown	in	the	following	diagram.	This	
diagram	also	shows	the	point	Y,	between	A	and	B,	where	the	plane	comes	closest	to	X.

b)	 Use	the	scalar	product	of	two	vectors	to	find	the	value	of	u	in	degrees.

c)	 	 (i)	 Write	down	the	vector		
	___

	
›
	AX		.

	   (ii)	 Show	that	the	vector	n	5		( 	23				
4
		)		is	perpendicular	to		

	__
	
›
	AB	.

	 	 (iii)	 By	finding	the	projection	of		
	___

	
›
	AX		in	the	direction	of	n,	calculate	the	distance	XY.

d)	 How	far	is	the	plane	from	A	when	it	reaches	Y?

19	 A	vector	equation	of	a	line	is		( 	x 		y		)		5		( 	1			
2
		)		1	t		( 	22				

3
		)	,	t		핉.

Find	the	equation	of	this	line	in	the	form	ax	1	by	5	c,	where	a,	b	and	c		핑.

20	 Three	of	the	coordinates	of	the	parallelogram	STUV	are	S(22,	22),	T		(7,	7)	and	U	(5,	15).

a)	 Find	the	vector		
	__

	
›
	ST		and	hence	the	coordinates	of	V.

b)	 Find	a	vector	equation	of	the	line	(UV	)	in	the	form	r	5	p	1	ld,	where	l		핉.

c)	 Show	that	the	point	E	with	position	vector		( 		 1			
11

		)		is	on	the	line	(UV	),	and	find	the	
value	of	l	for	this	point.

The	point	W	has	position	vector		( 		 a			
17

		)	,	a		핉.

d)	 	(i)	 If		
	___

	
›
	EW		5	2	√

___
	13		,	show	that	one	value	of	a	is	23	and	find	the	other	possible	value	

	 	 of	a.

	   (ii)	 For	a	5	–3,	calculate	the	angle	between		
	___

	
›
	EW		and		

	__
	
›
	ET	.

X

Diagram not to scale

B

A
O

X

Y

B

A

θ

O

Diagram not to scale



437

21	 Calculate	the	acute	angle	between	the	lines	with	equations

r	5		( 		 4				
21

		)		1	s		( 	4			
3
		)		and	r	5		( 	2			

4
		)		1	t		( 		 1				

21
		)	.

22	 The	following	diagram	shows	the	point	O	with	coordinates	(0,	0),	the	point	A	with	
position	vector	a	5	12i	1	5j,	and	the	point	B	with	position	vector	b	5	6i	1	8j.	The	
angle	between	(OA)	and	(OB	)	is	u.

Find

a)	 |a	|

b)	 a	unit	vector	in	the	direction	of	b

c)	 the	exact	value	of	cos	u	in	the	form			
p
	__	q		,	where	p,	q		핑.

23	 The	vector	equations	of	two	lines	are	given	below.

r1	5		( 	5			
1
		)		1	l		( 		 3				

22
		)	,	r2	5		( 	22				

2
		)		1	t		( 	4			

1
		)	

The	lines	intersect	at	the	point	P.	Find	the	position	vector	of	P.

24	 The	diagram	shows	a	parallelogram	OPQR	in	which		
	__

	
›
	OP		5		( 	7			

3
		)		and		

	___
	
›
	OQ		5		( 	10			

1
		)	.	

a)	 Find	the	vector		
	___

	
›
	OR	.

b)	 Use	the	scalar	product	of	two	vectors	to	show	that	cos	OP̂Q	5	2			 15	_____	
	√

____
	754		
		.

c)	 	 (i)	 Explain	why	cos	PQ̂R	5	2cos	OP̂Q.

    (ii)	 Hence,	show	that	sin	PQ̂R	5			 23	_____	
	√

____
	754		
			.

	 	 (iii)	 Calculate	the	area	of	the	parallelogram	OPQR,	giving	your	answer	as	an	
	 	 integer.
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25	 The	diagram	shows	points	A,	B	and	C,	which	are	three	vertices	of	a	parallelogram	ABCD.

The	point	A	has	position	vector		( 	2			
2
		)	.

a)	 Write	down	the	position	vector	of	B	and	C.

b)	 The	position	vector	of	point	D	is		( 		d			
4
		)	.	Find	d.

c)	 Find		
	__

	
›
	BD	.

The	line	L	passes	through	B	and	D.

d)	 	(i)	 Write	down	a	vector	equation	of	L	in	the	form		( 	x 		y		)		5		( 	21				
7
		)		1	t		( 	m			n		)	.

    (ii)	 Find	the	value	of	t	at	point	B.
e)	 Let	P	be	the	point	(7,	5).	By	finding	the	value	of	t	at	P,	show	that	P	lies	on	the	line	L.

f)	 Show	that		
	__

	
›
	CP		is	perpendicular	to		

	__
	
›
	BD	.

26	 The	points	A	and	B	have	the	position	vectors		( 		 2				
22

		)		and		( 	23				
21

		)		respectively.

a)	 	(i)	 Find	the	vector		
	__

	
›
	AB	.

    (ii)	 Find	|	
	__

	
›
	AB		|.

The	point	D	has	position	vector		( 		 d			
23

		)	.

b)	 Find	the	vector		
	___

	
›
	AD		in	terms	of	d.

The	angle	BÂD	is	90°.
c)  	(i)	 Show	that	d	5	7.

    (ii)	 Write	down	the	position	vector	of	the	point	D.
The	quadrilateral	ABCD	is	a	rectangle.
d)	 Find	the	position	vector	of	the	point	C.
e)	 Find	the	area	of	the	rectangle	ABCD.

27	 Points	A,	B	and	C	have	position	vectors	4i	1	2j,	i	–	3j	and	25i	2	5j,	respectively.	Let	
D	be	a	point	on	the	x-axis	such	that	ABCD	forms	a	parallelogram.

a)	 	(i)	 Find		
	__

	
›
	BC	.

	 	(ii)	 Find	the	position	vector	of	D.

b)	 Find	the	angle	between		
	__

	
›
	BD		and		

	___
	
›
	AC	.

The	line	L1	passes	through	A	and	is	parallel	to	i	1	4j.	The	line	L2	passes	through	B	and	
is	parallel	to	2i	1	7j.	A	vector	equation	of	L1	is	r	5	(4i	1	2j)	1	s	(i	1	4j).
c)	 Write	down	a	vector	equation	of	L2	in	the	form	r	5	b	1	t	q.
d)	 The	lines	L1	and	L2	intersect	at	the	point	P.	Find	the	position	vector	of	P.

x

y

1

2

3

4

5

6

7

8

9

10

�2 �1 10 2 3 4

A

C

B

5 6 7 8 9 10



439

28	 The	diagram	shows	a	cube,	OABCDEFG,	where	the	length	of	each	edge	is	5		cm.	Express	
the	following	vectors	in	terms	of	i,	j	and	k.

a)	 	
	___

	
›
	OG	

b)	 	
	__

	
›
	BD	

c)	 	
	__

	
›
	EB	

29	 In	this	question,	distance	is	in	kilometres	and	time	is	in	hours.
A	balloon	is	moving	at	a	constant	height	with	a	speed	of	l8		km		h21,	in	the	direction	

of	the	vector		( 	3	
	

	4			
0
		)	.

At	time	t	5	0,	the	balloon	is	at	point	B	with	coordinates	(0,	0,	5).

a)	 Show	that	the	position	vector	b	of	the	balloon	at	time	t	is	given	by

	 b	5		( 	x 
	

	y 		
z
			)		5		( 	0	

	
	0			

5
		)		1			18t		___	

5
	 					( 	3	
	

	4			
0
		)	

At	time	t	5	0,	a	helicopter	goes	to	deliver	a	message	to	the	balloon.	The	position	vector	
h	of	the	helicopter	at	time	t	is	given	by

h	5		( 	x 
	

	y 		
z
			)		5		( 	49

	
	

	32			
0
		)		1	t		( 	248

	
		

	224				
6
		)	

b)	 	(i)	 Write	down	the	coordinates	of	the	starting	position	of	the	helicopter.
   (ii)  Find	the	speed	of	the	helicopter.

c)	 The	helicopter	reaches	the	balloon	at	point	R.
   (i)	 Find	the	time	the	helicopter	takes	to	reach	the	balloon.
	 	(ii)	 Find	the	coordinates	of	R.

30	 In	this	question,	the	vector		( 	1			
0
		)		represents	a	displacement	due	east	and	the	vector		( 	0			

1
		)		

represents	a	displacement	of	1		km	north.

The	diagram	right	shows	the	
positions	of	towns	A,	B	and	C	in	
relation	to	an	airport	O,	which	is	at	
the	point	(0,	0).	An	aircraft	flies	over	
the	three	towns	at	a	constant	speed	
of	250		km		h21.
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Town	A	is	600		km	west	and	200		km	south	of	the	airport.	
Town	B	is	200		km	east	and	400		km	north	of	the	airport.	
Town	C	is	1200		km	east	and	350		km	south	of	the	airport.

a)	 	(i)	 Find		
	__

	
›
	AB	.

   (ii)  Show	that	the	vector	of	length	one	unit	in	the	direction	of		
	__

	
›
	AB		is		( 	0.8				

0.6
		)	.

An	aircraft	flies	over	town	A	at	12:00,	heading	towards	town	B	at	250		km		h–1.

Let		( 	p			q		)		be	the	velocity	vector	of	the	aircraft.	Let	t	be	the	number	of	hours	in	flight	after	

12:00.	
The	position	of	the	aircraft	can	be	given	by	the	vector	equation

	( 	x 		y		)		5		( 	2600				
2200

		)		1	t		( 	p			q		)	

b)	 	 (i)	 Show	that	the	velocity	vector	is		( 		200									
150

			)	.

   (ii)  Find	the	position	of	the	aircraft	at	13:00.

   (iii)  At	what	time	is	the	aircraft	flying	over	town	B?	

Over	town	B	the	aircraft	changes	direction	so	it	now	flies	towards	town	C.	It	takes	five	
hours	to	travel	the	1250		km	between	B	and	C.	Over	town	A	the	pilot	noted	that	she	had	
17		000	litres	of	fuel	left.	The	aircraft	uses	1800	litres	of	fuel	per	hour	when	travelling	at	
250		km		h21.	When	the	fuel	gets	below	1000	litres	a	warning	light	comes	on.
c)	 How	far	from	town	C	will	the	aircraft	be	when	the	warning	light	comes	on?

Questions	1–30	©	International	Baccalaureate	Organization
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The primary purpose of the earlier chapter on calculus, Chapter 11, was 
to establish some fundamental concepts and techniques of differential 
calculus. Chapter 11 also introduced some applications involving the 
differentiation of functions: finding maxima and minima of a function; 
kinematic problems involving displacement, velocity and acceleration; 
and finding equations of tangents and normals. The focus of this chapter 
is to expand our set of differentiation rules and techniques and to deepen 
and extend the applications introduced in Chapter 11 – particularly 
using methods of finding extrema in the context of finding an ‘optimum’ 
solution to a problem. We start by investigating the derivatives of some 
important functions.

Throughout Sections 11.2 and 11.3, we used information from the values, 
or the sign, of the derivative of a function to deduce the behaviour of 
the graph of the function. For example, if the derivative of a function is 
positive for all x in some interval, we know that the graph of the function 
is sloping upwards (increasing) in that interval. And if the derivative is 
equal to zero at some point, we know that the graph will have a horizontal 

Introduction

13 Differential  
Calculus I-- I

-
-: Further 

Techniques and 
Applications

Assessment statements
6.2	 Derivative	of	xn,	sin	x,	cos	x,	tan	x,	ex	and	ln	x.
	 Differentiation	of	a	sum	and	a	real	multiple	of	these	functions.
	 The	chain	rule	for	composite	functions.
	 The	product	and	quotient	rules.
	 The	second	derivative.
6.3	 Optimization.

Derivatives of trigonometric, 
exponential and logarithmic functions13.1
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tangent (momentarily ‘flat’ or ‘stationary’) at that point. To conjecture a 
rule for the derivative of a function, we will use an informal approach, 
which is essentially the reverse process of what we did in Sections 
11.2 and 11.3, by studying the behaviour of the graph of a function to 
obtain information to sketch the graph of its derivative. Effective use of 
technology can then help confirm our conjecture. We will follow the same 
‘conjecture → confirm’ approach to assist in determining the derivatives of 
the trigonometric functions sine and cosine, and then the functions ex and 
ln  x.

The derivative of the sine function
We start with the graph of f  (x) 5 sin  x (Figure 13.1). The 
graph of y 5 sin  x is periodic, with period 2p, so the same will 
be true of its derivative that gives the slope at each point on 
the graph. Therefore, it’s only necessary for us to consider the 
portion of the graph in the interval 0 < x < 2p.

Figure 13.2 shows two pairs of axes having equal scales on 
the x- and y-axes and corresponding x-coordinates aligned 
vertically. On the top pair of axes, y 5 sin  x is graphed with 
tangent lines drawn at nine selected points. The points were 

chosen such that the slopes of the tangents at those points, in order, appear 
to be equal to 1,   1 _ 2  , 0, 2 ​​1 _ 2  , 21, 2 ​​1 _ 2  , 0,   1 _ 2  , 1. The values of these slopes were 
then plotted in the bottom graph with the y-coordinate of each point 
indicating the slope of the curve for that particular value of x. Hence, the 
points in the bottom pair of axes should be on the graph of the derivative 
of y 5 sin  x.
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Figure 13.2
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Figure 13.3 is the same as Figure 13.2 except with the graph of y 5 sin x, 
the grid lines and the lines connecting points between the two graphs 
removed.

This leads to an obvious choice for our conjecture of the derivative 
function for sine. For f  (x) 5 sin  x, it appears that f 9(x) 5 cos  x. Let’s use 
our GDC to provide confirmation of this conjecture.

The GDC screen images below show the derivative of sin  x being evaluated 
for various values of x, and then showing that this is equivalent (to 6 
significant figures) to cos  x for the same value of x.

Note that the calculator must be in radian mode.

The derivative of the sine function
If f (x) 5 sin x, then f 9(x) 5 cos x. Or, in Leibniz notation,   d ___ 

dx   (sin x) 5 cos x.
This result is only true when x is in radian measure.

The derivative of the cosine function
We could take the same approach as we did for investigating the derivative 
of sin x to make a conjecture for the derivative of cos x, but using our 

result   d ___ 
dx

   (sin x) 5 cos x there is a constructive approach that uses our 

knowledge about the transformations of graphs (Section 2.4).

nDeriv(sin(X),X,
π/4)

.7071066633

.7071067812

NORMAL
FLOAT

FUNC
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SEQUENTIAL
REAL
FULL HORIZ G-T

13/09/07 13:13SET CLOCK

a+bi reˆ0i
SIMUL

PAR POL SEQ
DEGREE
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SCI ENG

RADIAN

cos(π/4)

nDeriv(sin(X),X,
5π/6)

-.8660252595

-.8660254038
cos(5π/6)

nDeriv(sin(X),X,
5.25)

.5120853919

.5120854772
cos(5.25)
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1
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The discrepancies beyond 6 
significant figures is due to 
the small amount of error 
incorporated in the algorithm 
used by the GDC to compute 
the derivative of a function at 
a point.

Note that the graphs in Figures 
13.1, 13.2 and 13.3 have x 
in radians. As mentioned 
previously, we must use 
only radian measure when 
trigonometric functions are 
involved in calculus.

Figure 13.3a Lines tangent to 
y 5 sin  x.
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The graph of y 5 cos x (the derivative of sin x) is shown in Figure 13.4. 

This graph is the same shape as that of y 5 sin x, but translated   p​__ 
2

   units 

to the left. Recall that in Example 13 of Chapter 6 (Section 6.3) we came 

to this same conclusion and established the identity cos x 5 sin  ( x 1   p​__ 
2

   ) .

Therefore, given that for f (x) 5 sin x ⇒ f 9(x) 5 sin  ( x 1   p​__ 
2

   )  5 cos x, we 

anticipate that for f (x) 5 cos x ⇒ f 9(x) 5 cos  ( x 1   p​__ 
2

   ) .

Figure 13.5 shows the graph of y 5 cos x translated   p​__ 
2

   units to the left, i.e.

the graph of y 5 cos  ( x 1   p​__ 
2

   ) , which we expect to be the graph of the 

derivative of the function cos x.

The graph of y 5 cos  ( x 1   p​__ 
2

   )  is the graph of y 5 sin x but reflected in the 

x-axis. Knowing that the graph of y 5 2f (x) is obtained by reflecting the 
graph of y 5 f (x) in the x-axis (Section 2.4), then the graph of 

y 5 cos  ( x 1   p​__ 
2

   )  is the graph of y 5 2sin x. Therefore, our conjecture is 

that the derivative of cos x is 2sin x.

Again, let’s utilize our GDC to help confirm our conjecture. 
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nDeriv(cos(X),X,
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.9999998333

1
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The derivative of the cosine function
If f (x) 5 cos x, then f 9(x) 5 2sin x. Or, in Leibniz notation,   d ___ 

dx   (cos x) 5 2sin x.

This result is only true when x is in radian measure.

To demonstrate that our ‘conjecture → confirm’ approach to finding 
derivatives does not always work so smoothly, consider the other 
trigonometric function, y 5 tan x. We can use the GDC command that 
evaluates the derivative of a function at a specified point to graph the value 
of the derivative at all points on a graph. We used this technique in Chapter 
11 for Example 8 (Section 11.2). The GDC screen images below show the 
graph of y 5 tan x and then the GDC graphing its derivative (in bold) on 
the same set of axes. Although, as pointed out in Section 11.3, in general it 
is incorrect to graph a function and its derivative on the same pair of axes 
(units on the vertical axis will not be the same), it is helpful in seeing the 
connection between the graph of a function and that of its derivative.

The graph of the derivative of tan x is always above the x-axis meaning 
that the derivative is always positive. This clearly agrees with the fact that 
the tangent function, except for where it is undefined, is always increasing 
(moving upwards) as the values of x increase. However, the shape of 
the graph does not bring to mind an easy conjecture for a rule for the 
derivative of tan x.

Later in this chapter we will learn how to differentiate quotients which we 

can use to find the derivative of tan x given that tan x 5   sin x ____ cos x   .

The derivative of the exponential function ex

Let’s review some important facts about exponential functions in general. 
An exponential function with base b is defined as f (x) 5 bx, b . 0 and 
b  1. The graph of f passes through (0, 1), has the x-axis as a horizontal 
asymptote and, depending on the value of the base b of the exponential 
function, will be either a continually increasing exponential growth  
curve or a continually decreasing exponential decay curve, as shown in 
Figure 13.6.

Plot1

Y1= tan(X)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Plot1

Y1= tan(X)
Plot2 Plot3

Y2= nDeriv(Y1,X,

Y3=
Y4=
Y5=
Y6=

WINDOW
Xmin=-1.570796…
Xmax=7.8539816…
Xscl=π/2
Ymin=–3
Ymax=3
Yscl=1
Xres=1

X)
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Figure 13.6a 
Exponential growth curve:
f (x) 5 b x for b . 1
as x  →  , f (x)  →  
f is an increasing function

Figure 13.6b 
Exponential decay curve:
f (x) 5 b x for 0 , b , 1
as x  →  , f (x)  →  0
f is a decreasing function

In Chapter 4 we learned that the exponential function ex, sometimes 
written as ‘exp x’, is a particularly important function for modelling 
exponential growth and decay. The number e was defined in Section 4.3 as 

the limit of  ( 1 1   1 __ x   ) 
x
 as x → . Although the method was not successful in 

coming up with a conjecture for the derivative of the tangent function, let’s 
try to guess the derivative of e x by having our GDC graph its derivative.

The graph of the derivative of e x appears to be identical to e x itself! This is 
a very interesting result, but one which we will see fits in exactly with the 
nature of exponential growth/decay. Given that the result is so intriguing, 
let’s try to apply the limit definition of the derivative to provide a more 
formal justification.

Recall the definition of the derivative of a function f is 

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

    and that the slope of the graph of f at a 

specific point where x 5 c is defined as   lim    
h → 0

    
f (c 1 h) 2 f (c)

  _____________ 
h

   .

   d ___ 
dx

   (e x) 5   lim    
h → 0

    e x 1 h 2 e x _________ 
h

    definition of derivative, i.e. ‘first principles’

  5   lim    
h → 0

    e x    e h 2 e x __________ 
h

    reverse of law of exponents: a m    a n 5 a m 1 n

  5   lim    
h → 0

    
e x(e h 2 1)

 _________ 
h

    factorizing

  5 e x      lim    
h → 0

    e h 2 1 ______ 
h

    e x is not affected by the value of h

Plot1
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A closer look at the limit that is multiplying e x reveals that it is equivalent 

to the slope of the graph of y 5 e x at x 5 0:   lim    
h → 0

    e 0 1 h 2 e 0 _________ 
h

    5   lim    
h → 0

    e h 2 1 ______ 
h

   . 

To finish our differentiation of e x by first principles, we need to evaluate 
this limit. It is beyond the scope of this course to give a formal algebraic 
proof for the limit. Nevertheless, we can provide a convincing 

informal justification by evaluating the expression   e h 2 1 ______ 
h

    for values of h 
approaching zero, as shown in the table.

h   e h 2 1 ______ 
h

   

0.1 1.051  709  181

0.01 1.005  016  708

0.0001 1.000  050  002

0.000  001 1.000  000  005

Thus,   lim    
h → 0

    e h 2 1 ______ 
h

    5 1, and we can complete our algebraic work for the 

derivative of e x.

  d ___ 
dx

   (e x) 5 e x      lim    
h → 0

    e h 2 1 ______ 
h

    5 e x    1 5 e x

The derivative of the exponential function is the exponential function. 
More precisely, the slope of the graph of f (x) 5 e x at any point (x, e x) is 
equal to the y-coordinate of the point.

The derivative of the exponential function

If f (x) 5 e x, then f 9(x) 5 e x. Or, in Leibniz notation,   d ___ 
dx   (e x) 5 e x.

What about exponential functions with bases other than e? We now 
differentiate the general exponential function f (x) 5 b x, b . 1, b  0, 
repeating the same steps we did with f (x) 5 e x.

   d ___ 
dx

   (b x) 5   lim    
h → 0

    b x 1 h 2 b x _________ 
h

    definition of derivative

  5   lim    
h → 0

    b x    bh 2 b x __________ 
h

    reverse of a m    a n 5 a m 1 n

  5   lim    
h → 0

    
b x(bh 2 1)

 _________ 
h

    factorizing

  5​b x      lim    
h → 0

    b
h 2 1 ______ 

h
    b x is not affected by the value of h

As with e x,    lim    
h → 0

    b
h 2 1 ______ 

h
    is equivalent to the slope of the graph of f (x) 5 b x

at x 5 0, i.e. f 9(0). Therefore, the derivative of the general exponential 
function f (x) 5 b x is b x    f 9(0). Although the value of f 9(0) will be a 
constant, it will depend on the value of the base b. The GDC screen image 
left shows the value of f 9(0) for b 5 2, 3 and   1 _ 2  .

nDeriv(2ˆX,X,0)
.6931472361

nDeriv(3ˆX,X,0)
1.09861251

nDeriv((1/2)ˆX,X
,0)

-.6931472361
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The differentiation rule that we will learn in the next section will give us 
the means to determine the exact value of f 9(0) given b for the function 
f​(x) 5 b x. Then we will be able to state a general rule for the derivative of 
exponential functions f​(x) 5 b x.

The derivative of the natural logarithm function 
ln  x
Now that we have found the derivative of y 5 e x, let’s find the derivative of 
its inverse, y 5 1n x, x . 0. We start by using our GDC to view a graph of 
the derivative of f (x) 5 ln  x and also to construct a table of ordered pairs 
(x, f 9(x)).

In the table, each value in the Y2 column is the slope of the curve 
(derivative) at the particular value of x for y 5 ln x. From the graph of the 
derivative and especially from the table, we conjecture that the derivative of

ln  x is   1 __ x  . As we did with the function y 5 e x, let’s try to justify our 
conjecture with a more formal approach.

  d ___ 
dx

   (ln x) 5   lim    
h → 0

    
ln(x 1 h) 2 ln x

  ______________ 
h

    definition of derivative

If f (x) 5 b x, then f 9(x) 5 b x    f 9(0). The value of  f 9(0) is the slope of the graph of f (x) 5 b x at the point (0, 1). Hence, this will be 
a particular constant for each value of b (b . 1, b  0). Therefore, if f (x) 5 b x, then f 9(x) 5 kb x, where k is a constant dependent 

on the value of b. If the amount of a quantity y at a time t is given by y 5 b t then   
dy

 ___ 
dt

   5 kb t 5 ky. In other words, the rate of 

change of the quantity y at time t is proportional to the amount of y at time t. This is the essential behaviour of exponential 
growth/decay. It is because of this property that exponential functions have so many applications to real-life phenomena. Here 
are some good examples: 
(1) The rate of population growth for many living organisms is proportional to the size of the population p:   

dp
 ___ 

dt
   5 kp.

(2) The rate at which a radioactive substance decays is proportional to the amount A of the substance present:   dA ___ 
dt

   5 kA.

(3) Newton’s law of cooling states that if a substance is placed in cooler surroundings then its temperature decreases at a rate 
proportional to the temperature difference T between the temperature of the substance and the temperature of its 

 surroundings:   dT ___ 
dt

    5 2k(T 2 Ts), where Ts is the temperature of the surroundings and k is an experimental constant.
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Plot2 Plot3

Y2= nDeriv(Y1,X,

Y3=
Y4=
Y5=
Y6=

WINDOW
Xmin=0
Xmax=10
Xscl=1
Ymin=–3
Ymax=3
Yscl=1
Xres=1

X)

X

X=0

Y2
0
1
2
3
4
5
6

ERROR
1
.5
.33333
.25
.2
.16667



449

  law of logarithms: 

  logb M 2 logb N 5 logb  (   M __ 
N

   ) 

  ‘trick’: multiply argument of limit by 

  1 5   x __ x   5   1 __ x      x

  x is independent of h; and

    x 1 h _____ x    5   x __ x   1   h __ x   5 1 1   h __ x  

  law of logarithms: k logb  M 5 logb (Mk)

The argument of ln in the limit,   ( 1 1   h __ x    )  
  x __ 
h
  
 , looks very much like the 

expression  ( 1 1   1 __ n   ) 
n
 whose limit as n  →   is the number e (Section 4.3). 

For   ( 1 1   h __ x   )  
  x __ 
h
  
 , let’s apply the substitution n 5   x __ 

h
  . It follows that as h  →  0 

then   x __ 
h

   5 n  →  , and also that   1 __ n   5   h __ x  .

Hence,   1 __ x       lim    
h → 0

    ( ln    ( 1 1   h __ x   )  
  x __ 
h
  
  )  5   1 __ x        lim    

n  →  
    ( ln  ( 1 1   1 __ n   )  ) 

n
 with substitution,

     lim    
h → 0

    changes to    lim    
n  →  

   

 5   1 __ x        lim    
n  →  

 (ln e)   lim    
n  →  

   ( 1 1   1 __ n   ) 
n
 5 e

 5   1 __ x      1n  e 1n  e is not affected by
  the value of n

 5   1 __ x      1 1n  e 5 1

 5   1 __ x   

Therefore,   d ___ 
dx

  (1n  x) 5   1 __ x  .

The derivative of the natural logarithm function

If f (x) 5 ln  x, then f 9(x) 5   1 __ x  . Or, in Leibniz notation,   d ___ 
dx   (ln  x) 5   1 __ x  .

Summary of differentiation rules
Derivative of x n: f (x) 5 x n ⇒ f 9(x) 5 nx n 2 1

Derivative of sin x: f (x) 5 sin x ⇒ f 9(x) 5 cos x
Derivative of cos x: f (x) 5 cos x ⇒ f 9(x) 5 2sin x
Derivative of e x: f (x) 5 e x ⇒ f 9(x) 5 e x

Derivative of ln x: f (x) 5 ln x ⇒ f 9(x) 5   1 __ x  
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	 5			lim				
h	→	0

				
ln	( 		x	1	h _____	x    ) 

 _________	
h

   	 law	of	logarithms:	

	 	 logb	M	2	logb	N	5	logb  (   M __ 
N

   ) 

	 5			lim				
h	→	0

				( 			1	__	x  		?		x		?				
ln		( 		x	1	h _____	x    ) 

 _________	
h

    ) 	 ‘trick’:	multiply	argument	of	limit	by	

	 	 1	5			x __ x  	5			1	__	x  		?		x

	 5			1	__	x  		?			lim				
h	→	0

				( 		x __ 
h

  		?		ln			( 1	1			h __ x   )  ) 	 x	is	independent	of	h;	and

	 	 		x	1	h _____ x   	5			x __ x  	1			h __ x  	5	1	1			h __ x  

	 5			1	__	x  		?			lim				
h	→	0

					( ln				( 1	1			h __ x   )  
  x __ 
h
  
  ) 	 law	of	logarithms:	k	logb		M	5	logb	(Mk)

The	argument	of	ln	in	the	limit,			( 1	1			h __ x    )  
  x __ 
h
  
 ,	looks	very	much	like	the	

expression		( 1	1			1	__	n   ) 
n
	whose	limit	as	n  →  	is	the	number	e	(Section	4.3).	

For			( 1	1			h __ x   )  
  x __ 
h
  
 ,	let’s	apply	the	substitution	n	5			x __ 

h
  .	It	follows	that	as	h  →  0	

then			x __ 
h

 	 5 n  →  ,	and	also	that			1	__	n  	5			h __ x  .

Hence,			1	__	x  		?			lim				
h	→	0

				( ln				( 1	1			h __ x   ) 	
		x __ 
h
  
  ) 	 5			1	__	x  		?				lim				

n		→		
				( ln		( 1	1			1	__	n   ) n ) 	 with	substitution,

	 	 			lim				
h	→	0

				changes	to				lim				
n		→		

			

	 5			1	__	x  		?				lim				
n		→		

	(ln	e)	 		lim				
n		→		

			( 1	1			1	__	n   ) 
n
	5	e

	 5			1	__	x  		?		1n		e	 1n		e	is	not	affected	by
	 	 the	value	of	n

	 5			1	__	x  		?		1	 1n		e 5 1

	 5			1	__	x  	

Therefore,			d ___ 
dx

  (1n		x)	5			1	__	x  .

The derivative of the natural logarithm function

If f (x) 5 ln  x, then f 9(x) 5   1 __ x  . Or, in Leibniz notation,   d __ 
dx   (ln  x) 5   1 __ x  .

Summary of differentiation rules
Derivative of x n: f (x) 5 x n ⇒ f 9(x) 5 nx n 2 1

Derivative of sin x: f (x) 5 sin x ⇒ f 9(x) 5 cos x
Derivative of cos x: f (x) 5 cos x ⇒ f 9(x) 5 2sin x
Derivative of e x: f (x) 5 e x ⇒ f 9(x) 5 e x

Derivative of ln x: f (x) 5 ln x ⇒ f 9(x) 5   1 __ x  
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Example 1 

Differentiate each of the following functions.
a) f (x) 5 3  sin  x 2 4  cos  x

b) g (x) 5 5  ln  x 2 2e x

c) y 5 6 2 ln  (   e3
 __ x   ) 

Solution

a) f 9(x) 5 3   d ___ 
dx

   (sin x) 2 4   d ___ 
dx

   (cos x)

  5 3 cos x 2 4(2 sin x)

  5 3 cos x 1 4 sin x

b) g 9(x) 5 5   d ___ 
dx

   (1n x) 2 2   d ___ 
dx

   (e x)

  5 5      1 __ x   2 2e x

  5   5 __ x   2 2e x

c)   
dy

 ___ 
dx

   5   d ___ 
dx

   (6) 2   d ___ 
dx

    ( 1n (    e 3 __ x   )  ) 

    5 0 2   d ___ 
dx

   (1n e 3 2 1n x)

  5 2   d ___ 
dx

   (1n e 3) 1   d ___ 
dx

   (1n x)

  5 2   d ___ 
dx

   (3) 1   1 __ x  

  5   1 __ x  

Example 2 

Find the equation of the line tangent to the given function at the specified 
value of x. Express the equation exactly.

a) y 5 cos x x 5   5p​___ 
6

  

b) y 5 e x 1 1 x 5 1

c) y 5 1n x x 5 4

Solution

a) When x 5   5p​___ 
6

  , y 5 cos  (   5p​___ 
6

   )  5 2   
 √

__
 3  
 ___ 

2
  . Thus, point of tangency is

  (   5p​___ 
6

  , 2   
 √

__
 3  
 ___ 

2
   ) .

   
dy

 ___ 
dx

   5 2sin x ⇒ slope of tangent line 5 2sin  (   5p​___ 
6

   )  5​2   1 __ 
2

  

 Substitute into point-slope form of a line: y 2 y1 5 m(x 2 x1)

 y 2  ( 2   
 √

__
 3  
 ___ 

2
   )  5 2   1 __ 

2
    ( x 2   5p​___ 

6
   )  ⇒ equation of tangent line is

 y 5 2   1 __ 
2

   x 1   5p​___ 
12

   2   
 √

__
 3  
 ___ 

2
  

A graphical check on our GDC confirms the equation of our tangent line.

Plot1

Y1= cos(X)
Plot2 Plot3

Y2= -(1/2)X+5π/1
2-√(3)/2
Y3=

Y1=cos(X)

X=2.6179939 Y=-.8660254

Y4=
Y5=
Y6=
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b) When x 5 1, y 5 e1 1 1 5 e 1 1. The point of tangency is (1, e 1 1).

   
dy

 ___ 
dx

   5 e x ⇒ slope of tangent line 5 e1 5 e

 Substitute into point-slope form of a line: y 2 y1 5 m(x 2 x1)
 y 2 (e 1 1) 5 e(x 2 1) ⇒ equation of tangent line is y 5 ex 1 1

Again, a graph of the curve and our result for the tangent lines gives 
confirmation that our result appears correct.

c) When x 5 4, y 5 1n 4. The point of tangency is (4, ln 4).

   
dy

 ___ 
dx

   5   1 __ x   ⇒ slope of tangent line 5   1 __ 4  

 Substitute into point-slope form of a line: y 2 y1 5 m(x 2 x1)

 y 2 ln 4 5   1 _ 4   (x 2 4) ⇒  equation of tangent line is

 y 5   1 _ 4   x 2 1 1 ln 4

 Equivalent answer: 

 y 5   1 _ 4   x 2 1 1 ln 4 5   1 _ 4   x 1 ln 4 2 1 5   1 _ 4   x 1 ln 4 2 ln e ⇒ y 5   1 _ 4   x 1 ln (   4 __ e   ) 

 1 Write down the derivative of each function.
a) y 5 sin x 2 cos x b) y 5 5 2 e x c) y 5 x 1 ln x

d) y 5   2e x ___ 5   e) y 5 x 3 1 2 cos x f ) y 5 2e ln x

 2 Find the equation of the line tangent to the given curve at the specified value of 
x. Express the equation exactly in the form y 5 mx 1 c.

a) y 5 sin x x 5   p​__ 3  

b) y 5 x 1 e x x 5 0

c) y 5   1 _ 2   ln x  x 5 e

 3 Consider the function g(x) 5 x 1 2 cos x. For the interval 0 < x < 2p,

a) find the exact x-coordinates of any stationary points

b) determine whether each stationary point is a maximum, minimum or neither 
and give a brief explanation.

 4 Find the coordinates of any stationary points on the curve y 5 x 2 e x. Classify 
any such points as a maximum, minimum or neither and explain.

Exercise 13.1

Y=3.7182818

Y1=eˆ(X)+1

X=1

Plot1

Y1= e (̂ X)+ 1
Plot2 Plot3

Y2= eX+1
Y3=
Y4=
Y5=
Y6=
Y7=

Plot1

Y1= ln(X)
Plot2 Plot3

Y2=(1/4)X-1+ln(
4)
Y3=
Y4=
Y5=
Y6=

Y1=ln(X)

X=4 Y=1.3862944
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We know how to differentiate functions such as f (x) 5 x 3 1 2x 2 3 and 
g(x) 5  √

__
 x  , but how do we differentiate the composite function 

f(g(x)) 5  √
__________

 x 3 1 2x 2 3  ? The rule for computing the derivative of the 
composite of two functions, i.e. the ‘function of a function’, is called the 
chain rule. Because most functions that we encounter in applications are 
composites of other functions, it can be argued that the chain rule is the 
most important, and most widely used, rule of differentiation. 

Below are some examples of functions that we can differentiate with the 
rules that we have learned thus far in Sections 11.2 and 13.1, and further 
examples of functions which are best differentiated with the chain rule.

Differentiate without the chain rule Differentiate with the chain rule

y 5 cos  x y 5 cos  2x
y 5 3x 2 1 5x x 5  √

________

 3x 2 1 5x  
y 5 ln  x y 5 ln(1 2 3x)

y 5   1 ___ 
3x 2

  y 5   1 _______ 
3x 2 1 x  

The derivative of composite functions
The chain rule says, in a very basic sense, that given two functions, 
the derivative of their composite is the product of their derivatives – 

 5 Show that the curve y 5 x 2 ln x has no inflexion points.

 6 Find the equation of the normal line to the curve y 5 3 1 sin x at the point 

 where x 5   p​__ 2  .

 7 Consider the function f (x) 5 e x 2 x 3.

a) Find f 9(x) and f 0(x).

b) Find the x-coordinates (accurate to 3 significant figures) for any points where 
f 9(x) 5 0.

c) Indicate the intervals for which f (x) is increasing, and indicate the intervals for 
which f (x) is decreasing.

d) For the values of x found in part b), state whether that point on the graph of f 
is a maximum, minimum or neither.

e) Find the x-coordinate of any inflexion point(s) for the graph of f.

f ) Indicate the intervals for which f (x) is concave up, and indicate the intervals 
for which f (x) is concave down.

 8 A line with slope m passes through the origin and is tangent to the graph of 
y 5 ln x. What is the value of m?

 9 Use the change of base formula for logarithms (Section 4.4) to derive a general 
rule for the derivative of a logarithmic function of any base b (b . 0, b  1). That 
is, find the derivative of the general logarithm function y 5 logb  x expressed in 
terms of b.   Hint: Rewrite logb  x in terms of the natural logarithm ln.

The chain rule13.2
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remembering that a derivative is a rate of change of one quantity (variable) 
with respect to another quantity (variable). For example, the function 
y  5  8x 1 6 5 2(4x 1 3) is the composite of the functions y 5 2u and 
u  5  4x 1 3. Note that the function y is in terms of u, and the function u is 
in terms of x. How are the derivatives of these three functions related? 

Clearly,   
dy

 ___ 
dx

   5 8,   
dy

 ___ 
du

   5 2 and   du ___ 
dx

   5 4. Since 8 5 24, the derivatives relate 

such that   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

  . In other words, rates of change multiply.

Again, if we think of derivatives as rates of change, the relationship 

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   can be illustrated by a practical example. Consider the pair of 

levers in Figure 13.7 with lever endpoints U and U9 connected by a 
segment that can shrink and stretch but always remains horizontal. Hence, 
points U and U9 are always the same distance u from the ground.

As point Y moves down, points U and U9 move up, and point X moves 
down but at different rates. Let dy, du and dx represent the change in 
distance from the ground for the points Y, U and X, respectively. Because 
YF1 5 6 and UF1 5 2, if point Y moves such that dy 5 3, then du 5 1. 
Since U9F2 5 4 and XF2 5 2, if point U9 moves so that du 5 2, then dx 5 
1. 

Hence,   
dy

 ___ 
du

   5 3 and   du ___ 
dx

   5 2. 

Combining these two results, we can see that for every 6 units that Y’s 

distance changes, X’s distance will change 1 unit. That is,   
dy

 ___ 
dx

   5 6. 

Therefore, we can write   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 32 5 6. In other words, the rate 

of change of y with respect to x is the product of the rate of change of y 
with respect to u and the rate of change of u with respect to x.

Example 3 

The polynomial function y 5 16x 4 2 8x 2 1 1 5 (4x 2 2 1)2 is the 

composite of y 5 u 2 and u 5 4x 2 2 1. Use the chain rule to find   
dy

 ___ 
dx

  , the 

derivative of y with respect to x.

X Y
6 m2 m4 m2 m

ground

F2 U� U F1

x u y

X

Y
6 m

2 m4 m2 m

ground

F2

U� U
F1

x
u y

dy
dudx

Figure 13.7 Two levers with 
horizontal connection between U9 
and U.

Figure 13.8 dx, du and dy 
represent the change in distance 
from the ground for X, U and Y.
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Solution

y 5 u 2 ⇒   
dy

 ___ 
du

   5 2u

u 5 4x 2 2 1 ⇒   du ___ 
dx

   5 8x

Applying the chain rule:   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

    5 2u  8x

5 2(4x 2 2 1)8x
5 64x 3 2 16x

In this particular case, we could have differentiated the function in expanded 
form by differentiating term-by-term rather than differentiating the factored

form by the chain rule.   
dy

 ___ 
dx

   5   d ___ 
dx

   (16x 4 2 8x 2 1 1) 5 64x 3 2 16x;

confirming the result above. It is not always easier to differentiate powers 
of polynomials by expanding and then differentiating term-by-term. For 
example, it is far better to find the derivative of y 5 (3x 1 5)8 by the chain 
rule.

In Section 2.2, we often wrote composite functions using nested function 
notation. For example, the notation f (g(x)) denotes a function composed 
of functions f and g such that g is the ‘inside’ function and f is the ‘outside’ 
function. For the composite function y 5 (4x 2 2 1)2 in Example 3, the 
‘inside’ function is g (x) 5 4x 2 2 1 and the ‘outside’ function is f (u) 5 u 2. 
Looking again at the solution for Example 3, we see that we can choose 
to express and work out the chain rule in function notation rather than 
Leibniz notation.

For y 5 f (g(x)) 5 (4x 2 2 1)2 and y 5 f (u) 5 u 2, u 5 g (x) 5 4x 2 2 1,

Leibniz notation Function notation

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 2u  8x     d ___ 
dx

   [ f (g(x))] 5 f 9(u)g 9(x) 5 2u  8x

5 2(4x 2 2 1)8x 5 f  9(g(x))g9(x) 5 2(4x 2 2 1)8x

5 64x 3 2 16x   5 64x 3 2 16x

This leads us to formally state the chain rule in two different notations.

The chain rule
If y 5 f (u) is a function in terms of u and u 5 g(x) is a function in terms of x, the function 
y 5 f (g(x)) is differentiated as follows:

  
dy

 ___ 
dx   5   

dy
 ___ 

du
      du ___ 

dx   (Leibniz form)

or, equivalently,

  
dy

 ___ 
dx   5   d ___ 

dx   [ f (g(x))] 5 f 9(g(x))g9(x) (function notation form)

The chain rule needs to be applied carefully. Consider the function 

notation form for the chain rule   d ___ 
dx

   [ f (g(x))] 5 f 9(g(x))g9(x). Although it 

is the product of two derivatives, it is important to point out that the first 
derivative involves the function f differentiated at g(x) and the second is 
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function g differentiated at x. The chain rule written in Leibniz form, 

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

  , is easily remembered because it appears to be an obvious 

statement about fractions – but, they are not fractions. The expressions 

  
dy

 ___ 
dx

  ,   
dy

 ___ 
du

   and   du ___ 
dx

   are derivatives or, more precisely, limits and although du 

and dx essentially represent very small changes in the variables u and x, we 
cannot guarantee that they are non-zero.

The function notation form of the chain rule offers a very useful way of 
saying the rule ‘in words’, and, thus, a very useful structure for applying it.

f is ‘outside’ function g is ‘inside’ function

 
  
dy

 ___ 
dx

   5   d ___ 
dx

   [ f (g(x))] 5 f 9(g(x))g9(x) 
 

 
   derivative of ‘outside’ function                                                                

with ‘inside’ function unchanged
   3 derivative of ‘inside’ function

The chain rule in words:

 (   derivative of                        
composite

   )  5  (   derivative of ‘outside’ function                                                                
with ‘inside’ function unchanged

   )  3  (   derivative of                                  
‘inside’ function

   ) 

Although this is taking some liberties with mathematical language, 
the mathematical interpretation of the phrase “with ‘inside’ function 
unchanged” is that the derivative of the ‘outside’ function f is evaluated at 
g (x), the ‘inside’ function.

Example 4 

Differentiate each function by applying the chain rule. Start by 
‘decomposing’ the composite function into the ‘outside’ function and the 
‘inside’ function.

a) y 5 cos  2x

b) y 5  √
________

 3x 2 1 5x  

c) y 5 ln(1 2 3x)

d) y 5   1 _______ 
3x 2 1 x

  

The chain rule acquired its name because we use it to take derivatives of composites 
of functions by ‘chaining’ together their derivatives. A function could be the 
composite of more than two functions. If a function were the composite of three 
functions, we would take the product of three derivatives ‘chained’ together. For 
example, if y 5 f (u), u 5 g (v) and v 5 h (x), the derivative of the function

y 5 f (g(h(x))) is   
dy

 ___ 
dx   5   

dy
 ___ 

du
      du ___ 

dv
      dv ___ 

dx  .

 Hint: The chain rule is our most 
important rule of differentiation. 
It is an indispensable tool in 
differential calculus. Forgetting to 
apply the chain rule when it needs 
to be applied, or by applying it 
improperly, is a common source of 
errors in calculus computations. It is 
important to understand it, practise 
it and master it.
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Solution
a) y 5 f (g(x )) 5 cos  2x ⇒ ‘outside’ function is f (u) 5 cos  u 
  ⇒ ‘inside’ function is g (x) 5 2x

 In Leibniz form:   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 (2 sin  u)2 5 22  sin(2x)

 Or, alternatively, in function notation form:

  
dy

 ___ 
dx

   5 f 9(g (x))    g 9(x) 5 [2sin(2x)]     2 5 22 sin(2x)
 

 
   derivative of ‘outside’ function                                                                

with ‘inside’ function unchanged
   3 derivative of ‘inside’ function

b) y 5 f (g(x)) 5  √
________

 3x 2 1 5x   ⇒ ‘outside’ function is f (u) 5  √
__

 u   5  u    
1
 _ 2   

    f 9(u) 5   1 __ 
2

    u 2 ​​1 _ 2   

  ⇒ ‘inside’ function is g (x) 5 3x 2 1 5x

   
dy

 ___ 
dx

   5 f 9(g(x))    g 9(x) 5   1 __ 
2

   (3x 2 1 5x ) 2 ​​1 _ 2        (6x 1 5)

   
dy

 ___ 
dx

   5   6x 1 5 ___________ 
2(3x 2 1 5x )   

1
 _ 2   
   or   6x 1 5 __________ 

2 √
________

 3x 2 1 5x  
  

c) y 5 f (g(x)) 5 ln(1 2 3x) ⇒ ‘outside’ function is f (u) 5 ln  u f  9(u) 5   1 __ u  

  ⇒ ‘inside’ function is g (x) 5 1 2 3x

    
dy

 ___ 
dx

   5 f 9(g(x))    g 9(x) 5   1 ______ 
1 2 3x

       (23)

   
dy

 ___ 
dx

   5 2  3 ______ 
1 2 3x

   or   3 ______ 
3x 2 1

  

d) y 5 f (g(x)) 5   1 _______ 
3x 2 1 x

   ⇒ ‘outside’ function is f (u) 5   1 __ u   5 u21 
    f 9(u) 5 2u22

  ⇒ ‘inside’ function is g (x) 5 3x 2 1 x

    
dy

 ___ 
dx

   5 f 9(g(x))    g 9(x) 5 2(3x 2 1 x)22    (6x 1 1)

   
dy

 ___ 
dx

   5 2   6x 1 1 _________ 
(3x 2 1 x)2  

Example 5 

Find the derivative of the function y 5 (2x 1 3)3 by:
a) expanding the binomial and differentiating term-by-term
b) the chain rule.

Solution
a) y 5 (2x 1 3)3 5 (2x 1 3)(2x 1 3)2

  5 (2x 1 3)(4x 2 1 12x 1 9)
  5 8x 3 1 24x 2 1 18x 1 12x 2 1 36x 1 27
  5 8x 3 1 36x 2 1 54x 1 27

    
dy

 ___ 
dx

   5 24x 2 1 72x 1 54
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b) y 5 f (g (x)) 5 (2x 1 3)3  ⇒ y 5 f (u) 5 u 3; u 5 g (x) 5 2x 1 3
⇒ f 9(u) 5 3u 2; g 9(x) 5 2

   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 3u 2    2 5 6u 2

 5 6(2x 1 3)2

 5 6(4x 2 1 12x 1 9)

 5 24x 2 1 72x 1 54

Example 6 

For each function f (x), find f 9(x).

a) f (x) 5 sin2  x

b) f (x) 5 sin  x 2

c) f (x) 5 e sin   x

d) f (x) 5  3 √
________

 (7 2 5x)2  

Solution
a) The expression sin2  x is an abbreviated way of writing (sin  x)2.
 Hence, if f (x) 5 g (h(x)) 5 (sin  x)2, the ‘outside’ function is g (u)  5  u 2, 

and the ‘inside’ function is h(x) 5 sin  x.
 By the chain rule, f (x) 5 g 9(h(x))h9(x)
  5 2(sin  x)1cos  x .
 Therefore, f 9(x) 5 2  sin  x cos  x .

b) The expression sin  x 2 is equivalent to sin(x 2), and is not (sin  x)2. 
 Hence, if f (x) 5 g (h(x)) 5 sin(x 2), the ‘outside’ function is g (u)  5  sin  u, 

and the ‘inside’ function is h(x) 5 x 2.
 By the chain rule, f (x) 5 g 9 (h(x))h9(x)
  5 cos(x 2)2x  .
 Therefore, f 9(x) 5 2x  cos(x 2) .

c) f (x) 5 g (h(x)) 5 e sin   x ⇒   ‘outside’ function is g (u) 5 eu; 
‘inside’ function is h(x) 5 sin  x

 By the chain rule, f 9(x) 5 g 9(h(x))h 9(x).

 Therefore, f 9(x) 5 e sin   x cos  x .

d) First change from radical (surd) form to rational exponent form:

 f (x) 5  3 √
________

 (7 2 5x)2   5 (7 2 5x )    
2
 _ 3    

 f (x) 5 g (h(x)) 5 (7 2 5x )   
2
 _ 3    

 ⇒ ‘outside’ function g(u) 5  u    
2
 _ 3   ; ‘inside’ function h(x) 5 7 2 5x

 By the chain rule, f 9(x) 5 g9(h(x))    h9(x)

  5   2 _ 3   (7 2 5x) 2   
1
 _ 3       (25).

 Therefore, f 9(x) 5​2 ​​ 10 _________ 
3(7 2 5x )​

​​1 _ 
3
 ​
​
​​ or 2 ​​ 10 __________ 

3( 
3
 √
______

 7 2 5x  )
  .

 Hint: Aim to write a function in 
a way that eliminates any confusion 
regarding the argument of the 
function. For example, write sin(x 2) 
rather than sin x 2; 1 1 ln x rather 
than ln x 1 1; 5 1  √

__
 x   rather than  

√
__

 x   1 5.
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The derivative of exponential functions bx 
(b . 0, b  1)
In the previous section, we established the derivative rule for the 
exponential function when the base b is equal to the quite special irrational

number e :   d ___ 
dx

   (e x) 5 e x. What about an exponential function with a base b 

other than e ? Remember that b must be positive and not equal to 1. We can 
use the laws of logarithms to write b x in terms of e x. Recall from Section 
4.5 that b log

b
  x 5 x, and if b 5 e then e ln  x 5 x. Hence, b x 5 e x  ln  b because 

e x  ln  b 5 e ln(b  x) 5 b x. We can now find the derivative of b x by applying the 
chain rule to its equivalent expression e x  ln  b.

y 5 f (g(x)) 5 e x  ln  b ⇒ ‘outside’ function is f (u) 5 e u f 9(u) 5 e u

  ⇒ ‘inside’ function is g(x) 5 x  ln b g 9(x) 5 ln b 
   [ln b is a constant]

    
dy

 ___ 
dx

    5 f 9(g(x))    g9(x) 5 e x  ln  b    ln b

   
dy

 ___ 
dx

    5 b x  ln b

Therefore,   d ___ 
dx

    (bx) 5 b x ln b.

This result agrees with the fact that   d ___ 
dx

   (e x) 5 e x. Using this ‘new’ general 

rule,   d ___ 
dx

  (b x)  5  b x ln b, then   d ___ 
dx

  (e x) 5 e x ln e. Since ln e 5 1, then   d ___ 
dx

  (e x)  5  e x.

The derivative of b x

For b . 0 and b  1, if f (x) 5 b x, then f 9(x) 5 b x ln b. Or, in Leibniz notation,

   d ___ 
dx  (b x) 5 b x ln b.

This result now answers the question we posed near the end of Section 
13.1. In that section, we used the definition of the derivative to determine 
that the derivative of the general exponential function f (x) 5 b x is 
b x    f 9(0), where f 9(0) is the slope of the graph at x 5 0. From our result 
above, we can see that for a specific base b, the slope of the curve y 5 b x 
when x 5 0 is ln b. The first screen image below is from Section 13.1 and 
shows the value of f 9(0) for b 5 2, 3 and   1 _ 2  . Evaluating ln 2, ln 3 and ln (   1 _ 2   )  
on a GDC confirms that f 9(0) is equal to ln b.

nDeriv(2ˆX,X,0)
.6931472361

nDeriv(3ˆX,X,0)
1.09861251

nDeriv((1/2)ˆX,X
,0)

-.6931472361

ln(2)
.6931471806

ln(3)
1.098612289

ln(1/2)
-.6931471806
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 1 Find the derivative of each function.

a) y 5 (3x 2 8)4 b) y 5  √
_____

 1 2 x  

c) y 5 ln  (x2) d) y 5 2 sin  (   x __ 
2

   ) 

e) y 5 (x2 1 4)22 f ) y 5 e23x

g) y 5   1 _______ 
 √

_____
 x 1 2  
   h) y 5 cos2 x

i) y 5 e x  2​2​2x j) y 5   1 ___________ 
3x2 2 5x 1 7

  

k) y 5  
3
 √
______

 2x 1 5   l) y 5 ln(x 2 2 9)

 2 Find the equation of the line tangent to the given curve at the specified value of 
x. Express the equation exactly in the form y 5 mx 1 c.

a) y 5 (2x2 2 1)3 x 5​21

b) y 5  √
_______

 3x2 2 2   x 5 3

c) y 5 sin  2x  x 5 p

 3 An object moves along a line so that its position s relative to a starting point at 
any time t > 0 is given by s(t) 5 cos(t2 2 1).

a) Find the velocity of the object as a function of t.

b) What is the object’s velocity at t 5 0?

c) In the interval 0 , t , 2.5, find any times (values of t) for which the object is 
stationary.

d) Describe the object’s motion during the interval 0 , t , 2.5.

 4 In a) – f ), find   
dy

 __ 
dx

  . Use your GDC to check your answer.

a) y 5  √
__________

 x2 1 2x 1 1   b) y 5   1 ____ sin x  

c) y 5 (x 1  √
__

 x  )3 d) y 5 e cos   x

e) y 5 (ln  x)2 f ) y 5   3 ________ 
 √

______
 2x 1 1  
  

For questions 5–7, find the equation of a) the tangent, and b) the normal to the 
curve at the given point.

 5 y 5   2 ______ x2 2 8
    at (3, 2)

 6 y 5  √
______

 1 1 4x   at (2, 3)

 7 y 5 ln(4x 2 3) at (1, 0)

 8 Consider the exponential function f (x) 5 2x.

a) Find f 9(x).

b) Find the equation of the tangent to the graph of f at the point (0, 1).

c) Explain why the graph of f has no stationary points.

 9 Consider the trigonometric curve y 5 sin ( 2x 2   p​__ 2   ) .

a) Find   
dy

 ___ 
dx   and   

d2y
 ___ 

dx2   .

b) Find the exact coordinates of any inflexion points for the curve in the interval  
0 , x , p.

Exercise 13.2
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The product rule
With the differentiation rules that we have learned thus far we can 
differentiate some functions that are products. For example, we can 
differentiate the function f (x) 5 (x 2 1 3x)(2x 2 1) by expanding and then 
differentiating the polynomial term-by-term. In doing so, we are applying 
the sum and difference, constant multiple and power rules from Section 
11.2.

  f (x) 5 (x 2 1 3x)(2x 2 1) 5 2x3 1 5x2 2 3x

  f 9(x) 5 2   d ___ 
dx

   (x3) 1 5   d ___ 
dx

   (x2) 2 3   d ___ 
dx

  (x)

 f 9(x) 5 6x2 1 10x 2 3

The sum and difference rule states that the derivative of a sum/difference 
of two functions is the sum/difference of their derivatives. Perhaps 
the derivative of the product of two functions is the product of their 
derivatives. Let’s try this with the above example.

  f (x) 5 (x 2 1 3x)(2x 2 1)

  f 9(x) 5   d ___ 
dx

   (x 2 1 3x)      d ___ 
dx

    (2x 2 1)?

 f 9(x) 5 (2x 1 3)    2?

 f 9(x) 5 4x 1 6? However, 4x 1 6  6x 2 1 10x 2 3 .

Thus, one important fact we have learned from this example is that 
the derivative of a product of two functions is not the product of their 
derivatives. However, there are many products, such as  
y 5 (4x 2 3)3(x 2 1)4 and f (x) 5 x 2 sin  x, for which it is either difficult or 
impossible to write the function as a polynomial. In order to differentiate 
functions like this, we need a ‘product’ rule.

The product and quotient rules13.3

Gottfried Wilhelm Leibniz (1646–1716)

Leibniz was a German philosopher, mathematician, scientist and professional 
diplomat – and, although self-taught in mathematics, was a major contributor 
to the development of mathematics in the 17th century. He developed the 
elementary concepts of calculus independent of, but slightly after, Newton. 
Nevertheless, the notation that Leibniz created for differential and integral calculus 
is still in use today. Leibniz’ approach to the development of calculus was more 
purely mathematical, whereas Newton’s was more directly connected to solving 
problems in physics. Leibniz created the idea of differentials (infinitely small 
differences in length), which he used to define the slope of a tangent, before the 
modern concept of limits was fully developed. Thus, Leibniz considered the 

derivative   
dy

 ___ 
dx   as the quotient of two differentials, dy and dx. Though it caused 

some confusion and consternation in his time (and to some extent still), Leibniz 
manipulated differentials algebraically to establish many of the important 
differentiation rules – including the product rule.
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The product rule
If y is a function in terms of x that can be expressed as the product of two functions u and 
v that are also in terms of x, the product y 5 uv can be differentiated as follows:

  
dy

 ___ 
dx   5   d ___ 

dx  (uv) 5 u   dv ___ 
dx   1 v   du ___ 

dx  

or, equivalently, if y 5 f (x)    g(x), then

   
dy

 ___ 
dx   5   d ___ 

dx   [f (x)    g(x)] 5 f (x)    g9(x) 1 g(x)    f 9(x)

Although a formal proof of the product rule is beyond the scope of this 
book, we can provide sufficient support for the result by considering the 
relationship between the functions u, v and y when there is a small change 
in the variable x. Recall that the definition of the derivative (Section 11.2) 

is essentially the limit of   
change in y

 __________ 
change in x

   as the ‘change in x’ goes to zero. 

Let dx (read ‘delta x’) and dy represent small changes in x and y, 

respectively. As dx → 0, then   
dy

 ___ 
dx

   →   
dy

 ___ 
dx

  , i.e. the derivative of y with respect

to x. Any small change in x, i.e. dx, will cause small changes, du and dv, in 
the values of functions u and v respectively. Since y 5 uv, these changes 
will also cause a small change, dy, in the value of function y.

Now consider the rectangles in Figure 13.9.

The area of the first smaller rectangle is y 5 uv.

The values of u and v then increase by du and dv respectively.

The area of the larger rectangle is y 1 dy 5 uv 1 udv 1 vdu 1 dudv.

The product uv changes by the amount dy 5 udv 1 vdu 1 dudv.

Dividing through by dx:   
dy

 ___ 
dx

   5 u   dv ___ 
dx

   1 v    du ___ 
dx

   1 du    dv ___ 
dx

  .

Let dx  →  0 and du  →  0, then:

​​
dy

 ___ 
dx

   5 u    dv ___ 
dx

   1 v    du ___ 
dx

   1 du    dv ___ 
dx

    ⇒    
dy

 ___ 
dx

   5 u    dv ___ 
dx

   1 v    du ___ 
dx

   1 0      dv ___ 
dx

  

Giving,   
dy

 ___ 
dx

   5 u    dv ___ 
dx

   1 v    du ___ 
dx

  , the product rule.

Example 7 

Use the product rule to compute the derivative of the function 
y 5 (x 2 1 3x)(2x 2 1), from the start of this section.

Solution

Recall y 5 (x 2 1 3x)(2x 2 1) 5 2x 3 1 5x 2 2 3x ⇒   
dy

 ___ 
dx

   5 6x 2 1 10x 2 3.

Let u (x) 5 x 2 1 3x and v (x) 5 2x 2 1, then y 5 u(x)    v (x) or simply y 5 uv.

By the product rule (in Leibniz form),

   
dy

 ___ 
dx

   5   d ___ 
dx

    (uv) 5 u    dv ___ 
dx

    1 v    du ___ 
dx

   5 (x 2 1 3x)    2 1 (2x 2 1)    (2x 1 3)

  5 (2x 2 1 6x) 1 (4x 2 1 4x 2 3)

  5 6x 2 1 10x 2 3

This result agrees with the derivative we obtained earlier from 
differentiating the expanded polynomial.

uv

u

v

uv vδu

uδv δuδv

u δu

v
u � δv

v � δu

δv

Figure 13.9
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Example 8 

Given y 5 x 2 sin x, find   
dy

 ___ 
dx

  .

Solution

Let y 5 f (x)    g (x) 5 x 2 sin x ⇒ f (x) 5 x 2 and g (x) 5 sin x

By the product rule (function notation form),

   
dy

 ___ 
dx

   5   d ___ 
dx

   [f (x)    g (x)] 5 f (x)    g 9(x) 1 g (x)    f 9(x)

  5 x 2    cos x 1 (sin x)    2x

   
dy

 ___ 
dx

   5 x 2 cos x 1 2x  sin x

As with the chain rule, it is very helpful to remember the structure of the 
product rule in words.

 first factor second factor

  
  
dy

 ___ 
dx

   5   d ___
 

dx
   [f (x)    g (x)] 5 f (x)    g 9(x) 1 g (x)    f 9(x)

     
 product of 

5
 first 

3
 derivative 

1
 second 

3
 derivative

 two functions,  factor  of second  factor  of first
 i.e. factors    factor    factor

Example 9 

Find the exact coordinates of any stationary points, and any inflexion 
points, for the curve y 5 xe x. Classify any stationary points as a maximum, 
minimum or neither.

Solution

Recall from Chapter 11 that stationary points occur where the first 
derivative is zero and that inflexion points (where concavity changes) may 
occur where the second derivative is zero.

   
dy

 ___ 
dx

   5   d ___ 
dx

   [f (x)    g (x)] 5 f (x)    g 9(x) 1 g (x)    f 9(x)

  5   d ___ 
dx

   (xe x) 5 x   d ___ 
dx

   (e x) 1 e x   d ___ 
dx

   (x)

    
dy

 ___ 
dx

   5 xe x 1 e x 5 0 ⇒ e x(x 1 1) 5 0 ⇒   
dy

 ___ 
dx

   5 0 when x 5 21

When x 5 21, y 5 2e21 5 2   1 __ e    ⇒ Therefore, the curve has a 

stationary point at  ( 21, 2  1 __ e   ) .

   
d 2y

 ___ 
dx 2

   5   d ___ 
dx

   (xe x 1 e x) 5   d ___ 
dx

   (xe x) 1   d ___ 
dx

    e x

  5 (xe x 1 e x) 1 e x

   
d 2y

 ___ 
dx 2

   5 xe x 1 2e x 5 0  ⇒  e x(x 1 2) 5 0 ⇒   
d 2y

 ___ 
dx 2

   5 0 when x 5 22
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An inflexion point will occur at x 5 22 if the sign of the second derivative 

changes (i.e. concavity changes) at that point. Find the sign of   
d 2y

 ___ 
dx 2

   at test 
points x 5 23 and x 5 0.

At x 5 23,   
d 2y

 ___ 
dx 2

   5 e23(23 1 2) 5 2  1 __ 
e 3

   , 0; 

and at x 5 0,   
d 2y

 ___ 
dx 2

   5 e 0(0 1 2) 5 2 . 0.

The second derivative undergoes a sign change at x 5 22; hence, there is an 

inflexion point on the curve at that point. When x 5 22, y 5 22e22 5 2  2 __ 
e 2

  .

Therefore, the curve has an inflexion point at  ( 22, 2  2 __ 
e 2

   ) .

We can use the second derivative test to classify the stationary point  ( 21, 2  1 __ e   ) .

At x 5 21,   
d 2y

 ___ 
dx 2

   5 e21(21 1 2) 5   1 __ e   . 0 ⇒ curve is concave up at x 5 21.

Therefore, the stationary point  ( 21, 2  1 __ e   )  is a minimum point for the curve.

It’s good practice to perform a graphical check of our results on a GDC.

The graph on the GDC not only visually confirms our results but also informs 

us that  ( 21, 2  1 __ e   )  is an absolute minimum.

The quotient rule
Recall that at the end of Section 13.1 we attempted to conjecture the derivative 
of the tangent function. We graphed its derivative on a GDC (shown again 
here) but could not think of a function that matched the graph. We do know 
the derivatives of sin x and cos x, so perhaps we can use these results and the 

fact that tan x 5   sin x ____ cos x   to differentiate tan x. We will need a ‘quotient’ rule.

Plot1

Y1= Xe (̂ X)
Plot2 Plot3 Y1=Xeˆ(X)

X=-1 Y=-.3678794

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-4
Xmax=1
Xscl=1
Ymin=–.6
Ymax=1
Yscl=1
Xres=1

-1/e
-.3678794412

-2/e2
-.2706705665

Y1=Xeˆ(X)

X=-2 Y=-.2706706

Plot1

Y1= tan(X)
Plot2 Plot3

Y2= nDeriv(Y1,X,

Y3=
Y4=
Y5=
Y6=

X)
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The quotient rule
If y is a function in terms of x that can be expressed as the quotient of two functions u 
and v that are also in terms of x, the quotient y 5   u __ v   can be differentiated as follows:

  
dy

 ___ 
dx   5   d ___ 

dx    (   u __ v   )  5   
v   du ___ 

dx   2 u   dv ___ 
dx  
 __________ 

v 2
  

or, equivalently, if y 5   
f (x)

 ____ 
g (x)

  , then

  
dy

 ___ 
dx   5   d ___ 

dx    [   f (x)
 ____ 

g (x)
   ]  5   

g (x)    f 9(x) 2 f (x)    g9(x)
  ____________________  

[g (x)]2  

For the sake of remaining within the scope of this course, we will forego 
a detailed justification of the quotient rule. As with the chain rule and the 
product rule, it is helpful to recognize the structure of the quotient rule by 
remembering it in words:

 (   derivative                      
of quotient

   )  =    
(denominator) 3  (   derivative of                      numerator   )  2 (numerator)  (   derivative of       

denominator
  ) 
     ________________________________________________   

(denominator)2  

Example 10 

Determine the derivative of f (x) 5 tan x by using the quotient rule to 

differentiate   sin x ____ cos x  .

Solution

y 5   u __ v   5   sin x ____ cos x   ⇒ u 5 sin x and v 5 cos x

By the quotient rule (Leibniz form),

   
dy

 ___ 
dx

   5   d ___ 
dx

    (   u __ v   )  5   
v    du ___ 

dx
   2 u   dv ___ 

dx
  
 __________ 

v 2
   5   

cos x    cos x 2 sin x(2sin x)
  ______________________  

cos2 x
   

  5   cos2 x 1 sin2 x  ____________ 
cos2 x

    

   
dy

 ___ 
dx

    5   1 _____ 
cos2 x

      applying Pythagorean identity sin2 x 1 cos2 x 5 1

Therefore, the derivative of tan x is   1 _____ 
cos2 x

  .

Let’s see if the graph of y 5   1 _____ 
cos2 x

   matches with the graph of the derivative 

that we produced on our GDC. Remember to use radian mode.

It matches … and a nice application of the quotient rule that completes 
our derivative rules for trigonometric functions. 

Plot1

Y1=  1/(cos(X))2
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1.570796…
Xmax=7.8539816…
Xscl=π/2
Ymin=–3
Ymax=3
Yscl=1
Xres=1
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The derivative of the tangent function

If f (x) 5 tan x, then f 9(x) 5   1 _____ 
cos2 x  . Or, in Leibniz notation,   d ___ 

dx   (tan x) 5   1 _____ 
cos2 x  .

This result is only true when x is in radian measure.

Example 11 

Given y 5   1 ______ 
2x 2 3

  , find   
dy

 ___ 
dx

   by:

a) the quotient rule b) the chain rule.

Solution

a) y 5   
f (x)

 ____ 
g (x)

   5   1 ______ 
2x 2 3

   ⇒ f (x) 5 1 and g (x) 5 2x 2 3

 By the quotient rule (function notation form),

   
dy

 ___ 
dx

   5   d ___ 
dx

   [   f (x)
 ____ 

g (x)
   ]  5   

g (x)    f 9(x) 2 f (x)    g9(x)
  ____________________  

[g (x)]2  

   5   
(2x 2 3)    0 2 1    (2)

  _________________  
(2x 2 3)2  

    
dy

 ___ 
dx

   5   22 ________ 
(2x 2 3)2  

b) y 5 f (g (x)) 5   1 ______ 
2x 2 3

   5 (2x 2 3)21 ⇒ ‘outside’ function is f (u) 5 u21

   ⇒ f 9(u) 5 2u22

   ⇒ ‘inside’ function is g (x) 5 2x 2 3

 By the chain rule (function notation form),

   
dy

 ___ 
dx

   5 f 9(g (x))    g 9(x) 5 2(2x 2 3)22    2

   
dy

 ___ 
dx

   5 2   2 ________ 
(2x 2 3)2  

As Example 11 illustrates, when required to differentiate a quotient, you 
can choose to rewrite the quotient y 5   u __ v   as y 5 uv21, thereby applying the 
product rule instead of the quotient rule.

Example 12 

For each function, find its derivative (i) by the quotient rule, and (ii) by 
another method.

a) f (x) 5   3x 2 2 ______ 
2x 2 5

   b) g (x) 5   5x 2 1 ______ 
3x 2

  

Solution 

a) (i) f (x) 5 y 5   u __ v   5   3x 2 2 ______ 
2x 2 5

  

  f 9(x) 5   
dy

 ___ 
dx

   5   
v   du ___ 

dx
   2 u   dv ___ 

dx
  
 __________ 

v 2
   5   

(2x 2 5)    3 2 (3x 2 2)    2
  ______________________  

(2x 2 5)2  

   5   6x 2 15 2 6x 1 4  _______________  
(2x 2 5)2   

  f 9(x) 5   211 ________ 
(2x 2 5)2  
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 (ii)  Rewrite f (x) as a product and apply the product rule (with chain 
rule embedded):

  f (x) 5 y 5   3x 2 2 ______ 
2x 2 5

   5 (3x 2 2)(2x 2 5)21

    ⇒ for y 5 uv, u 5 3x 2 2 and v 5 (2x 2 5)21

 Note: v 5 (2x 2 5)21 is a composite function, so we’ll need the 

 chain rule to find   dv ___ 
dx

   .

 f 9(x) 5   d ___ 
dx

   (uv) 5 u    dv ___ 
dx

   1 v    du ___ 
dx

   

  5 (3x 2 2)      d ___ 
dx

   [ (2x 2 5)21 ]  1 (2x 2 5)21    3

  5 (3x 2 2) [ 2(2x 2 5)22    2 ]  1 3(2x 2 5)21

    chain rule applied for   d ___ 
dx

    [ (2x 2 5)21 ] 

  5 (26x 1 4)(2x 2 5)22 1 3(2x 2 5)21

  5 (2x 2 5)22[(26x 1 4) 1 3(2x 2 5)]
    factorizing out GCF of (2x 2 5)22

  5 (2x 2 5)22[26x 1 4 1 6x 2 15]

 f 9(x) 5   211 ________ 
(2x 2 5)2  

b) (i) g (x) 5 y 5   u __ v   5   5x 2 1 ______ 
3x 2

  

  g 9(x) 5   
dy

 ___ 
dx

   5   
v   du ___ 

dx
   2 u   dv ___ 

dx
  
 __________ 

v 2
   5   

3x 2    5 2 (5x 2 1)    6x
  __________________  

(3x 2)2  

    5   15x 2 2 30x 2 1 6x  _______________ 
9x 4

  

    5   
3x(25x 1 2)

 ___________ 
9x 4

  

   g 9(x) 5   25x 1 2 ________ 
3x 3

  

 (ii) Using algebra, ‘split’ the numerator:

  g(x) 5   5x 2 1 ______ 
3x 2

   5   5x ___ 
3x 2

   2   1 ___ 
3x 2

   5   5 __ 
3x

   2   1 ___ 
3x 2

   5   5 __ 
3

   x 21 2   1 __ 
3

   x 22

 Now, differentiate term-by-term using the power rule:

 g 9(x) 5   5 __ 
3

     d ___ 
dx

  (x21) 2   1 __ 
3

     d ___ 
dx

  (x22)

  5   5 __ 
3

  (2x22) 2   1 __ 
3

  (22x23)

 g 9(x) 5 2   5 ___ 
3x 2

   1   2 ___ 
3x 3

  

 [ Results for (i) and (ii) are equivalent: 

2   5 ___ 
3x 2

   1   2 ___ 
3x 3

   5 2   5 ___ 
3x 2

        x __ x   1   2 ___ 
3x 3

   5   25x ____ 
3x 3

   1   2 ___ 
3x 3

   5   25x 1 2 _______ 
3x 3

   ] 

As Example 12 demonstrates, before differentiating a quotient, it is 
worthwhile to consider if performing some algebra may allow other more 
efficient differentiation techniques to be used.
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 Hint: The function h(x) 5   3x2
 ______ 5x 2 1   initially looks similar to the function g in Example 12, 

part b) (they’re reciprocals). However, it is not possible to ‘split’ the denominator and express 

as two fractions. Recognize that   3x2
 ______ 5x 2 1   is not equivalent to   3x2

 ___ 5x   2   3x2
 ___ 1  . Hence, in order to 

differentiate h(x) 5   3x2
 ______ 5x 2 1   we would apply either the quotient rule, or the product rule 

with the function rewritten as h(x) 5 3x2 (5x 2 1)21 and using the chain rule to 
differentiate the factor (5x 2 1)21.

 1 Find the derivative of each function.
a) y 5 x 2e x b) y 5 x √

_____
 1 2 x   c) y 5 x  ln  x

d) y 5 sin  x cos  x e) y 5   e x __ x   f ) y 5   x 1 1 _____ x 2 1
  

g) y 5 (2x 2 1)3(x 4 1 1) h) y 5   sin  x ____ x    i) y 5   x ______ 
e x 2 1

  

j) y 5   6x 2 7 ______ 3x 1 2   k) y 5 (x 2 2 1) ln(3x) l) y 5   1 ____________  
sin2 x 1 cos2  x  

 2 Find the equation of the line tangent to the given curve at the specified value of 
x. Express the equation exactly in the form y 5 mx 1 c.

a) y 5   8 ______ 
4 1 x 2

   x 5 2

b) y 5   x 3 1 1 ______ 
2x    x 5 1

c) y 5 x √
______

 x 2 2 3    x 5 2

 3 Consider the function h(x) 5   x 2 2 3 ______ 
e x

   .

a) Find the exact coordinates of any stationary points.

b) Determine whether each stationary point is a maximum, minimum or neither.

c) What do the function values approach as (i) x → , and (ii) x → 2 . 

d) Write down the equation of any asymptotes for the graph of h(x).

e) Make an accurate sketch of the curve indicating any extrema and points 
where the graph intersects the x- and y-axis.

 4 Use the product rule to prove the constant multiple rule for differentiation. That 

 is, show that   d ___ 
dx   (c    f (x)) 5 c      d ___ 

dx   (f (x)) for any constant c.

 5 A curve has equation y 5 x(x 2 4)2.

a) For this curve, find
 (i) the x-intercepts
 (ii) the coordinates of the maximum point
 (iii) the coordinates of the point of inflexion.

b) Use your answers to part a) to sketch a graph of the curve for 0 < x < 4, 
clearly indicating the features you have found in part a).

 6 Consider the function f (x) 5   x 2 2 3x 1 4 ___________ 
(x 1 1)2  .

a) Show that f 9(x) 5   5x 2 11 _______ 
(x 1 1)3  .

b) Show that f 0(x) 5   210x 1 38 __________ 
(x 1 1)4  .

c) Does the graph of f have an inflexion point at x 5 3.8? Explain.

Exercise 13.3
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Many problems in science and mathematics involve finding the maximum 
or minimum value (optimum value) of a function over a specified or 
implied domain. The development of the calculus in the seventeenth century 
was motivated to a large extent by maxima and minima (optimization) 
problems. One such problem lead Pierre de Fermat (1601–1665) to develop 
his Principle of Least Time: a ray of light will follow the path that takes the 
least (or minimum) time. The solution to Fermat’s principle lead to Snell’s 
law, or law of refraction (see the investigation at end of this section). The 
solution is found by applying techniques of differential calculus – which can 
also be used to solve other optimization problems involving ideas such as 
least cost, maximum profit, minimum surface area and greatest volume.

Previously, we learned the theory of how to use the derivative of a function 
to locate points where the function has a maximum or minimum (i.e. 
extreme) value. It is important to remember that if the derivative of a 
function is zero at a certain point it does not necessarily follow that the 
function has an extreme value (relative or absolute) at that point – it only 
ensures that the function has a horizontal tangent (stationary point) at that 
point. An extreme value may occur where the derivative is zero or at the 
endpoints of the function’s domain. 

The graph of f (x) 5 x 4 2 8x 3 1 18x 2 2 16x 2 2 is shown right. The 
derivative of f (x) is f 9(x) 5 4x 3 2 24x 2 1 36x 2 16 5 4(x 2 4)(x 2 1)2. The 
function has horizontal tangents at both x 5 1 and x 5 4, since the derivative 
is zero at these points. However, an extreme value (absolute minimum) 
occurs only at x 5 4. It is important to confirm – graphically or algebraically 
– the precise nature of a point on a function where the derivative is zero. 
Some different algebraic methods for confirming that a value is a maximum 
or minimum will be illustrated in the examples that follow.

It is also useful to remember that one can often find extreme values 
(extrema) without calculus (e.g. using a ‘minimum’ command on a 
graphics calculator, as shown). Calculator or computer technology can be 
very helpful in modelling, solving or confirming solutions to optimization 
problems. However, it is important to learn how to apply algebraic 
methods of differentiation to optimization problems because it may be the 
only efficient way to obtain an accurate solution.

Let’s start with a relatively straightforward example. We can use the steps 
in the solution to develop a general strategy that can be applied to more 
sophisticated problems.

Example 13 

(Developing a general strategy.)

Find the maximum area of a rectangle inscribed in an isosceles right 
triangle whose hypotenuse is 20  cm long.

Optimization13.4

Minimum
X=4.0000008 Y=-34

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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Solution

Step 1:  Draw an accurate diagram. Let the base of the rectangle be 
x  cm and the height y  cm. Then the area of the rectangle is 
A 5 xy  cm2.

Step 2: Express area as a function in terms of only one variable.

 It can be deduced from the diagram that y 5 10 2   x __ 
2

  .

 Therefore, A(x) 5 x  ( 10 2   x __ 
2

   )  5 10x 2   x 2 __ 
2

  .

 x must be positive and from the diagram it is clear that x 
must be less than 20 (domain of A: 0 , x , 20).

Step 3: Find the derivative of the area function and find for what value(s) 
of x it is zero. 

 A9(x) 5 10 2 x   A9(x) 5 0 when x 5 10

Step 4: Analyze A(x) at x 5 10 and also at the endpoints of the domain, 
x 5 0 and x 5 20.

The second derivative test (Section 11.3) provides information about 
the concavity of a function. The second derivative is A0(x) 5 21 
and since A0(x) is always negative then A(x) is always concave down, 
indicating A(x) has a maximum at x 5 10.

A(0) 5 0 and A(20) 5 0, indicating A(x) has an absolute 
maximum at x 5 10.

Therefore, the rectangle has a maximum area equal to 

A(10) 5 10 ( 10 2   10 ___ 
2

   )  5 50  cm2.

General strategy for solving optimization 
problems
Step 1: Draw a diagram that accurately illustrates the problem. Label all 

known parts of the diagram. Using variables, label the important 
unknown quantity (or quantities) (for example, x for base and y for 
height in Example 13).

Step 2: For the quantity that is to be optimized (area in Example 13), 
express this quantity as a function in terms of a single variable. 
From the diagram and/or information provided, determine the 
domain of this function.

Step 3: Find the derivative of the function from Step 2, and determine 
where the derivative is zero. This value (or values) of the derivative, 
along with any domain endpoints, are the critical values 
(x 5 0, x 5 10 and x 5 20 in Example 13) to be tested.

Step 4: Using algebraic (e.g. second derivative test) or graphical (e.g. GDC) 
methods, analyze the nature (maximum, minimum, neither) of the 
points at the critical values for the optimized function. Be sure to 
answer the precise question that was asked in the problem.

45°

45°

45°

10 �
20 cm

x
2x

y
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Example 14 

(Finding a minimum length – two posts problem.)

Two vertical posts, with heights of 7  m and 13  m, are secured by a rope 
going from the top of one post to a point on the ground between the posts 
and then to the top of the other post. The distance between the two posts 
is 25  m. Where should the point at which the rope touches the ground be 
located so that the least amount of rope is used?

Solution

Step 1: An accurate diagram is drawn. The posts are drawn as line 
segments PQ and TS and the point where the rope touches the 
ground is labelled R. The optimum location of point R can be 
given as a distance from the base of the shorter post, QR, or from 
the taller post, SR. It is decided to give the answer as the distance 
from the shorter post – and this is labelled x. There are two other 
important unknown quantities: the lengths of the two portions of 
the rope, PR and TR. These are labelled a and b, respectively. 

Step 2: The quantity to be minimized is the length L of the rope, which is 

 the sum of a and b. From Pythagoras’ theorem, a 5  √
_______

 x 2 1 49   and 

 b 5  √
______________

  (25 2 x)2 1 169  . Therefore, the function for length (L) can 
be expressed in terms of the single variable x as

 L(x) 5  √
_______

 x 2 1 49   1  √
______________

  (25 2 x)2 1 169  

  5  √
_______

 x 2 1 49   1  √
___________________

  x 2 2 50x 1 625 1 169  

   ⇒ L(x) 5  √
_______

 x 2 1 49   1  √
_____________

  x 2 2 50x 1 794  

 From the given information and diagram, the domain of  
L(x) is 0 < x < 25.

Step 3:  To facilitate differentiation, express L(x) using fractional exponents:

  L(x) 5 (x 2 1 49 )   
1
 _ 2    1 (x 2 2 50x 1 794 )   

1
 _ 2   

 Then apply the chain rule for differentiation:

    dL ___ 
dx

   5   1 _ 2  (x 2 1 49 ) 
2​​1 _ 

2
  
 (2x) 1   1 _ 2   (x 2 2 50x 1 794 ) 

2​​1 _ 
2
  
  (2x 2 50) ⇒

    dL ___ 
dx

   5   x ________ 
 √

_______

 x 2 1 49  
   1   x 2 25 _______________  

 √
_____________

  x 2 2 50x 1 794  
  

 By setting   dL ___ 
dx

   5 0, we obtain

  x √
_____________

  x 2 2 50x 1 794   5 2 (x 2 25) √
_______

 x 2 1 49  

  x 2(x 2 2 50x 1 794) 5 (25 2 x)2(x 2 1 49)

  x 4 2 50x 3 1 794x 2 5 x 4 2 50x 3 1 674x 2 2 2450x 1 30  625

  120x 2 1 2450x 2 30  625 5 0

  5(4x 2 35)(6x 1 175) 5 0

 x 5   35 ___ 4   or x 5 2   175 ___ 
6

  

25 m

13 m

7 m

Q

P

T

b

a

SRx 25 � x
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Step 4: Since x 5 2   175 ___ 
6

   is not in the domain for L(x), then the critical 

 values are x 5 0, x 5   35 ___ 4   and x 5 25. Simply evaluate L(x) for these 
critical values. 

 L(0) 5 7 1  √
____

 794   < 35.18, L(25) 5  √
____

 674   1 13 < 38.96, 

 L  (   35 ___ 4   )  5 5 √
___

 41   < 32.02

 Therefore, the rope should touch the ground at a distance of  

   35 ___ 4   5 8.75  m from the base of the shorter post, to give a minimum 
rope length of approximately 32.02  m.

The minimum value could also be confirmed from the graph of L(x), but 
it would be difficult to confirm using the second derivative test because 
of the algebra required. From this example, we can see that applied 
optimization problems can involve a high level of algebra. If you have 
access to suitable graphing technology, you could perform Steps 3 and 4 
graphically rather than algebraically.

It is interesting to observe that the result for x produced by the calculator 
does not appear to be exact. Why is that? Algebraic techniques using 
differentiation give us the certainty of an exact solution while also allowing 
us to deal with the abstract nature of optimization problems involving 
parameters rather than fixed measurements (e.g. the heights of the posts). 

In both Example 13 and 14, the extreme value occurred at a point where 
the derivative was zero. Although this often happens, an extreme value may 
occur at the endpoint of the domain.

Example 15 

(An endpoint maximum.)

A supply of four metres of wire is to be used to form a square and a circle. 
How much of the wire should be used to make the square and how much 
should be used to make the circle in order to enclose the greatest amount 
of area? Guess the answer before looking at the following solution.

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

WINDOW
Xmin=0
Xmax=25
Xscl=5
Ymin=0
Ymax=40
Yscl=5
Xres=1

Plot1

Y1= √(X2+49)+√(X
Plot2 Plot3

2-50X+794)

Y3=
Y2=

Y4=
Y5=
Y6=

Minimum
X=8.7499988 Y=32.015621
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Solution

Step 1: Let x 5 length of each edge of the square and r 5 radius of the circle.

Step 2: The total area is given by A 5 x 2 1 pr 2. The task is to write the 
area A as a function of a single variable. Therefore, it is necessary 
to express r in terms of x, or vice versa, and perform a substitution. 

 The perimeter of the square is 4x  and the circumference of the 
circle is 2pr. The total amount of wire is 4 m which gives 

 4 5 4x 1 2pr ⇒ 2pr 5 4 2 4x ⇒ r 5   
2(1 2 x)

 ________ p​ ​

 Substituting gives A(x) 5 x 2 1 p  [   2(1 2 x)
 ________ p​ ​​]​​2 5 x 2 1   

4(1 2 x)2

 ________ p​ ​ 

   5   1 __ p​​[(p 1 4)x 2 2 8x 1 4]

 Because the square’s perimeter is 4x, then the domain for A(x) is 
0 < x < 1.

Step 3: Differentiate the function A(x), set equal to zero, and solve.

   d ___ 
dx

    (   1 __ p​​[(p 1 4)x 2 2 8x 1 4] )  5   1 __ p​​[2(p 1 4)x 2 8] 5 0

 2(p 1 4)x 2 8 5 0 ⇒ (p 1 4)x 5 4 ⇒ x 5   4 _____ 
p 1 4   < 0.5601

 The critical values are x 5 0, x < 0.5601 and x 5 1.

Step 4: Evaluating A(x): A(0) < 1.273, A(0.5601) < 0.5601 and A(1) 5 1. 
Therefore, the maximum area occurs when x 5 0 which means all 
the wire is used for the circle.

What would the answer be if Example 15 asked for the dimensions of the 
square and circle to enclose the least total area?

Example 16 

(Minimizing time.)

A pipeline needs to be constructed to link an offshore drilling rig to an 
onshore refinery depot. The oil rig is located at a distance (perpendicular 
to the coast) of 140  km from the coast. The depot is located inland at a 
distance (perpendicular) of 60  km from the coast. For modelling purposes, 
the coastline is assumed to follow a straight line. The point on the coastline 
nearest to the oil rig is 160  km from the point on the coastline nearest to 
the depot. The rate at which crude oil is pumped through the pipeline 
varies according to several variables, including pipe dimensions, materials, 
temperature, etc. On average, oil flows through the offshore section of the 
pipeline at a rate of 9  km per hour and 5  km per hour through the onshore 
section. Assume that both sections of pipeline can travel straight from 
one point to another. At what point should the pipeline intersect with the 
coastline in order for the oil to take a minimum amount of time to flow 
from the rig to the depot?

4 m

r

x

x

xx

WINDOW
Xmin=0
Xmax=1
Xscl=1
Ymin=0
Ymax=1.5
Yscl=1
Xres=1

Plot1 Y1=(1/π)((π+4)X2-8X+4)

X=0 Y=1.2732395

Y1= (1/π)((π+4)X
Plot2 Plot3

2-8X+4)

Y3=
Y2=

Y4=
Y5=
Y6=
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Solution

Step 1: The optimum location of the point, C, where the pipeline comes 
ashore will be designated by the distance, x, it is from the point 
on the coast that is a minimum distance (perpendicular) from 

 the rig, R (140 km). The distance from R to C is  √
________

 x 2 1 1402   and 

 the distance from D (depot) to C is  √
______________

  (160 2 x)2 1 602  . 

Step 2: The quantity to be minimized is time, so it is necessary to 
express the total time it takes the oil to flow from R to D in 
terms of a single variable. 

 time 5   distance _______ rate   ⇒ time (offshore) 5   
 √

__________

 x 2 1 19  600    km
  ______________ 

9  km/hr
  ; 

 time (onshore) 5   
 √

_________________

  x 2 2 320x 1 29  200    km
  _____________________  

5  km/hr
  

 The function for time T in terms of x is:

 T(x) 5   
 √

__________

 x 2 1 19  600  
  ___________ 

9
   1   

 √
________________

  x 2 2 320x 1 29  200  
  __________________ 5  

 and the domain for T (x) is 0 < x < 160.

Steps 3/4: The algebra for finding the derivative of T (x) is similar to that of 
Step 3 in Example 14. Let’s use graphing technology to find the 
value of x that produces a minimum for T (x).

Therefore, the optimum point for the pipeline to intersect with 
the coast is approximately 134.9 km from the point on the coast 
nearest to the drilling rig.

The result could also be obtained by having a calculator or 
computer graph the derivative of T (x) and compute any zeros 
for T 9(x) in the domain.

See the Investigation and how solving a problem similar to Example 16 
derives Snell’s law (or law of refraction). 

140 km

60 km

160 km

160 � x

C

R

D

x

Plot1

X=134.93037 Y=34.609604
Minimum

Y1= √(X2+19600)/
Plot2 Plot3

9+√(X2-320X+2920
0)/5
Y2=
Y3=
Y4=
Y5=

WINDOW
Xmin=0
Xmax=160
Xscl=10
Ymin=-.25
Ymax=.1
Yscl=.1
Xres=1

Plot1

Zero
X=134.93036 Y=0

Y1= √(X2+19600)/
Plot2 Plot3

9+√(X2-320X+2920
0)/5
Y2= nDeriv(Y1,X,
X)
Y3=
Y4=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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Investigation – Snell’s law
The speed of light depends on the medium through which light travels and 
is generally slower in denser media. The speed of light in a vacuum is an 
important physical constant and is exactly 299  792  458 m/s. A metre is defined 

to be the distance that light travels in a vacuum in   1 __________ 
299  792  458

   of a second. 

Typically, the speed of light in a vacuum (denoted by the letter c) is given the 
approximate value of 3 3 108  m/s, but in the Earth’s atmosphere light travels 
more slowly than that and even more slowly through glass and water.

Fermat’s principle in optics states that light travels from one point 
to another along a path for which time is a minimum. Investigate 
the path that a ray of light will follow in going from a point A in a 
transparent medium, where the speed of light is c1, to a point B in a 
different transparent medium, where its speed is c2, as illustrated in the 
diagram right. Using algebra and differentiation, prove that for time to 

be a minimum the following relationship must hold:   
sin u1 _____ c1

   5   
sin u2 _____ c2

  . 
This equation is known as Snell’s law or the law of refraction. Why is a 
graphics calculator not helpful? 

Assume that the two points, A and B, lie in the xy-plane and the 
x-axis (interface) separates the two media. A light ray is refracted 
(deflected) when it passes from one medium to another. u1 is the angle 
of incidence and u2 is the angle of refraction (both angles measured 
between ray and normal to the interface).

 1 Find the dimensions of the rectangle with maximum area that is inscribed in a 
semicircle with radius 1  cm. Two vertices of the rectangle are on the semicircle 
and the other two vertices are on the x-axis, as shown in the diagram.

 2 A rectangular piece of aluminium is to be rolled to make a cylinder with open 
ends (a tube). Regardless of the dimensions of the rectangle, the perimeter of 
the rectangle must be 40  cm. Find the dimensions (length and width) of the 
rectangle that gives a maximum volume for the cylinder.

 3 A rectangular box has height h  cm, width x  cm and length 2x  cm. It is designed 
to have a volume equal to 1 litre (1000  cm3).

a) Show that h 5   500 ____ x 2
    cm.

b) Find an expression for the total surface area, S  cm2, of the box in terms of x.

c) Find the dimensions of the box that produces a minimum surface area.

Exercise 13.4

x

y

O(�1, 0) (1, 0)

x

y

A

O

Medium 1

Normal

Medium 2

Interface

d � x

P

b

B

θ2

θ1

x

d

a
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​4 The figure right consists of 
a rectangle ABCD and two 
semicircles on either end. 
The rectangle has an area of 
100  cm2. If x represents the 
length of the rectangle AB, 
find the value of x that makes 
the perimeter of the entire 
figure a minimum.

 5 Two vertical posts, with heights 12 
metres and 8 metres, are 10 metres 
apart on horizontal ground. A rope 
that stretches is attached to the top of 
both posts and is stretched down so 
that it touches the ground at point A 
between the two posts. The distance 
from the base of the taller post to point 
A is represented by x and the angle 
between the two sections of rope is u. 
What value of x makes u a maximum?

 6 A ladder is to be carried horizontally 
down an L-shaped hallway. The first 
section of the hallway is 2 metres 
wide and then there is a right-angled 
turn into a 3 metre wide section. 
What is the longest ladder that can be 
carried around the corner?

 7 Charlie is walking from the wildlife observation tower (point T) to the Big Desert 
Park office (point O). The tower is 7 km due west and 10  km due south from the 
office. There is a road that goes to the office that Charlie can get to if she walks 
10  km due north from the tower. Charlie can walk at a rate of 2 kilometres per 
hour (kph) through the sandy terrain of the park, but she can walk a faster rate of 
5  kph on the road. To what point, A, on the road should Charlie walk to in 

 order to take the least time 
to walk from the tower to 
the office? Find the value 
of d such that point A is 
d  km from the office.

x

A

D

B

C

10 m

8 m

12 m

x A

θ

2 m

3 m

droad

A O

10 km

7 km

T

 Hint: Write an equation for u in 
terms of x and find the value of x 
which makes u a maximum by using 
your GDC.
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Summary of differentiation rules

Derivative of f (x): y 5 f (x) ⇒ f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

    

  (Limit definition – ‘first principles’)

Derivative of x n : f (x) 5 x n ⇒ f 9(x) 5 nxn 2 1

Derivative of sin x : f (x) 5 sin x ⇒ f 9(x) 5 cos x

Derivative of cos x : f (x) 5 cos x ⇒ f 9(x) 5 2sin x

Derivative of tan x : f (x) 5 tan x ⇒ f 9(x) 5   1 _____ 
cos2  x

  

Note: Derivative rules for trigonometric functions only apply if x is in 
radian measure.

Derivative of e x : f (x) 5 e x ⇒ f 9(x) 5 e x

Derivative of b x : f (x) 5 b x ⇒ f 9(x) 5 b x    ln  b

Derivative of ln  x : f (x) 5 ln  x ⇒ f 9(x) 5   1 __ x  

Chain rule for composite   
dy

 ___ 
dx

   5   d ___ 
dx

  [f (g (x))] 5 f 9(g(x))    g 9(x)
functions:

Product rule:   
dy

 ___ 
dx

   5   d ___ 
dx

  [f (x)    g (x)] 5 f (x)    g 9(x) 1 g(x)    f 9(x)

Quotient rule:   
dy

 ___ 
dx

   5   d ___ 
dx

   [   f (x)
 ____ 

g (x)
   ] 5   

g (x)    f 9(x) 2 f (x)    g 9(x)
  ____________________  

[g (x)]2  

Summary of derivative tests
First derivative test

f 9(c) 5 0 or x 5 c is an endpoint of the domain.

I. For f 9(c) 5 0:

1. If f 9(x) changes sign from positive to negative as x increases 
through x 5 c, then f  has a relative maximum at x 5 c.

2. If f 9(x) changes sign from negative to positive as x increases 
through x 5 c, then f  has a relative minimum at x 5 c.

Summary of differentiation rules 
and applications

13.5

relative
maximum

f �(x) � 0

c

f �(x) � 0

c

relative
minimum

f �(x) � 0 f �(x) � 0
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3. If f 9(x) does not change sign as x increases through x 5 c, then f  has 
neither a relative maximum nor a relative minimum at x 5 c.

II. For x 5 c and endpoint of the domain of f :

If x 5 c is an endpoint of the domain, then x 5 c will be a relative 
maximum or minimum of f  if the sign of f 9(x) is always positive or always 
negative for x . c (at a left endpoint), or for x , c (at a right endpoint), as 
illustrated below.

Second derivative test

1. If f 9(c) 5 0 and f  0(c) , 0, then f  has a relative maximum at x 5 c.

2. If f 9(c) 5 0 and f  0(c) . 0, then f  has a relative minimum at x 5 c.

If f  0(c) 5 0, the test fails and the first derivative test should be applied.

The rules, methods and applications covered in Chapters 11 and 13 
provide a firm foundation for differential calculus. It is important to gain 
sufficient practice with applying the algebraic rules and techniques and 
their application to problems. With that in mind, the exercise set here 
provides additional preparation in these areas while incorporating the 
material covered in Chapters 11 and 13. The rules that are covered were 
listed in the summary above, and the applications covered include:

• slopes (gradients) and rates of change

• properties of graphs of functions

• equations of tangents and normals

• displacement, velocity and acceleration

• maxima and minima – optimization.

concave
up

concave
down

relative minimum

relative maximum

f �(x) � 0

f �(x) � 0

relative
maximum

relative
minimum

cc

f �(x) � 0

f �(x) � 0

relative
maximum

relative
minimum

cc

f �(x) � 0

f �(x) � 0

c

no
extreme

f �(x) � 0 f �(x) � 0
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In questions 1–20, find the derivative of each function.

 1 y 5 (x 2 1)7  2 y 5   1 ___ 5x  

 3 y 5 2x(3x 1 4)4  4 y 5 sin x tan x
 5 y 5 e 6x  6 y 5 x3  ln  x
 7 y 5 sin ( 4x 2   p​__ 4   )   8 y 5   1 ___ 

ex2
  

 9 y 5 (ln x)3 10 y 5 x √
______

 1 2 x 2  

11 y 5 3x 12 y 5   x 2 2 1 ______ 
2x 1 3

  

13 y 5 x 2 tan x 14 y 5   e x _____ cos x  

15 y 5  
3
 √
___________

 x 2 1 2x 2 4   16 y 5 sin(cos 2x)

17 y 5 e1 2 2x 18 y 5 e x ln(x 2)

19 y 5 ln(ex 2 2x) 20 y 5 23x 2 1

21 The temperature outside a house during a 24-hour period is given by

 C(t) 5 25 2 6 cos  (   p​___ 12   t 2   p​__ 6   )  , 0 < t < 24

 where C(t) is measured in degrees Celsius and t is measured in hours.
a) Make a sketch of the graph of the function C for the interval 0 < t < 24.
b) Find the average rate of change of the temperature from t 5 2 to t 5 8.
c) Find C9(t).
d) Find the instantaneous rate of change of the temperature at t 5 5.
e) At what time is the temperature a maximum? What is the maximum 

temperature?

22 Find the points on the graph of the equation y 5 4 2 x 2 that are nearest to the 
point (0, 2).

23 The normal to the curve y 5 x 2 2 4x at the point (3, 23) intersects the x-axis 
at point P and the y-axis at point Q. Find the equation of the normal and the 
coordinates of P and Q.

24 The rate at which cars on a road pass a certain point is known as the flow rate 
and is in units of cars per minute. The flow rate, F, of a certain road is given by 

 F(x) 5   2x ___________ 
18 1 0.015x 2

   , where x is the speed of the traffic in kilometres per hour. 

 What speed will maximize the flow rate on the road?

25 Determine the constant a such that the function f (x) 5 x 2 1   a __ x   has a) a local 
minimum at x 5 2, b) a local minimum at x 5 23, and c) show that the function 
cannot have a local maximum for any value of a.

26 A line passes through the point (3, 2) and intersects both the x-axis and the 
y-axis forming a triangular region in the first quadrant, bounded by the x-axis, 
the y-axis and the line. Find the equation of such a line that creates a triangle of 
minimum area.

27 A very important function in statistics is the equation for the standard normal curve 

 (mean 5 0, standard deviation 5 1) given by f (x) 5    e
2 

  x
2
 __ 

2
  
  ____ 

 √
___

 2p​​
​​.

a) Find the coordinates of any stationary points and of any inflexion points.

b) What happens when x →  and when x → 2. Give the equation for any 
asymptotes.

c) Sketch a graph of f (x) and indicate the location of any of the points found in 
part a).

Exercise 13.5
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28 Find the equation of both the tangent and normal to the curve y 5 x  tan x at the 

 point where x 5   p​__ 4  .

29 A window is in the shape of a rectangle with a semicircle on 
top. Find the dimensions of the rectangular section of the 
window when the perimeter of the entire window is 4  m and 
the area of the entire window is a maximum.

30 An object is moving along a line such that that its displacement, s metres, from 
a fixed point at any time t, in seconds, is given by s(t) 5 3  sin  t 1 4  cos  t for the 
interval 0 < t < 6.
a) What is the object’s initial displacement?
b) At what time is the object’s displacement a maximum, and what is the 

displacement?
c) At what time is the object’s displacement a minimum, and what is the 

displacement?
d) Find an expression for the object’s velocity and an expression for its 

acceleration?
e) At what time is the object’s velocity a maximum, and what is the velocity?
f ) In the interval 0 < t < 3, at what time is the object’s acceleration zero? 

Comment on the object’s displacement and velocity at that moment when 
the acceleration is zero.

Practice questions

  1  The diagram shows the 
graph of y 5 f (x).

  Copy this grid and sketch  
the graph of y 5 f 9(x).

x

y

0

x

y

0
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  2  A curve has equation y 5 2x(x 1 5)2.
a)  For this curve find:

	 	 (i)  the x-intercepts
	 	 (ii)  the exact coordinates of the maximum point
	 	 (iii)  the exact coordinates of the point of inflexion.

b)  Use your answers to part a) to sketch a graph of the curve for 25 < x < 0, clearly 
indicating the features you have found in part a).

  3  Find the coordinates of the point on the graph of y 5 3x2 1 2x at which the tangent is 
parallel to the line y 5 4x.

  4  Find the equation of the line tangent to the curve of y 5 sin (3x 1 1) at the point  ( 2 ​​1 __ 
3
  , 0 ) 

.

  5  The diagram right shows part of the graph 
of the function f  :  x  ↦  2x3 2 2x2 1 8x.

   The graph intersects the x-axis at (24, 0), 
(0, 0) and (2, 0). There is a minimum point  
at C and a maximum point at D.
a)  The function may also be written in the 

form f  :  x  ↦  2​x (x 2 a)(x 2 b), where 
a , b. Write down the value of 

	 	 (i)  a  (ii)  b.

b)  Find
	 	 (i)  f 9(x)
	 	 (ii)  the exact values of x at which f 9(x) 5 0
	 	 (iii)  the value of the function at D.

	 c)  (i)  Find the equation of the tangent to the graph of f at (0, 0).
	 	 (ii)   This tangent cuts the graph of f at another point. Give the x-coordinate of this 

point.

  6  In a controlled experiment, a tennis ball is dropped from the uppermost observation 
deck (447 metres high) of the CN Tower in Toronto. The tennis ball’s velocity is given by 

v (t ) 5 66 2 66e20.15t

  where v is in metres per 
second and t is in seconds.

a)  Find the value of v when
	 	 (i)  t 5 0	 (ii)  t 5 10.
	 b)  (i)   Find an expression for the acceleration, a, as a function of t.
	 	 (ii)  What is the value of a when t 5 0? 
	 c)  (i)   As t becomes large, what value does v approach?
    (ii)   As t becomes large, what value does a approach?
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	 	 (iii)  Explain the relationship between the answers to parts c)(i) and (ii).

	 7  Given the function f (x) 5 x3 1 7x2 1 8x 2 3,
a)  identify any points as a relative maximum or minimum and find their exact 

coordinates
b)  find the exact coordinates of any inflexion point(s).

	 8  Consider the function g (x) 5 2 1    1 ___ 
e 3x  .

	 a)  (i)  Find g 9(x).

	 	 (ii)   Explain briefly how this shows that g (x ) is a decreasing function for all values 
of x (i.e. that g (x ) always decreases in value as x increases).

   Let P be the point on the graph of g where x 5 2   1 _ 3  .
b)  Find an expression in terms of e for

	 	 (i)  the y-coordinate of P
	 	 (ii)  the gradient of the tangent to the curve at P.

c)  Find the equation of the tangent to the curve at P, giving your answer in the form 
  y 5 mx 1 c.

  9  Consider the function f given by f (x) 5   2x 2 2 13x 1 20  ______________ 
(x 2 1)2

   , x  1.

a)  Show that f 9(x) 5   9x 2 27 _______ 
(x 2 1)3

  , x  1.

  The second derivative is given by f  0(x) 5   72 2 18x ________ 
(x 2 1)4

   , x  1.

b)  Using values of f 9(x) and f  0(x), explain why a minimum must occur at x 5 3.
c)  There is a point of inflexion on the graph of f. Write down the coordinates of this 

point.

10  Differentiate with respect to x:

a)     1 ________ 
(2x 1 3)2

  

b)  e sin    5x

11  The curve with equation y 5 Ax 1 B 1   C __ x  , x  [  R, x  0, has a minimum at P (1, 4) 
and a maximum at Q (21, 0). Find the value of each of the constants A, B and C.

12  a)  Differentiate:
    (i)  ln x
    (ii)    1 __ x  

b)  The curve C has equation y 5   ln x ___ x   , 0 , x , .

    (i)  Show that   
dy

 ___ 
dx   5   1 __ x2

   (1 2 ln x).

    (ii)   Show that y has a maximum value of   1 __ e   and justify that this is a maximum 
value.

c)  Assuming y → 0 as x → , draw a sketch of the graph of the curve C.

      Find the two values of x for which   ln x ___ x    5   1 __ 
2
    ln  2.

13  Differentiate with respect to x:

a)     x3
 ______ x2 1 1

  

b)  ex  sin  2x
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14  The curve y 5 ax 3 2 2x2 2 x 1 7 has a gradient (slope) of 3 at the point where x 5 2. 
  Determine the value of a.

15  Let y 5 h (x) be a function of x for 0 < x < 6. The graph of h has an inflexion point at 
P and a maximum point at M.

  Partial sketches of the curves of h9(x) and h 0(x) are shown below.

  Use the above information to answer the following.
a)  Write down the x-coordinate of P and justify your answer.
b)  Write down the x-coordinate of M and justify your answer.
c)  Given that h (3) 5 0, sketch the graph of h. On the sketch, mark the points P and M.

16  Find the equation of the tangent to the curve y 5 xex at the point on the curve 
where x 5 1.

17  A cylinder is to be made with an exact volume of 128p  cm3. 
What should be the height h and the radius r of the 
cylinder’s base so that the cylinder’s surface area is a 
minimum?

18  A rectangle has its base on the 
x-axis and its upper two vertices 
on the parabola y 5 12 2 x 2, as 
shown in the diagram. What is the 
largest area that the rectangle can 
have, and what are its dimensions 
(i.e. length and width)?
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19  The figure below shows the graph of a function y 5 f (x). At which one of the five 
points on the graph:
a)  are f 9(x) and f  0(x) both negative?
b)  is f 9(x) negative and f  0(x) positive?
c)  is f 9(x) positive and f  0(x) negative?

20  Find the equation of the normal to the curve with equation y 5   2x 2 1 ______ x 1 2
    at the point 

(23, 7).
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Introduction

Assessment statements
6.4	 Indefinite	integration	as	anti-differentiation.
	 Indefinite	integral	of	xn,	sin	x,	cos	x,	1/x	and	e x.
	 The	composites	of	any	of	these	with	the	linear	function	ax	1	b.

	 Integration	by	inspection	or	substitution	of	the	form	∫ f	(g	(x))g’(x)dx.
6.5	 Anti-differentiation	with	a	boundary	condition	to	determine	the	constant	

term.
	 Definite	integrals.
	 Areas	under	curves	(between	the	curve	and	the	x-axis),	areas	between	

curves.
	 Volumes	of	revolution	about	the	x-axis.
6.6	 Total	distance	travelled.

In Chapters 11 and 13 you learned about the process of differentiation. 
That is, given a function, how you can find its derivative. In this chapter, we 
will look at the reverse process. That is, given a function f (x), how can we 
find a function F (x) whose derivative is f (x). This process is the opposite of 
differentiation and is therefore called anti-differentiation.

An anti-derivative of the function f (x) is a function F (x) such that

  d ___ 
dx   F (x) 5 F 9(x) 5 f (x) wherever f (x) is defined.

For instance, let f (x) 5 x 2. It is not difficult to discover an anti-derivative 
of f (x). Keep in mind that this is a power function. Since the power rule 
reduces the power of the function by 1, we examine the derivative of x 3:

  d ___ 
dx 

  (x 3) 5 3x 2.

This derivative, however, is 3 times f (x). To ‘compensate’ for the ‘extra’ 3, 
we have to multiply by   1 _ 3  , so that the anti-derivative is now   1 _ 3   x 3. Now,

  d ___ 
dx

    (   1 __ 
3

   x 3 )  5 x 2

And, therefore,   1 _ 3   x 3 is an anti-derivative of x 2.

Table 14.1 shows some examples of functions, each paired with one of its 
anti-derivatives.

Anti-derivative14.1

Function 
f (x)

Anti-derivative 
F(x)

1 x

x   x 2 __ 
2

  

3x 2 x 3

x 4   x 5 __ 
5

  

cos  x sin  x
cos  2 x   1 _ 2    sin  2x

e x e x

sin  x 2cos  x
2x x 2

               Table 14.1

14 Integral Calculus
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The diagrams below show the relationship between the derivative and the 
integral as opposite operations.

Anti-derivative
F(x)

Derivative
f �(x)

Function
f(x)

Anti-di�erentiation

Di�erentiation

F(x)

f(x)

Anti-di�erentiation Di�erentiation

Example 1 

Given the function f (x) 5 3x 2, find an anti-derivative of f (x).

Solution

F1(x) 5 x 3 is such an anti-derivative because   d ___ 
dx

   (F1(x)) 5 3x 2.

The following functions are also anti-derivatives because the derivative of 
each one of them is also 3x 2.

H1 (x) 5 x  3 1 27, H2 (x) 5 x  3 2 p, or H3 (x) 5 x  3 1  √
__

 5  

Indeed, F (x) 5 x 3 1 c is an anti-derivative of f (x) 5 3x 2 for any choice of 
the constant c.

This is so simply because

(F(x) 1 c)9 5 F 9(x) 1 c 9 5 F 9(x) 1 0 5 f (x)!

Thus, we can say that any single function f (x) has many anti-derivatives, 
whereas a function can have only one derivative.

If F(x) is an anti-derivative of f (x), then so is F(x) 1 c for any choice of the constant c. 

Stated slightly differently, this observation says: 

If F(x) is an anti-derivative of f(x) over a certain interval I, then every anti-derivative of f (x) 
on I is of the form F (x) 1 c.

This statement is an indirect conclusion of one of the results of the mean 
value theorem.
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Two functions with the same derivative on an interval differ only by a constant on that 
interval.

We will state the mean value theorem here in order to establish the general 
rule for anti-derivatives.

Mean value theorem
A function H(x), continuous over an interval [a, b] and differentiable over ]a, b[, satisfies

H(b) 2 H(a) 5 (b 2 a)H 9(c) for some c  ]a, b[

Let F (x) and G(x) be any anti-derivatives of f (x), i.e. F 9(x) 5 G 9(x).

Take H(x) 5 F(x) 2 G(x) and any two numbers x1 and x2 in the interval 
[a,  b] such that x1 , x2, then 

H(x2) 2 H(x1)  5 (x2 2 x1)H 9(c) 5 (x2 2 x1)(F 9(c) 2 G 9(c))
5 (x2 2 x1)0 5 0 ⇒ H (x1) 5 H (x2)

which means that H(x) is a constant function. 
Hence, H (x) 5 F (x) 2 G (x) 5 constant. That is, any two anti-derivatives 
of a function differ by a constant.

Notation:
The notation 

∫ f (x) dx 5 F (x) 1 c  (1)

where c is an arbitrary constant, means that F(x) 1 c is an anti-derivative 
of f (x). 

Equivalently, F(x) satisfies the condition that 

  d ___ 
dx

   (F (x)) 5 F 9(x) 5 f (x)  (2)

for all x in the domain of f (x).

It is important to note that (1) and (2) are just different notations to 
express the same fact. For example, 

∫ x 2dx 5   1 _ 3   x 3 1 c is equivalent to   d ___ 
dx

    (   1 _ 3   x 3 )  5 x 2

Note that if we differentiate an anti-derivative of f (x), we obtain f (x) back again. 

Thus,   d ___ 
dx   (∫ f (x)dx) 5 f (x).

The expression ∫ f (x)dx is called an indefinite integral of f (x). The function f (x) is called the integrand and the constant c is 
called the constant of integration. 

The integral symbol ∫ is made like an elongated capital S. It is, in fact, a medieval S, used by Leibniz as an abbreviation for the 
Latin word summa. 

We think of the combination ∫ [ ]dx as a single symbol; we fill in the ‘blank’ with the formula of the function whose anti-
derivative we seek. We may regard the differential dx as specifying the independent variable x both in the function f (x) and in 
its anti-derivatives. 

If an independent variable other than x is used, say t, the notation must be adjusted appropriately. 

Thus,   d __ 
dt

   (∫ f (t)dt ) 5 f (t) and ∫ f (t)dt 5 F(t) 1 c are equivalent statements.
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Derivative formula Equivalent integration formula

  d ___ 
dx   (x 3) 5 3x 2 ∫ 3x 2dx 5 x 3 + c

  d ___ 
dx   ( √__

 x    ) 5   1 ____ 2 √
__

 x    ∫   1 ____ 2 √
__

 x     dx 5  √
__

 x   + c

  d __ 
dt

   (tan t) 5 sec2  t ∫ sec2  t  dt 5 tan  t 1 c

  d __ 
dv

    (  v    
3
 _ 2    )  5   3 _ 2    v    

1
 _ 2   ∫   3 _ 2    v   

1
 _ 2     dv 5  v    

3
 _ 2    1 c

Note: The integral sign and differential serve as delimiters, adjoining the 
integrand on the left and right, respectively. In particular, we do not write 
∫dx f (x) when we mean ∫ f (x) dx.

Basic integration formulae
Integration is essentially educated guesswork – given the derivative f (x) of 
a function F (x), we try to guess what the function F (x) is. However, many 
basic integration formulae can be obtained directly from their companion 
differentiation formulae. Some of the most important are given in Table 14.2.

Differentiation formula Integration formula

1   d ___ 
dx   (x) 5 1 ∫ dx 5 x 1 c

2   d ___ 
dx   (x n 1 1) 5 (n 1 1) x n, n  21 ∫ x n dx 5   x n 1 1

 _____ 
n 1 1

   1 c, n  21

3   d ___ 
dx   (sin  x) 5 cos  x ∫ cos  x  dx 5 sin  x 1 c

4   d ___ 
dx   (cos  x) 5 2sin  x ∫ sin  v  dv 5 2cos  v 1 c

5   d __ 
dt

   (tan t) 5 sec2  t ∫ sec2  t  dt 5 tan  t 1 c

6   d __ 
dv

   (ev) 5 ev ∫ ev  dv 5 ev 1 c

7   d ___ 
dx   (ln |x|) 5   1 __ x  ∫   1 __ x   dx 5 ln |x| 1 c

The last formula (7) is a special case of the ‘power’ rule formula (2), but 
needs some modification.

If we are given the task to integrate   1 __ x   , we may attempt to do it using the 
power rule:

∫   1 __ x   dx 5 ∫ x21 dx 5   1 ________ 
(21) 1 1

   x (21) 1 1 1 c 5   1 __ 
0

   x 0 1 c, which is undefined. 

However, the solution is clearly found by observing what you learned in 
Chapter 13. 

In Section 13.1 you learned that

  d ___ 
dx

   (ln  x) 5   1 __ x  , x . 0

Table 14.2
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This implies

∫   1 __ x   dx 5 ln  x 1 c, x . 0

However, the function   1 __ x   is differentiable for x , 0 too. So, we must be able 
to find its integral. 

The solution lies in the chain rule!

If x , 0, we can write x 5 2u where u . 0. Then dx 5 2du, and 

∫   1 __ x   dx 5 ∫   1 ___ 2u   (2du) 5 ∫   1 __ u   du 5 ln  u 1 c, u . 0.

But u 5 2x, therefore when x , 0

∫   1 __ x   dx 5 ln  u 1 c 5 ln(2x) 1 c, and, combining the two results, we have

∫   1 __ x   dx 5 ln |x | 1 c, x  0.

Suppose that f (x) and g(x) are differentiable functions and k is a constant, then:
1. A constant factor can be moved through an integral sign, i.e.

∫ kf (x)dx 5  k∫ f (x)dx
2. An anti-derivative of a sum (difference) is the sum (difference) of the anti-derivatives, 

i.e.

∫ (f (x) 1 g (x))dx 5 ∫ f (x)dx 1 ∫ g (x)dx, or

∫ (f (x) 2 g (x))dx 5 ∫ f (x)dx 2∫ g (x)dx

Example 2 

Evaluate
a) ∫ 3  cos  x  dx  b)  ∫ (x 3 1 x 2)dx

Solution

a) ∫ 3  cos  x  dx 5 3∫ cos  x  dx 5 3  sin  x 1 c

b) ∫ (x 3 1 x 2)dx 5 ∫ x 3  dx 1 ∫ x 2  dx 5   x 4 __ 4   1   x 3 __ 
3

   1 c

Sometimes it is useful to rewrite the integrand in a different form before 
performing the integration.

Example 3 

Evaluate

a) ∫   t 
3 2 3t 5 _______ 

t5     dt  b)  ∫   x 1 5x 4 _______ 
x 2

     dx

Solution

a) ∫   t 
3 2 3t 5 _______ 

t5    dt 5 ∫  
t 3

 __ 
t 5

    dt 2 ∫  
 3t 5

 ___ 
t 5

    dt 5 ∫t 22  dt 2 ∫ 3  dt 5   t
21

 ___ 
21

   2 3t 1 c 

  5   21 ___ t    2 3t 1 c

b) ∫   x 1 5x 4 _______ 
x 2

   dx 5 ∫  
x
 __ 

x 2
    dx 1∫   5x 4 ___ 

x 2    dx 5 ∫  
1

 __ x    dx 1∫ 5x 2  dx 5 ln|x | 1 5    x 3 __ 
3

   1 c
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Integration by simple substitution

In this section, we will study a technique called substitution that can often 
be used to transform complicated integration problems into simpler ones.

The method of substitution depends on our understanding of the chain 
rule as well as the use of variables in integration. Two facts to recall:

1. When we find an anti-derivative, we established earlier that the use of 
x is arbitrary. We can use any other variable as you have seen in several 
exercises and examples so far.

 So, ∫ f (u) du 5 F(x) 1 c, where u is a ‘dummy’ variable in the sense that 
it can be replaced by any other variable.

2. The chain rule enables us to say

  d ___ 
dx

   (F(u(x))) 5 F 9(u(x))u 9(x)

This can be written in integral form as

∫ F 9 (u(x))u 9(x) dx 5 F(u(x)) 1 c

or, equivalently, since F (x) is an anti-derivative of f (x),

∫ f (u(x))u 9(x) dx 5 F(u(x)) 1 c

For our purposes, it will be useful and simpler to let u(x) 5 u and to write 

  du ___ 
dx

   5 u 9(x) in its ‘differential’ form du 5 u 9(x)dx, or, simply, du 5 u 9dx.

With this notation, the integral can now be written as

∫ f (u(x))u 9(x) dx 5 ∫f (u) du 5 F(x) 1 c

The following example explains how the method works.

Example 4 
Evaluate
a) ∫ (x 3 1 2)10 3x 2 dx

b) ∫ tan  x dx

c) ∫ cos  5x dx

d) ∫ cos  x 2x dx

e) ∫ e 3x 1 1 dx

Solution

a) To integrate this function, it is simplest to make the following 
substitution.

 Let u 5 x 3 1 2, and so du 5 3x 2 dx. Now the integral can be written as

∫ (x3 1 2)10 3x 2 dx 5 ∫ u 10 du 5   u 11
 ___ 

11
   1 c 5   

(x 3 1 2)11

 _________ 
11

   1 c

b) This integrand has to be rewritten first and then we make the substitution.

∫ tan  x dx 5 ∫  sin  x ____ cos x    dx 5 ∫  
1
 ____ cos  x      sin  x dx

We now let u 5 cos  x ⇒ du 5 2sin  x dx, and

∫ tan  x dx 5 ∫  
1
 ____ cos  x   sin  x dx 5 ∫  

1
 __ u   (2du) 5 2∫  

1
 __ u   du 5 2ln|u| 1 c
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This last result can be then expressed in one of two ways:

∫ tan  x dx 5 2ln|cos x | 1 c, or

∫ tan  x dx 5 2ln|cos x | 1 c 5 ln|(cos  x)21| 1 c

 5 ln |    1 ______ 
(cos  x)

   |  1 c 5 ln|sec x | 1 c

c) We let u 5 5x, then du 5 5dx ⇒ dx 5   1 _ 5   du, and so

∫ cos  5x dx 5 ∫ cos  u    1 _ 5   du 5   1 _ 5   ∫ cos  u  du 5   1 _ 5     sin  u 1 c 

 5   1 _ 5      sin  5x 1 c

Another method can be applied here:

The substitution u 5 5x requires du 5 5dx. As there is no factor of 5 in 
the integrand, and since 5 is a constant, we can multiply and divide by 5 so 
that we group the 5 and dx to form the du required by the substitution:

∫ cos  5x dx 5   1 _ 5   ∫ cos  x 5dx 5   1 _ 5   ∫ cos  u  du 5   1 _ 5     sin  u 1 c 

 5   1 _ 5      sin  5x 1 c

d) By letting u 5 x 2, du 5 2x  dx and so

∫ cos  x 2 x dx 5   1 _ 2  ∫ cos  x 2 2x dx 5   1 _ 2  ∫ cos  u  du 5   1 _ 2     sin  u  1 c

 5   1 _ 2     sin  x2  1 c

e) ∫ e 3x 1 1 dx 5   1 _ 3   ∫e 3x 1 1 3dx 5   1 _ 3   ∫eu du 5    1 _ 3  eu 1 c 5    1 _ 3  e3x 1 1 1 c

Example 5 

Evaluate each integral

a) ∫ e 23x dx 

b) ∫ sin2  x  cos  x dx

c) ∫ 2  sin(3x 2 5) dx

d) ∫ e mx 1 n dx

e) ∫ x  √
__

 x    dx, and F(1) 5 2

Solution

a) Let u 5 23x, then du 5 23dx, and

∫ e 23x dx 5 2  1 _ 3  ∫ e 23x(23dx) 5 2  1 _ 3  ∫ e u du 5 2  1 _ 3   e u 1 c 

 5 2  1 _ 3   e 23x 1 c

b) Let u 5 sin  x, then du 5 cos  x  dx, and

∫ sin2  x    cos  x dx 5 ∫ u 2 du 5   1 _ 3   u 3 1 c 5   1 _ 3     sin3  x 1 c

c) Let u 5 3x – 5, then du 5 3dx, and

∫ 2 sin(3x 2 5) dx 5 2   1 _ 3  ∫ sin(3x 2 5)3dx 5   2 _ 3  ∫ sin u du

 5 2  2 _ 3   cos  u 1 c 5 2  2 _ 3    cos(3x 2 5) 1 c

d) Let u 5 mx 1 n, then du 5 m  dx, and

∫e mx 1 n dx 5   1 __ m  ∫ e mx 1 n m  dx 5    1 __ m  ∫ e u du 

  5   1 __ m   e u 1 c 5   1 __ m   e mx 1 n  1 c

In integration, multiplying by a 
constant ‘inside’ the integral  
and ‘compensating’ for that 
with the reciprocal ‘outside’ the 
integral depends on theorem 1 
(page 488). That is, 

∫ kf (x)dx 5 k∫ f (x)dx
However, you cannot multiply 
with a variable. So, you cannot 
say, for example,

∫ cos  x 2  dx 5   1 ___ 2x  ∫cos  x 2 2x dx
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e) F (x) 5 ∫x  √
__

 x   dx 5 ∫ x    
3
 _ 2    dx 5    x    

5
 _ 2    ___ 

 (   5 _ 2   ) 
   1 c 5   2 _ 5    x    

5
 _ 2    1 c, but F (1) 5 2

F (1) 5   2 _ 5    1   
5
 _ 2    1 c 5   2 _ 5   1 c 5 2 ⇒ c 5   8 _ 5  

Therefore, F (x) 5   2 _ 5    x    
5
 _ 2    1   8 _ 5   .

Example 6 

Evaluate each integral.

a) ∫x(x 2 1 3)7 dx

b) ∫2x 2 ​√
______

​1 2 x 3 ​ dx

Solution

a) Let u 5 x 2 1 3 and hence, du 5 2x dx. Then:

 ∫x(x 2 1 3)7 dx 5 ​​1 _​
2 ​ ∫2x(x 2 1 3)7 dx 5 ​​1 _​

2 ​ ∫u7 du 5 ​​1 _​
2 ​ 3 ​​

(x 2 + 3)8

 _______​
8 ​ 1 c 

 5 ​​
(x 2 1 3)8

 ________​
16

 ​ 1 c

 In this computation, we multiplied the integrand by 2 to agree with the 
du term, and then compensated by dividing the entire integral by 2 so 
that the value does not change. 

b) Let u 5 1 2 x 3 and hence, du 5 3 2 x 2 dx. Then:

 ∫2x 2 ​√
______

​1 2 x 3 ​ dx 5 – ​​2 _​
3 ​ ∫3x 2 ​√

______

​1 2 x 3 ​ dx 5 2​​2 _​
3 ​ ∫​u​​​1 

_
​2 ​​du

  5 – ​​2 _​
3 ​ 3 ​​​u​

​​3 
_
​2 ​​​__​

​​3 
_
​2 ​
​​ 1 c 5 – ​​4 _​

9 ​(1 2 x 3​)​​​
3

 
_
​2 ​​ 1 c

In this computation, we factored the 2 out and multiplied the integrand by 
3 to agree with the du term, and then compensated by dividing the entire 
integral by 3 so that the value does not change. 

 It is a good practice to 
compute the derivative of the 
answer to make sure that you 
performed the integration 
correctly.

In questions 1–15, find the most general anti-derivative of the function. 

 1 f (x) 5 x 1 2  2 f (t) 5 3t2 1 1  3 g (x) 5   1 _ 3   2   2 _ 7   x 3

 4 f (t) 5 (t 2 1)(2t 1 3)  5 g (u) 5  u    
2
 _ 5    2 4u 3  6 f (x) 5 2 √

__
 x   2   3 ____ 

2 √
__

 x  
    

 7 h(u) 5 3  sin  u 1 4  cos  u  8 f (t) 5 3t 2 2 2  sin  t  9 f (x) 5  √
__

 x   (2x 2 5)

10 g(u) 5 3  cos  u 2 2  sec2  u 11 h(t) 5 e 3t 2 1 12 f (t) 5   2 __ t  

13 h(t) 5   t ______ 
3t2 1 5

   14 h(u) 5 esin u  cos  u 15 f (x) 5 (3 1 2x)2

In questions 16–20, find f.

16 f 0(x) 5 4x 2 15x 2 17 f 0(x) 5 1 1 3x 2 2 4x 3; f 9(0) 5 2, f (1) 5 2

18 f 0(t) 5 8t 2 sin  t 19 f 9(x) 5 12x 3 2 8x 1 7, f (0) 5 3

20 f 9(u) 5 2  cos  u 2 sin(2u)

Exercise 14.1
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The main goal of this section is to introduce you to the following major 
problem of calculus.

The area problem: Given a function f (x) that is continuous and non-
negative on an interval [a, b], find the area between the graph of f (x) and 
the interval [a, b] on the x-axis.

We divide the base interval [a, b] into n equal sub-intervals, and over each 
sub-interval construct a rectangle that extends from the x-axis to any point 
on the curve y 5 f (x) that is above the sub-interval. The particular point 
does not matter – it can be above the centre, above one endpoint, or any 
other point in the sub-interval. In Figure 14.1 it is above the centre.

For each n, the total area of the rectangles can be viewed as an approximation 
to the exact area in question. Moreover, it is evident intuitively that as n 
increases, these approximations will get better and better and will eventually 
approach the exact area as a limit. See Figure 14.2.

x x

A traditional approach to this would be to study how the choice of where 
to erect the rectangular strip does not affect the approximation as the 

 Hint: This is only an expository 
treatment that explains to you how 
the definite integral is developed. 
You will not be required to 
reproduce this calculation yourself.

y � f(x)

f(xi)

xi

y

x0

Figure 14.1

xb

Area � ?

0

y � f(x)

a

y

Area and definite integral14.2

In questions 21230, find the most general expression of each integral.

21 ∫2x e x 2  dx  22 ∫6x 2 (x 3 2 7)5dx

23 ∫3x  cos x 2 dx  24 ∫(3 sin x 2 2)4 cos x dx

25 ∫sin  √
__

 x     dx ___  √
__

 x     26 ∫  3x 2 ______ 
x 3 1 1

   dx

27 ∫x 3  √
______

 x 4 1 1   dx 28 ∫cos x  √
_________

 1 1 2 sin x   dx

29 ∫(2x 1 3)cos(x 2 1 3x) dx  30 ∫sin(7 2 px)dx

Figure 14.2
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number of intervals increases. You can construct ‘inscribed’ rectangles, 
which, at the start, give you an underestimate of the area. On the other 
hand, you can construct ‘circumscribed’ rectangles that, at the start, 
overestimate the area. See Figure 14.3.

x x

As the number of intervals increases, the difference between the 
overestimates and the underestimates will approach 0.

x x

Figure 14.4 above shows n inscribed and subscribed rectangles and 
Figure 14.5 shows us the difference between the overestimates and the 
underestimates.

x

Figure 14.6 demonstrates that as the number n increases, the difference 
between the estimates will approach 0. Since we set up our rectangles 
by choosing a point inside the interval, the areas of the rectangles will 
lie between the overestimates and the underestimates, and hence, as 
the difference between the extremes approaches zero, the rectangles we 
constructed will give the area of the region required. 

If we consider the width of each interval to be Dx, the area of any rectangle 
is given as

Ai 5 f (x *i )Dx

The total area of the rectangles so constructed is

An 5  ∑  
t 5 0  

   

n

   f  (x *i )Dx

x *i is an arbitrary point within any sub-interval [xi  2  1, xi], x0 5 a and xn 5 b.

In the case of a function f (x) that has both positive and negative values on 
[a, b], it is necessary to consider the signs of the areas in the following sense.

Figure 14.3

Figure 14.4

Figure 14.5

bxi

f(xi)

y � f(x)

a x

Figure 14.6
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x�
�

��

On each sub-interval, we have a rectangle with width Dx and height f (x *). 
If f (x *) . 0, this rectangle is above the x-axis; if f (x *) , 0, this rectangle is 
below the x-axis. We will consider the sum defined above as the sum of the 
signed areas of these rectangles. That means the total area on the interval 
is the sum of the areas above the x-axis minus the sum of the areas of the 
rectangles below the x-axis.

We are now ready to look at a ‘loose’ definition of the definite integral1 :

If f (x) is a continuous function defined for a < x < b, we divide the interval 
[a, b] into n sub-intervals of equal width Dx 5 (b 2 a)/n. We let x0 5 a and 
xn 5 b and we choose x *1, x *2, …, x *n in these sub-intervals, so that x *i lies in 
the ith sub-interval [xi  2  1, xi]. Then the definite integral of f (x) from a to b is

 ∫ 
a
  
b

 f  (x) dx 5   lim    
n → 

   ∑  
i 5 1

     

n

   f  (x *i  )Dx

In the notation  ∫ 
a
  
b

 f  (x) dx, in addition to the known integrand and 

differential, a and b are called the limits of integration: a is the lower limit 
and b is the upper limit.

Note: Because we have assumed that f (x) is continuous, it can be proved that 
the limit definition above always exists and gives the same value no matter 
how we choose the points x *i  . If we take these points at the centre, at two-
thirds the distance from the lower endpoint or at the upper endpoint, the 
value is the same. This is why we will state the definition of the integral from 
now on as

 ∫ 
a
  
b

 f  (x) dx 5   lim    
n → 

   ∑  
i 5 1  

   

n

   f  (xi)Dx

1For a rigorous treatment of the definition of definite integrals using Riemann sums, refer to university 
calculus books. Such a treatment is beyond the scope of the SL syllabus and this book.

Calling the area under the function an integral is no coincidence. To make 
the point, let us take the following example.

Example 7(I) 

Find the area, A(x), between the graph of the function f (x) 5 3 and the 
interval [21, x], and find the derivative A9(x) of this area function.

Figure 14.7

For a list of recommended 
resources about definite 
integrals, visit www.
pearsonhotlinks.com, enter the 
ISBN or title of this book and 
select weblink 3.
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xxx � 1
1

x � 2

xxx � (   )

3x � 2

2
3

Solution

The area in question is

A(x) 5 3(x 2 (21)) 5 3x 1 3, and

A9(x) 5 3 5 f (x)

Example 7(II) 

Find the area, A(x), between the graph of the function f (x) 5 3x 1 2 and 
the interval [22/3, x], and find the derivative A9(x) of this area function.

Solution

The area in question is

A(x) 5   1 _ 2    ( x 1   2 _ 3   )  (3x 1 2) 5   1 _ 6   (3x 1 2)2,  since this is the area of a 
triangle. Hence,

A9(x) 5   1 _ 6   3 2(3x 1 2) 3 3 5 3x 1 2 5 f (x)

Example 7(III) 

Find the area, A(x), between the graph of the function f (x) 5 x 1 2 and 
the interval [21, x], and find the derivative A9(x) of this area function.

Solution

This is a trapezium, so the area is

A(x) 5   1 _ 2   (1 1 (x 1 2))(x 1 1) 5   1 _ 2   (x 2 1 4x 1 3), and

A9(x) 5   1 _ 2   3 (2x 1 4) 5 x 1 2 5 f (x)

The derivative of the area function A(x) is the function whose graph forms 
the upper boundary of the region. It can be shown that this relation is true, 
not only for linear functions but for all continuous functions. Thus, to find 
the area function A(x), we can look instead for a particular function whose 
derivative is f (x). This is, of course, the anti-derivative of f (x).

Note that, in every case,  
A9(x) 5 f (x).

xxx � 1

y

�2

�1

1

0

2

3

4
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xbc

A1 A2

a

xcb

A1

A2

a

x

A(x)

a x

Figure 14.8

Properties of the definite integral

1.  ∫ 
a
  
b

 f  (x) dx 5 2  ∫ 
b
  
a

 f  (x) dx

When we defined the definite integral  ∫ 
a
  
b

 f  (x) dx, we implicitly assumed 

that a , b. When we reverse a and b, then Dx changes from (b 2 a)/n 
to (a 2 b)/n. Therefore, the result above follows.

2.  ∫ 
a
  
a

 f  (x) dx 5 0  

When a 5 b, then Dx 5 0 and so the result above follows.

The following are a few straightforward properties:

3.  ∫ 
a
  
b

 c  dx 5 c (b 2 a)

4.  ∫ 
a
  
b

   [ f (x) 6 g (x)] dx 5  ∫ 
a
  
b

 f  (x)dx 6  ∫ 
a
  
b

 g  (x)dx

5.  ∫ 
a
  
b

 c  f (x)dx 5 c ∫ 
a
  
b

 f  (x)dx, where c is any constant

6.  ∫ 
a
  
b

 f  (x)dx 5  ∫ 
a
  
c

 f  (x)dx 1  ∫ 
c
  
b

 f  (x)dx

Property 6 can be demonstrated with a diagram 
(Figure 14.8) where the area from a to b is the 
sum of the two areas, i.e. A(x) 5 A1 1 A2. 
Additionally, even if c . b the relationship 
holds because the area from c to b in this case 
will be negative.

Finally, the fundamental theorem of calculus:

Intuitively, as we have seen above, we define the 
area function as

A(x) 5  ∫ 
a
  
x

 f  (t)dt, that is, A9(x) 5 f (x)

This definition says that A(x) is an anti-
derivative of f (x). Now, suppose that F(x) is 
another anti-derivative of f (x). In Section 
14.1, we proved that

A(x) 5 F(x) 1 c

because two anti-derivatives of the same 
function differ by a constant.
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Now, A(x) 5  ∫ 
a
  
x

 f  (t)dt implies that

A(a) 5  ∫ 
a
  
a

 f  (t)dt 5 0, and 

A(b) 5  ∫ 
a
  
b

 f  (t)dt, so it follows that

 ∫ 
a
  
b

 f  (t)dt 5 A(b) 2 0 5 A(b) 2 A(a), but

A(b) 5 F (b) 1 c, and A(a) 5 F (a) 1 c, and therefore:

Fundamental theorem of calculus

 ∫ 
a
  
b

 f​  (t)dt 5 A(b) 2 A(a) 5 (F(b) 1 c) 2 (F(a) 1 c) 5 F(b) 2 F(a)

The fundamental theorem is also referred to as the evaluation theorem. 
Also, since we know that F9(x) is the rate of change in F(x) with respect to 
x and that F(b) 2 F(a) is the change in y when x changes from a to b, we 
can reformulate the theorem in words.

The integral of a rate of change is the total change

 ∫ 
a
  
b

 F​ 9(x)dx 5 F(b) 2 F(a)

Here are a few instances where this applies:

1. If V 9(t) is the rate at which a liquid flows into or out of a container at 
time t, then

 ∫ 
t1

  
t2

 V  9(t)dt 5 V (t2) 2 V(t1) 

is the change in the amount of liquid in the container between time t1 
and t2.

2. If the rate of growth of a population is n9(t), then

 ∫ 
t1

  
t2

 n  9(t)dt 5 n (t2) 2 n(t1)

is the increase (decrease!) in population during the time period from t1 
to t2.

3. Displacement situations are described separately later in the chapter.

This theorem has many other applications in calculus and several other 
fields. It is a very powerful tool to deal with problems of area, volume and 
work among other applications. In this book, we will apply it to finding areas 
between functions and volumes of revolution as well displacement problems.

Notation:

We will use the following notation: 

 ∫ 
a
  
b

 f  (t) dt 5 F(x)|ba 5 F(b) 2 F(a)



498

Integral Calculus14

Example 8 

a) Evaluate the integral  ∫ 
–1

  
3

 x  5  dx  b) Evaluate the integral  ∫ 
0
  
4

  √
__

 x    dx

c) Evaluate the integral  ∫ 
p

  
2p

 cos  u du d) Evaluate the integral  ∫ 
1
  
2

   4 + u2
 _____ 

u3    du

Solution

a)  ∫ 
–1

  
3

 x  5  dx 5 [  x 6 __ 
6

  ]3

21
 5   3

6
 __ 

6
   2   1 __ 

6
   5   364 ___ 

3
  

b)  ∫ 
0
  
4

  √
__

 x    dx 5 [   2 __ 
3

    x    
3
 _ 2   ]4

0
 5   2 __ 

3
    4    

3
 _ 2    2 0 5   16 ___ 

3
  

c)  ∫ 
p

  
2p

 cos   u du 5 [sin  u]
p

2p
 5 0 2 0 5 0

d)  ∫ 
1
  
2

   4 + u2
 _____ 

u3    du 5  ∫ 
1
  
2

  (   4 __ 
u3   +   1 __ u   )   du 5  [ 4   u

22
 ____ 

22
   1 ln|u| ] 2

1
 

5 [22u22 1 ln  u]2

1

5 (22222 1 ln  2) 2 (221 1 ln  1) 5 2  1 __ 
2

   1 ln  2 1 2

5   3 __ 
2

   1 ln  2

Integration by substitution in definite integrals

When the substitution method is used to evaluate a definite integral, the 
following theorem may offer some help.

Change of variable 

Let f(x) and u(x) be differentiable functions over the interval [a, b]. Then

 ∫ 
a
  
b

 f(u (x))dx 5  ∫ 
u(a)

  
u(b)

 f(u)du 

The method will be demonstrated in the following example.

Example 9 

Evaluate each definite integral.

a) ​∫ 
 0
​​
1

​2​x(1 + x2​)​3​ dx  b) ​∫ 
 0
​​
 ​​p __​4 ​
​cos​ 2u du

Solution

a) Let u 5 1 1 x 2 and hence, du 5 2x dx. Over the interval [0, 1], u(0) 5 1 
and u(1) 5 2, thus:

 ​∫ 
 0
​​
1

​2​x(1 1 x 2​)​3​dx 5 ​∫ 
 0
​​
1

​u​ 3du 5 [​​u 4
 

__
​4 ​]2

1 
   5 4 2 ​​1 _​4 ​ 5 3​​3 _​4 ​

b) Let u 5 2u and hence, du 5 2du. Over the interval [0, ​​p __​4 ​], u(0) 5 0 and 
u​( ​​p __​4 ​​)​ 5 ​​p __​2 ​, thus:

 ​∫ 
 0
​​
 ​​p __​4 ​
​cos​ 2u du 5 ​∫ 

 0
​​
 ​​p __​
2 ​
​​​1 
_
​2 ​​​cos u du 5 [​​1 

_
​2 ​sin u​]​

0
​​
​​p 
__
​2 ​
​ 5 ​​1 __​2 ​
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We have seen how the area between a curve, defined by y 5 f (x), and the 

x-axis can be computed by the integral  ∫ 
a
  
b

 f  (x)dx  on an interval [a, b], 

where f (x) > 0. In this section, we shall find that integration can be used to 
find the area of more general regions between curves.

Areas between curves of functions of the form 
y 5 f ( x) and the x-axis
If the function y 5 f (x) is always above the x-axis, finding the area is a 

straightforward computation of the integral  ∫ 
a
  
b

 f  (x)dx. 

In questions 1–15, evaluate the integral.  

 1  ∫ 
 –2

  
1

   (3x2 2 4x3) dx  2  ∫ 
 2
  
 7

   8  dx 

 3  ∫ 
 1
  
 5

   
  

    2 __ 
t 3    dt   4  ∫ 

 2
  
 2

      (cos  t 2 tan  t)  dt

 5  ∫ 
 1
  
 7

   
 

     2x2 2 3x 1 5 ___________  √ 
__

 x      dx  6  ∫ 
 0
  
 p

   cos   u  du

 7  ∫ 
 0
  
 p

   sin   u  du  8  ∫ 
 3
  
 1

   (5x 4 1 3x 2)  dx

 9  ∫ 
 1
  
 3

      u
5 1 2 ______ 

u2    du 10  ∫ 
 1
  
 e

    2  dx ____ x    

11  ∫ 
 1
  
 3

   
 

     2x ______ x 2 1 2
    dx  12  ∫ 

 1
  
 3

      (2 2  √ 
__

 x   )2  dx 

13  ∫ 
 0
  
   p __ 4  

     3  sec2  u  du 14  ∫ 
 0
  
 1

   (8x 7 1  √ 
__

 p   )  dx

15 a)  ∫ 
 0
  
 2

   |3x|dx                  b)   ∫ 
 –2

  
 0

    |3x|dx                  c)   ∫ 
 –2

  
 2

   |3x|dx

16  ∫ 
 1
  
 2

   xdx _______ 
(x2 + 2)2     dx  17  ∫ 

 2
  
 3

   x2
 ______ 

(x + 3)5    dx 

18  ∫ 
 –2

  
 2

 x √
_____

 3 – x2    dx    19  ∫ 
 –2

  
 2

   x _______ 
(3 + x2)4    dx

20  ∫ 
    p 2 ___ 4  

  
p 2

   cos √
__

 u  
 ______ 

 √
__

 u  
   du 

Exercise 14.2

Areas14.3
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Example 10 

Find the area under the curve f (x) 5 x 3 2 x 1 1 and the x-axis over the 
interval [21, 2].

Solution
This area is simply

 ∫ 
 –1

  
2

      (x 3 2 x 1 1)  dx 5  [   x 4 __ 4   2   x 2 __ 
2

   1 x ] 2
21

 

5 (4 2 2 1 2) 2  (   1 __ 4   2   1 __ 
2

   2 1 )  5 5   1 __ 4  

Using your GDC, this is done by simply choosing the ‘MATH’ menu, then 
the ‘fnInt’ menu item.

Or, you can type in your function and then go to the ‘CALC’ menu, where you 
choose ‘∫f (x)  dx’ and type in your integration limits. Here is what you see.

In some cases, you will have to adjust how you work. This is the case when 
the graph intersects the x-axis. Since you are interested in the area bounded 
by the curve and the interval [a, b] on the x-axis, you do not want the 
‘signed’ areas to cancel each other. This is why you have to split the process 
into different sub-intervals where you take the absolute values of the areas 
found and add them.

Example 11 
Find the area under the curve f (x) 5 x 3 2 x 2 1 and the x-axis over the 
interval [21, 2].

fnInt(Xˆ3-X+1,X,
-1,2)

5.25

x

y

�1

1

0

2

3

4

5

6

7

8

�2 �1 1 2 3

CALCULATE
1:value

Y1=Xˆ3-X+1

f(x)dx=5.25
Upper Limit?
X=2

2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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Solution
As you see from the diagram, a part of the graph is below the x-axis, and 
its area will be negative. If you try to integrate this function without paying 
attention to the intersection with the x-axis, this is what you get:

 ∫ 
 –1

  
2

    (x 3 2 x 2 1)  dx 5  [   x 4 __ 4   2   x 2 __ 
2

   2 x ] 2
21

 

5 (4 2 2 2 2) 2  (   1 __ 4   2   1 __ 
2

   1 1 )  5 2   3 __ 4  

This integration has to be split before we start. However, this is a function 
where you cannot find the intersection point. So, we either use our GDC to 
find the intersection, or we just take the absolute values of the different parts 
of the region. This is done by integrating the absolute value of the function:

Area 5  ∫ 
 a
  
b

   f (x)|dx

Hence, area 5  ∫ 
 –1

  
2

     |(x 3 2 x 2 1)|dx

As we said earlier, this is not easy to find given the difficulty with the 
x-intercept. It is best if we make use of a GDC.

Or, using ‘fnInt’ directly:

The difference between them is that the latter is more of a rough 
approximation than the first.

x

y

�1

�2

�3

1

0

2

3

4

5

6

�2 �1 1 2 3

f(x)dx=3.6232289

Plot1

Y1= abs(Xˆ3-X-1)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

fnInt(Y1,X,-1,2)
3.614515798
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Example 12 

Find the area enclosed by the graph of the function f (x) 5 x 3 2 4x 2 1 x 1 6 
and the x-axis.

Solution
This function intersects the x-axis at three points where x 5 21, 2 and 3. 
To find the area, we split it into two and then add the absolute values:

Area 5  ∫ 
 –1

  
3

    f (x)|dx 5  ∫ 
 –1

  
2

    f (x)dx 1  ∫  
2
  
3

   (2f (x)) dx

5  ∫ 
 –1

  
2

     (x 3 2 4x 2 1 x 1 6) dx 1  ∫ 
 2
  
3

    (2x 3 1 4x 2 2 x 2 6) dx

5  [   x 4 __ 4   2   4x 3 ___ 
3

   1   x 2 __ 
2

   1 6x ] 2
21

 1  [ 2   x 4 __ 4   1   4x 3 ___ 
3

   2   x 2 __ 
2

   2 6x ] 3
2

5   45 ___ 4   1   7 ___ 
12

   5   71 ___ 
6

  

Area between curves
In some practical problems, you may have to compute 
the area between two curves. Suppose f (x) and g(x) are 
functions such that f (x) > g(x) on the interval [a, b], as 
shown in the diagram. Note that we do not insist that both 
functions are non-negative, but we begin by showing that 
case for demonstration purposes.

To find the area of the region R between the curves from x 5 a to x 5 b, we 
subtract the area between the lower curve g(x) and the x-axis from the area 
between the upper curve f (x) and the x-axis; that is,

Area of R 5  ∫ 
 a
  
b

   f (x) dx 2  ∫ 
 a
  
b

   g (x) dx 5  ∫ 
 a
  
b

   [ f (x) 2 g (x)] dx

xba

y
y � f(x)

y � g(x)

0

R

x

y

�2

0

2

4

6

8

�2�3 �1 1 2 3 4
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The fact just mentioned applies to all functions, not only positive 
functions. These facts are used to define the area between curves.

If f (x) and g(x) are functions 
such that f (x) > g(x) on the 
interval [a, b], then the area 
between the two curves is 
given by

 A 5  ∫ 
 a

  
b

     [ f (x) 2 g (x)] dx

Example 13 

Find the area of the region between the curves y 5 x 3 and y 5 x 2 2 x on 
the interval [0, 1]. (See diagram above.)

Solution

y 5 x 3 appears to be higher than y 5 x 2 2 x with one intersection at x 5 
0. Thus, the required area is

A 5  ∫ 
 0
  
1

   [x 3 2 (x 2 2 x)] dx 5  [   x 4
 __ 4   2   x 3 __ 

3
   1   x 2 __ 

2
   ] 1

0
 5   5 ___ 

12
  

In order to take all cases into consideration, we will present here another 
case where you must be very careful of how you calculate the area. This is 
the case where the two functions in question intersect at more than one 
point. We will clarify this with an example.

xba

y
y � f(x)

0

xba

y

y � g(x)

0

x

y

�1

1

0

2

3

4

�1 1 2
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Example 14 

Find the area of the region bounded by the curves y 5 x 3 1 2x 2 and 
y  5  x 2  1  2x.

Solution

The two curves intersect when 

x 3 1 2x 2 5 x 2 1 2x ⇒ x 3 1 x 2 2 2x 5 0 ⇒ x (x 1 2)(x 2 1) 5 0,
i.e. when x 5 22, 0 or 1.

The area is equal to

A 5  ∫ 
 –2

  
 0

   [ x 3 1 2x 2 2 (x 2 1 2x)] dx 1  ∫ 
 0
  
 1

   [x 2 1 2x 2 (x3 1 2x 2)] dx

5  ∫ 
 –2

  
 0

   [ x 3 1 x 2 2 2x] dx 1  ∫ 
 0
  
 1

   [2x 2 1 2x 2 x3] dx

5  [   x 4 __ 4   1   x 3 __ 
3

   2 x 2 ] 0
22

 1  [ 2   x 4 __ 4   2   x 3 __ 
3

   1 x 2 ] 1
0

5  0 2 [    16 ___ 4   2   8 __ 
3

   2 4 ]  1  [ 2   1 __ 4   2   1 __ 
3

   1 1 ]  2 0 5   37 ___ 
12

  

This discussion leads us to stating the general expression you should use in 
evaluating areas between curves.

If f (x) and g​(x) are continuous functions on the interval [a, b], the area between the two 
curves is given by

A 5  ∫ 
a
  
b

    |f (x) 2 g (x)|dx

The above computation can be done with your GDC as follows:

x

y

�1

�2

�3

1

0

2

3

4

�1�2�3 1 2

Plot1

Y1= Xˆ3+2X2
Plot2 Plot3

Y2= X2+2X
Y3= abs(Y1-Y2)
Y4=
Y5=
Y6=
Y7=

Y3=abs(Y1-Y2)

Upper Limit?
X=-2 Y=0 f(x)dx=3.083523
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Recall that the underlying principle for finding the area of a plane region is 
to divide the region into thin strips, approximate the area of each strip by 
the area of a rectangle, and then add the approximations and take the limit 
of the sum to produce an integral for the area. The same strategy can be 
used to find the volume of a solid.

The idea is to divide the solid into thin slabs, approximate the volume of 
each slab, add the approximations and take the limit of the sum to produce 
an integral of the volume.

Given a solid whose volume is to be computed, we start by taking cross 
sections perpendicular to the x-axis as shown in Figure 14.9. Each slab will 
be approximated by a cylindrical solid whose volume will be equal to the 
product of its base times its height.

If we call the volume of the slab vi and the area of its base A(x), then 

vi 5 A(xi)h 5 A(xi)Dxi

Using this approximation, the volume  
of the whole solid can be found by 

V   ∑  
i 5 1

   

n

      A(xi) Dxi

Taking the limit as n increases and the 
widths of the sub-intervals approach  
zero yields the definite integral

V 5   lim    
n → 

   ∑  
i 5 1

   

n

      A(xi) Dxi 5  ∫ 
a
  
b 

   A(x)  dx

Sketch the region whose area you are asked for, and then compute the required area. 
In each question, find the area of the region bounded by the given curves.

 1 y 5 x 1 1, y 5 7 2 x 2  2 y 5 cos  x, y 5 x 2   p __ 2  , x 5 2p

 3 y 5 2x, y 5 x 2 2 2  4 y 5 x 3, y 5 x 2 2 2, x 5 1

 5 y 5 x 6, y 5 x 2  6 y 5 5x 2 x 2, y 5 x 2

 7 y 5 2x 2 x 3, y 5 x 2 x 2  8 y 5 sin  x, y 5 2 2 sin  x (one period)

 9 y 5   x __ 
2

  , y 5  √
__

 x   , x 5 9 10 y 5   x 4 ___ 
10

  , y 5 3x 2 x 3

11 y 5   1 __ x  , y 5   1 __ x 3  , x 5 8 12 y 5 2  sin  x, y 5  √
__

 3    tan  x, 2   p __ 4   < x <   p __ 4  

Exercise 14.3

Volumes with integrals14.4

 Hint: This is an introductory 
section that will not be examined. 
It is only used to give you an idea 
of why we use integrals to find 
volumes.

x

y

a

xi

S

b

0

xi � 1

x

y

a
x

S

b

0

Cross section
with area A(x)

Figure 14.9

x

y

xi � 1

0

The cylinder’s base
xi

Plane at xi

Plane at xi � 1

�xi � xi � xi � 1

A � area of base h � height
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Example 15 

Find the volume of the solid formed when the graph of the parabola  
y 5  √

___
 2x     over [0, 4] is rotated around the x-axis through an angle of 2p 

radians, as shown in the diagram.

Solution

The cross section here is a circular disc whose radius is y 5  √
___

 2x  . Therefore, 

A(x) 5 pR2 5 p ( √
___

 2x   )2 5 2px

The volume is then

V 5  ∫ 
 0
  
 4

    A(x)  dx 5  ∫ 
 0
  
 4

    2p x  dx 5 [2p   x 2 ___ 2   ]4

0
 5 16p cubic units.

Example 15 above is a special case of the general process for finding 
volumes of the so-called ‘solids of revolution’.

If a region is bounded by a closed interval [a,​b] on the x-axis and a function f (x) is 
rotated about the x-axis, the volume of the resulting solid of revolution is given by

V 5  ∫ 
 a

  
 b

    p ( f (x))2  dx 

y

a x

f

b x0

f(x)

y

0 x

y

y �     2x

x0 4x

R(x) �     2x

y

y �     2x

x

0

4

disc

x

R(x) �     2x
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Example 16 

Find the volume of a sphere with radius R 5 a.

Solution

If we place the sphere with its centre at the origin, the equation of the circle 
will be 

x 2 1 y 2 5 a 2 ⇒ y 5 6  √
______

 a 2 – x 2  

The cross section of the sphere, perpendicular to the x-axis, is a circular 
disc with radius y , so the area is

A (x) 5 p R2 5 p y2 5 p (  √
______

 a 2 – x 2   ) 2  5 p (a 2 2 x 2)

So, the volume of the sphere is

V 5  ∫ 
 –a

  
 a

    p (a 2 2 x 2) dx  5 p [ a 2x 2   x 3 __ 
3

   ] 
a

2a
 

5 p ( a 3 2   a
 3
 __ 

3
   )  2 p ( 2 a 3 1   a

 3
 __ 

3
   )

5 p ( 2a 3 2 2   a 3 __ 
3

   )  5   4pa 3 _____ 
3

  

Find the volume of the solid obtained by rotating the region bounded by the given 
curves about the x-axis. Sketch the region, the solid and a typical disc.

 1 y 5 3 2   x __ 
3

  , y 5 0, x 5 2, x 5 3  2 y 5 2 2 x 2, y 5 0

 3 y 5  √
______

 16 – x2  , y 5 0, x 5 1, x 5 3  4 y 5   3 __ x  , y 5 0, x 5 1, x = 3

 5 y 5 3 2 x, y 5 0, x 5 0  6 y 5  √
____

 sin x    , y 5 0, 0 < x < p

 7 y 5  √
_____

 cos x  , y 5 0, 2   p __ 2   < x <   p __ 3    8 y 5 4 2 x 2, y 5 0

 9 y 5 x 3 1 2x 1 1, y 5 0, x 5 1 10 y 5 24 x 2 x 2, y 5 x 2

Exercise 14.4

y (x, y)

A(x) � π(a2 � x2)

x

�x

x
x

�a

a
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In previous sections of this text, we have examined problems involving 
displacement, velocity and acceleration of a moving object. In different 
sections of Chapter 11, we applied the fact that a derivative is a rate of 
change to express velocity and acceleration as derivatives. Even though our 
earlier work on motion problems involved an object moving in one, two or 
even three dimensions, our mathematical models considered the object’s 
motion occurring only along a straight line. For example, projectile motion 
(e.g. a ball being thrown) is often modelled by a position function that 
simply gives the height (displacement) of the object. In that way, we are 
modelling the motion as if it were restricted to a vertical line.

In this section, we will again analyze the motion of an object as if its 
motion takes place along a straight line in space. This can only make sense 
if the mass (and thus, size) of the object is not taken into account. Hence, 
the object is modelled by a particle whose mass is considered to be zero. 
This study of motion, without reference either to the forces that cause it or 
to the mass of the object, is known as kinematics.

Displacement and total distance travelled
Recall from Chapter 11 that given time t, displacement s, velocity v and 
acceleration a, we have the following:

v 5   ds __ 
dt

  , a 5   dv __ 
dt

  , and a 5   d __ 
dt

    (   ds __ 
dt

   )  5   d  2s ___ 
dt 2

  

Let’s review some of the essential terms we use to describe an object’s 
motion.

Position, distance and displacement
● The position s of a particle, with respect to a chosen axis, is a measure of how far it is 

from a fixed point (usually the origin) and of its direction relative to the fixed point.
● The distance |s| of a particle is a measure of how far it is from a fixed point (usually 

the origin) and does not indicate direction. Thus, distance is the magnitude of position 
and is always positive.

● The displacement is the change in position. The displacement of an object may be 
positive, negative or zero, depending on its motion.

It is important to understand the difference between displacement and 
distance travelled. Consider a couple of simple examples of an object 
moving along the x-axis. 

1.  In this first example, assume that the object does not change direction 
during the interval 0 < t < 5. In other words, its velocity does not 
change from positive to negative or from negative to positive. If the 
position of the object at t 5 0 is x 5 2 and then the object moves so that 
at t  5  5 its position is x 5 23, its displacement, or change in position, 
is 25 because the object changed its position by 5 units in the negative 

Modelling linear motion14.5
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direction. This can be calculated by (final position) – (initial position) 
5 23 2 2 5 25. However, the distance travelled would be the absolute 
value of displacement, calculated by |final position 2 initial position| 
5 |23 2 2| 5 15.

2. In this example, the object’s initial and final positions are the same as 
in the first example – that is, at t 5 0 its position is x 5 2 and at t 5 5 
its position is x 5 23. However, the object changed direction in that it 
first travelled to the left (negative velocity) from x 5 2 to x 5 25 during 
the interval 0 < t < 3, and then travelled to the right (positive velocity) 
from x 5 25 to x 5 23. The object’s displacement is 25 – the same as in 
the first example because its net change in position is just the difference 
between final and initial positions. However, it’s clear that the object has 
travelled further than in the first example. But we cannot calculate it in the 
same way as we did in the first example. We will have to make a separate 
calculation for each interval where the direction changed. Hence, total 
distance travelled 5 |25 2 2| 1 |23 2 (25)| 5 7 1 2 5 9.

Velocity and speed

● The velocity v 5   ds ___ dt   of a particle is a measure of how fast it is moving and of its 
direction of motion relative to a fixed point.

● The speed |v| of a particle is a measure of how fast it is moving and does not indicate 
direction. Thus, speed is the magnitude of velocity and is always positive.

Acceleration

● The acceleration a 5   dv ___ dt   of a particle is a measure of how fast its velocity is changing.

Example 17 

The displacement s of a particle on the x-axis, relative to the origin, is given 
by the position function s (t) 5 2t 2 1 6t, where s in centimetres and t is in 
seconds.

a) Find a function for the particle’s velocity v (t) in terms of t. Graph the 
functions s (t) and v (t) on separate axes.

b) Find the particle’s position at the following times: t 5 0, 1, 3 and 
6  seconds.

c) Find the particle’s displacement for the following intervals: 0 < t < 1, 
1  < t < 3, 3 < t < 6 and 0 < t < 6.

d) Find the particle’s total distance travelled for the following intervals: 
0  < t < 1, 1 < t < 3, 3 < t < 6 and 0 < t < 6.

x�5 �4 �3 �2 �1 0 1 2 3 4 5

x�5

3 � t � 5
0 � t � 3

�4 �3 �2 �1 0 1 2 3 4 5

s�6 �4�5 �3 �2 �1 0 1 2 3 4 65

There is no separate word to 
describe the magnitude of 
acceleration, |a|.

The definite integral is a 
mathematical tool that can be 
used in applications to calculate 
net change of a quantity  
(e.g. D position → displacement)
 and total accumulation  
(e.g. S area → volume).
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Solution

a) v (t) 5   d __ 
dt

   (2t  2 1 6t) 5 22t 1 6

b) The particle’s position at:
• t 5 0 is s (0) 5 2(0)2 1 6(0) 5 0  cm
• t 5 1 is s (1) 5 2(1)2 1 6(1) 5 5  cm
• t 5 3 is s (3) 5 2(3)2 1 6(3) 5 9  cm
• t 5 6 is s (6) 5 2(6)2 1 6(6) 5 0  cm

c) The particle’s displacement for the interval:
• 0 < t < 1 is D position 5 s (1) 2 s (0) 5 5 2 0 5 5  cm
• 1 < t < 3 is D position 5 s (3) 2 s (1) 5 9 2 5 5 4  cm
• 3 < t < 6 is D position 5 s (6) 2 s (3) 5 0 2 9 5 29  cm
• 0 < t < 6 is D position 5 s (6) 2 s (0) 5 0 2 0 5 0  cm

This last result makes sense considering the particle moved to the right 
9  cm then at t 5 3 turned around and moved to the left 9  cm, ending where 
it started – thus, no change in net position.

d) The particle’s total distance travelled for the interval: 
• 0 < t < 1 is |s (1) 2 s (0)| 5 |5 2 0| 5 5  cm
• 1 < t < 3 is |s (3) 2 s (1)| 5 |9 2 5| 5 4  cm
• 3 < t < 6 is |s (6) 2 s (3)| 5 |0 2 9| 5 |29| 5 9  cm
• 0 < t < 6: The object’s motion changed direction (velocity 5 0) at 

t 5 3, so total distance is |s (3) 2 s (0)| 1 |s (6) 2 s (3)| 
 5 |9 2 0| 1 |0 2 9| 5 9 1 9 5 18  cm

Since differentiation of the position function gives the velocity function 

 ( i.e. v 5   ds __ 
dt

   ) , we expect that the inverse of differentiation, integration, will 

lead us in the reverse direction – that is, from velocity to position. When 
velocity is constant, we can find the displacement with the formula: 

displacement 5 velocity 3 D in time

If we drove a car at a constant velocity of 50  km/h for 3 hours, our 
displacement (same as distance travelled in this case) is 150  km. If a 
particle travelled to the left on the x-axis at a constant rate of 24 units/sec 
for 5 seconds, the particle’s displacement is 220 units.

The velocity–time graph on the next page depicts an object’s motion with a 
constant velocity of 5  cm/s for 0 < t < 3. Clearly, the object’s displacement 
is 5  cm/s 3 3 sec 5 15  cm for this interval.

t

s

�10

�5

5

0

10

Position function: s(t) � �t2 � 6t

�1 1 2 3 4 5 6 7 t

s

�10

�5

5

0

10

Velocity function: v(t) � s�(t) � �2t � 6

�1 1 2 3 4 5 6 7
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The rectangular area (3 3 5 5 15) under the velocity curve is equal to the 
object’s displacement.

Looking back at Example 17, consider the area under the graph of v (t) 
from t 5 0 to t 5 3.

Given the discussion above, we should not be surprised to see that the area 
under the velocity curve for a certain interval is equal to the displacement 
for that interval. We can argue that just as the total area can be found by 
summing the areas of narrow rectangular strips, the displacement can be 
found by summing small displacements (v Dt). Consider:

displacement 5 velocity 3 D in time ⇒ s 5 v Dt ⇒ s 5 v dt

We learned earlier in this chapter that if f (x) > 0 then the definite integral 

 ∫ 
 a
  
 b

    f (x)  dx gives the area between y 5 f (x) and the x-axis from x 5 a to 

x 5 b. And if f (x) < 0 then  ∫ 
 a
  
 b

    f (x)  dx gives a number that is the opposite 

of the area between y 5 f (x) and the x-axis from a to b. 

Using integration to find displacement and total distance travelled
Given that v (t) is the velocity function for a particle moving along a line, then:

 ∫ 
 a

  
 b

   
  

   v (t)  dt gives the displacement from t 5 a to t 5 b

 ∫ 
 a

  
 b

      v (t)  dt |  gives the total distance travelled from t 5 a to t 5 b if the particle does not 

change direction during the interval a , t , b.

If a particle changes direction at some t 5 c for a , c , b, the total distance 

travelled for the particle is given by  |  ∫  
a 

c    

   v (t)  dt |  1  |  ∫  
c
  
b    

   v (t)  dt | .

Let’s apply integration to find the displacement and distance travelled for 
the two intervals 3 < t < 6 and 0 < t < 6 in Example 17.
• For 3 < t < 6:

Displacement 5  ∫ 
 3
  
 6

    (22t 1 6) dt 5 [2t 2 1 6t]6

3
 

5  [ 2(6)2 1 6(6) ]  2  [ 2(3)2 1 6(3) ] 5 0 2 9 5 29

t

v
v(t) � 5

5

0 1 2 3 t

v
v(t) � 5

5

0 1 2 3

t

s

�10

�5

5

0

10

Velocity function: v(t) � s�(t) � �2t � 6

�1 1 2 3

6

0

Area �    � 3 � 6 � 9

3
4 5 6 7

1
2
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Distance travelled 5  |  ∫  
3
  
6

   (22t 1 6) dt |5|[2t  2 1 6t]6

3
 |  

5  |  [ 2(6)2 1 6(6) ]  2  [ 2(3)2 1 6(3) ] | 5 |0 2 9| 5 9

• For 0 < t < 6:

Displacement 5  ∫  
0
  
6

   (22t 1 6) dt 5 [2t  2 1 6t]6

0
 

5  [ 2(6)2 1 6(6) ]  2  [ 0 ] 5 0

Distance travelled 5  |  ∫  
0
  
3

   (22t 1 6) dt |  1  |  ∫  
3
  
6

   (22t 1 6) dt |
5  | [2t  2 1 6t]6

3
 |  1  | [2t  2 1 6t]6

3
 |  

5 |(29 1 18) 2 0| 1 |0 2 (29 1 18)| 

5 |9| 1 |29| 5 9 1 9 5 18

Example 18 

The function v (t) 5 sin(pt) gives the velocity in m/s of a particle moving 
along the x-axis.
a) Determine when the particle is moving to the right, to the left, and 

stopped. At any time it stops, determine if it changes direction at that 
time.

b) Find the particle’s displacement for the time interval 0 < t < 3.
c) Find the particle’s total distance travelled for the time interval 0 < t < 3.

Solution

a) v (t) 5 sin(pt) 5 0 ⇒ sin(k p) 5 0 for k  핑 ⇒ pt 5 kp ⇒ t 5 k, 
k  핑 for 0 < t < 3, t 5 0, 1, 2, 3. Therefore, the particle is stopped at 
t  5 0, 1, 2, 3.

 Since t 5 0 and t 5 3 are endpoints of the interval, the particle can only 
change direction at t 5 1 or t 5 2.

 v (  1 _ 2  )  5  sin(p    1 _ 2  )  5  1; v (  3 _ 2  )  5  sin(p    3 _ 2  )  5  21  ⇒ direction changes at t 5 1

v (  3 _ 2  ) 5 sin(p    3 _ 2  ) 5 21; v (  5 _ 2  ) 5 sin(p    5 _ 2  ) 5 1 ⇒ direction changes 
again at t 5 2

b) Displacement 5  ∫  
0
  
3

 sin(pt) dt 5 [2  1 __ p    cos(pt)  ]3

0

5  2  1 __ p   cos(3p)  2   ( 2  1 __ p    cos(0) )  5  2  1 __ p   (21)  1   1 __ p   (1) 5    2 __ p      0.637 metres

c) Total distance travelled 5  |  ∫  
0
  
1

   sin(pt) dt |  1  |  ∫  
1
  
2

   sin(pt) dt |  
1  |  ∫  

2
  
3

   sin(pt) dt |  5  | [2  1 __ p    cos(pt)]1

0
 | 

1  | [2  1 __ p    cos(pt)]2

1
 | 1  | [2  1 __ p    cos(pt)]3

2
 |

5  |   2 __ p   |  1  | 2  2 __ p   |  1  |   2 __ p   |  5   6 __ p    1.91 metres

particle changed direction at t 5 3
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Note that, in Example 16, the position function is not known precisely. 
The position function can be obtained by finding the anti-derivative of the 
velocity function.

s (t) 5 ∫v (t) dt 5 ∫sin(pt) dt 5 2  1 __ p     cos(pt) 1 C

We can only determine the constant of integration C if we know the 
particle’s initial position (or position at any other specific time). However, 
the particle’s initial position will not affect displacement or distance 
travelled for any interval.

Position and velocity from acceleration
If we can obtain position from velocity by applying integration then we 
can also obtain velocity from acceleration by integrating. Consider the 
following example.

Example 19 

The motion of a falling parachutist is modelled as linear motion by 
considering that the parachutist is a particle moving along a line whose 
positive direction is vertically downwards. The parachute is opened at t  5  0 
at which time the parachutist’s position is s 5 0. According to the model, 
the acceleration function for the parachutist’s motion for t . 0 is given by:

a (t) 5 254e21.5t

a) At the moment the parachute opens, the parachutist has a velocity of 
42  m/s. Find the velocity function of the parachutist for t . 0. What 
does the model say about the parachutist’s velocity as t → ?

b) Find the position function of the parachutist for t . 0.

Solution

a) v (t) 5 ∫a (t) dt 5 ∫(254e21.5t ) dt

5 254 (    1 _____ 
21.5

   ) e21.5t  1 C

5 36e21.5t  1 C

Since v 5 42 when t 5 0, then 42 5 36e 0 1 C ⇒ 42 5 36 1 C ⇒ C 5 6

Therefore, after the parachute opens (t . 0) the velocity function is 
v (t)   5 36e21.5t 1 6.

Since   lim    
t→ 

  e21.5t 5   lim    
t→ 

     1 ___ 
e1.5t   5 0, then as t → ,   lim    

t→ 
  v (t) 5 6  m/sec.

b) s (t) 5 ∫v (t) dt 5 ∫(36e21.5t  1 6) dt

5 36 (    1 _____ 
21.5

   ) e21.5t  1 6t 1 C

5 224e21.5t  1 6t 1 C

Since s 5 0 when t 5 0, then 0 5 224e 0 1 6(0) 1 C  
 ⇒ 0 5 224 1 C ⇒ C 5 24

Therefore, after the parachute opens (t . 0) the position function is 
s (t)   5 224e21.5t 1 6t 1 24.

The limit of the velocity as  
t → , for a falling object, is 
called the terminal velocity of 
the object. While the limit  
t →  is never attained (the 
parachutist eventually lands on 
the ground), the velocity gets 
close to the terminal velocity 
very quickly. For example, after 
just 8 seconds, the velocity is  
v (8) 5 36e21.5(8) 1 6  6.0002  m/s.
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In questions 1–6, the velocity of a particle along a rectilinear path is given by the 
equation v(t) in m/s. Find both the net distance and the total distance it travels 
between the times t​5​a and t​5​b.

 1 v(t) 5 t 2 2 11t 1 24, a 5 0, b 5 10

 2 v(t) 5 t 2   1 __ 
t 2

  , a 5 0.1, b 5 1

 3 v(t) 5 sin  2t, a 5 0, b 5   p __ 2  

 4 v(t) 5 sin  t 1 cos   t, a 5 0, b 5 p

 5 v(t) 5 t 3 2 8t2 1 15t, a 5 0, b 5 6

 6 v(t) 5 sin (   p t ___ 2   )  1 cos (   p t ___ 2   ) , a 5 0, b 5 1

In questions 7–11, the acceleration of a particle along a rectilinear path is given by 
the equation a(t) in m/s2, and the initial velocity v0 m/s is also given. Find the velocity 
of the particle as a function of t,​and​both the net distance and the total distance it 
travels between the times t​5​a and t​5​b.

 7 a(t) 5 3, v0 5 0, a 5 0, b 5 2

 8 a(t) 5 2t 2 4, v0 5 3, a 5 0, b 5 3

 9 a(t) 5 sin t, v0 5 0, a 5 0, b 5   3p ___ 2  

10 a(t) 5   21 ______ 
 √

____
 t + 1  
  , v0 5 2, a 5 0, b 5 4

11 a(t) 5 6t 2   1 ______ 
(t 1 1)3  , v0 5 2, a 5 0, b 5 2

Exercise 14.5

  1	 The	graph	represents	the	function

f	:	x	↦	p	cos	x,	p		핅.

	 Find
a)  the	value	of	p
b)  the	area	of	the	shaded	region.

  2	 The	diagram	shows	part	of	the	graph	of	y	5		e				
x
	_	2			.

a)  Find	the	coordinates	of	the	point	P,	
where	the	graph	meets	the	y-axis.	

The	shaded	region	between	the	graph	and	
the	x-axis,	bounded	by	x	5	0	and	
x	5	ln		2,	is	rotated	through	360°	about	
the	x-axis.
b)  Write	down	an	integral	that	represents	

the	volume	of	the	solid	obtained.
c)  Show	that	this	volume	is	p cubic	units.	

Practice questions

x
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  3	 The	diagram	shows	part	of	the	graph	of	y	5			1	__	x 	.	The	area	of	the	shaded	region	is	2	units.

Find	the	exact	value	of	a.

  4	 a)	 Find	the	equation	of	the	tangent	line	to	the	curve	y	5	ln		x	at	the	point	(e,	1),	and	
verify	that	the	origin	is	on	this	line.

b)  Show	that	(x	ln	x	–	x)9	5	ln		x.

c)  The	diagram	shows	the	region	enclosed	by	the	curve	y	5	ln		x,	the	tangent	line	in	
part	a),	and	the	line	y	5	0.

Use	the	result	of	part	b)	to	show	that	the	area	of	this	region	is			1	_	2			e	2	1.

  5	 The	main	runway	at	Concordville	airport	is	2		km	long.	An	aeroplane,	landing	at	
Concordville,	touches	down	at	point	T,	and	immediately	starts	to	slow	down.	The	point	A	
is	at	the	southern	end	of	the	runway.	A	marker	is	located	at	point	P	on	the	runway.

As	the	aeroplane	slows	down,	its	distance,	s,	from	A,	is	given	by

s	5	c	1	100t	–	4t		2

where	t	is	the	time	in	seconds	after	touchdown	and	c	metres	is	the	distance	of	T	from	A.
a)  The	aeroplane	touches	down	800		m	from	A	(i.e.	c	5	800).

  (i)	 	Find	the	distance	travelled	by	the	aeroplane	in	the	first	5	seconds	after	
touchdown.

  (ii)	 	Write	down	an	expression	for	the	velocity	of	the	aeroplane	at	time	t	seconds	
after	touchdown,	and	hence	find	the	velocity	after	5	seconds.

The	aeroplane	passes	the	marker	at	P	with	a	velocity	of	36		m		s21.	Find
  (iii)	 how	many	seconds	after	touchdown	it	passes	the	marker
	 (iv)	 the	distance	from	P	to	A.

b)	 Show	that	if	the	aeroplane	touches	down	before	reaching	the	point	P,	it	can	stop	
before	reaching	the	northern	end,	B,	of	the	runway.

x

y

0 1 a

x

y

0

1

1 2 3

(e, 1)

A B
T

2 km

P

Not to scale
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  6  a)	 Sketch	the	graph	of	y	5	p	sin	x	2	x,	–3	<	x	<	3,	on	millimetre	square	paper,	using	
a	scale	of	2		cm	per	unit	on	each	axis.		
Label	and	number	both	axes	and	indicate	clearly	the	approximate	positions	of	the	
x-intercepts	and	the	local	maximum	and	minimum	points.

b)	 Find	the	solution	of	the	equation	p	sin	x	2	x	5	0,	 x .	0.

c)	 Find	the	indefinite	integral

∫ (p	sin	x	2	x)		dx
and	hence,	or	otherwise,	calculate	the	area	of	the	region	enclosed	by	the	graph,	the		
x-axis	and	the	line	x	5	1.

  7	 The	diagram	shows	the	graph	of	the	
function	y	5	1	1			1	__	x 	,	0	<	x	<	3.	Find	
the	exact	value	of	the	area	of	the	
shaded	region.

  8	 Note: Radians are used throughout this question.
a)  (i)	 	Sketch	the	graph	of	y	5	x2	cos	x,	for	0	<	x	<	2,	making	clear	the	approximate	

positions	of	the	positive	intercept,	the	maximum	point	and	the	endpoints.
	 (ii)	 	Write	down	the	approximate	coordinates	of	the	positive	x-intercept,	the	

maximum	point	and	the	endpoints.

b)	 Find	the	exact value	of	the	positive	x-intercept	for	0	<	x	<	2.

Let	R	be	the	region	in	the	first	quadrant	enclosed	by	the	graph	and	the	x-axis.
c)  (i)	 Shade	R	on	your	diagram.
	 (ii)	 Write	down	an	integral	that	represents	the	area	of	R.

d)	 Evaluate	the	integral	in	part	c) (ii),	either	by	using	a	graphic	display	calculator,	or	by	
using	the	following	information.

		d	__	
dx

			(x2		sin		x	1	2x		cos		x	2	2		sin	x)	5	x2		cos		x

  9	 Note: Radians are used throughout this question.
The	function	f	is	given	by

f	(x)	5	(sin	x)2	cos	x
The	diagram	shows	part	of	the	graph	of	
y	5	f	(x).
The	point	A	is	a	maximum	point,	the	
point	B	lies	on	the	x-axis,	and	the	point	
C	is	a	point	of	inflexion.

a)  Give	the	period	of	f.

b)  From	consideration	of	the	graph	of	
y	5	f	(x),	find,	to an accuracy of 1 significant figure,	the	range	of	f.
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c)  (i)	 Find	f	9(x).
  (ii)	 Hence,	show	that,	at	the	point	A,	cos	x	5		√

__

			1	_	3								.
  (iii)	 Find	the	exact	maximum	value.

d)	 Find	the	exact	value	of	the	x-coordinate	at	the	point	B.

e)  (i)	 Find	∫ f	(x)		dx.
	 (ii)	 Find	the	area	of	the	shaded	region	in	the	diagram.
f)	 Given	that	f		0(x)	5	9(cos	x)3	2	7	cos	x,	find	the	x-coordinate	at	the	point	C.

10	 Note: Radians are used throughout this question.
a)	 Draw	the	graph	of	y	5	p	1	x	cos	x,	0	<	x	<	5,	on	millimetre	square	paper,	using	a	

scale	of	2		cm	per	unit.	Make	clear
	 (i)	 the	integer	values	of	x	and	y	on	each	axis
	 (ii)	 the	approximate	positions	of	the	x-intercepts	and	the	turning	points.
b)	 Without the use of a calculator,	show	that	p	is	a	solution	of	the	equation

p	1	x	cos	x	5	0.
c)	 Find	another	solution	of	the	equation	p	1	x	cos	x	5	0	for	0	<	x	<	5,	giving	your	

answer	to	6	significant	figures.
d)	 Let	R	be	the	region	enclosed	by	the	graph	and	the	axes	for	0	<	x	< p.	Shade	R	on	

your	diagram,	and	write	down	an	integral	which	represents	the	area	of	R.
e)	 Evaluate	the	integral	in	part	d)	to	an	accuracy	of	6	significant	figures.	(If	you	

	 consider	it	necessary,	you	can	make	use	of	the	result			d	__	
dx

			(x	sin	x	1	cos	x)	5	x	cos	x.

11	 The	diagram	right	shows	the	graphs	of	
f	(x)	5	1	1	e2x	and
g	(x)	5	10x	1	2,	0	<	x	<	1.5.

a)  (i)	 	Write	down	an	expression	for	
the	vertical	distance	p	between	
the	graphs	of	f	and	g.

	 (ii)	 	Given	that	p	has	a	maximum	
value	for	0	<	x	<	1.5,	find	the	
value	of	x	at	which	this	occurs.

The	graph	of	y	5	f	(x)	only	is	shown	in	
the	diagram	right.	When	x	5	a,	y	5	5.
b)  (i)	 Find	f	21(x).
	 (ii)	 Hence,	show	that	a	5	ln	2.
c)	 The	region	shaded	in	the	

diagram	is	rotated	through	360°	
about	the	x-axis.	Write	down	an	
expression	for	the	

	 volume	obtained.

Questions	1–11:	©	International	Baccalaureate	Organization

y

x

p

f

g

0

4

8

12

16

0.5 1 1.5

y

xa0

4

8

5

12

16

0.5 1 1.5



518

Introduction

Investing in securities, calculating premiums for insurance policies or 
overbooking policies used in the airline industry are only a few of the many 
applications of probability and statistics. Actuaries, for example, calculate 
the expected ‘loss’ or ‘gain’ that an insurance company will incur and decide 
on how high the premiums should be. These applications depend mainly on 
what we call probability distributions. A probability distribution describes 
the behaviour of a population in the sense that it lists the distribution of 
possible outcomes to an event, along with the probability of each potential 
outcome. This can be done by a table of values with their corresponding 
probabilities or by using a mathematical model.

In this chapter, you will get an understanding of the basic ideas of 
distributions and will study two specific ones: the binomial and normal 
distributions.

In Chapter 9, variables were defined as characteristics that change or vary over 
time and/or for different objects under consideration. A numerically valued 
variable x will vary or change depending on the outcome of the experiment 
we are performing. For example, suppose you are counting the number of 
mobile phones families in a certain city own. The variable of interest, x, can 
take any of the values 0, 1, 2, 3, etc. depending on the random outcome of the 
experiment. For this reason, we call the variable x a random variable.

Random variable
A random variable is a variable that takes on numerical values determined by the 
outcome of a random experiment.

When a probability experiment is performed, often we are not interested in 
all the details of the outcomes, but rather in the value of some numerical 

Random variables15.1

Assessment statements
5.7	 Concept	of	discrete	random	variables	and	their	probability	distributions.
	 Expected	value	(mean),	E(x)	for	discrete	data.
5.8	 Binomial	distribution.
	 Mean	and	variance	of	the	binomial	distribution.
5.9	 Normal	distribution	and	curves.
	 Properties	of	the	normal	distribution.
	 Standardization	of	normal	variables.

15 Probability Distributions
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quantity determined by the result. For instance, in tossing two dice (used 
in plenty of games), often we care about their sum and not the values on 
the individual dice. Consider this specific experiment: A sample space for 
which the points are equally likely is given in Table 15.1 below. It consists 
of 36 ordered pairs (a, b) where a is the number on the first die and b is the 
number on the second die. For each sample point, we can let the random 
variable x stand for the sum of the numbers. The resulting values of x are 
also presented in Table 15.1.

(1, 1); x 5 2 (2, 1); x 5 3 (3, 1); x 5 4 (4, 1); x 5 5 (5, 1); x 5 6 (6, 1); x 5 7

(1, 2); x 5 3 (2, 2); x 5 4 (3, 2); x 5 5 (4, 2); x 5 6 (5, 2); x 5 7 (6, 2); x 5 8

(1, 3); x 5 4 (2, 3); x 5 5 (3, 3); x 5 6 (4, 3); x 5 7 (5, 3); x 5 8 (6, 3); x 5 9

(1, 4); x 5 5 (2, 4); x 5 6 (3, 4); x 5 7 (4, 4); x 5 8 (5, 4); x 5 9 (6, 4); x 5 10

(1, 5); x 5 6 (2, 5); x 5 7 (3, 5); x 5 8 (4, 5); x 5 9 (5, 5); x 5 10 (6, 5); x 5 11

(1, 6); x 5 7 (2, 6); x 5 8 (3, 6); x 5 9 (4, 6); x 5 10 (5, 6); x 5 11 (6, 6); x 5 12

Notice that events can be more accurately and concisely defined in terms 
of the random variable x ; for example, the event of tossing a sum at least 
equal to 5 but less than 9 can be replaced by 5 < x , 9.

We can think of many examples of random variables:

• X 5 the number of calls received by a household on a Friday night.
• X 5 the number of free beds available at hotels in a large city.
• X 5 the number of customers a sales person contacts on a working day.
• X 5 the length of a metal bar produced by a certain machine.
• X 5 the weight of newborn babies in a large hospital.

As you have seen in Chapter 9, these variables are classified as discrete or 
continuous, according to the values that x can assume. In the examples 
above, the first three are discrete and the last two are continuous. The 
random variable is discrete if its set of possible values is isolated points 
on the number line, i.e. there is a countable number of possible values for 
the variable. The variable is continuous if its set of possible values is an 
entire interval on the number line, i.e. it can take any value in an interval. 
Consider the number of times you toss a coin until the head side appears. 
The possible values are x 5 1, 2, 3, … . This is a discrete variable, even 
though the number of times may be infinite! On the other hand, consider 
the time it takes a student at your school to eat/have his/her lunch. This 
can be anywhere between zero and 50 minutes (given that the lunch period 
at your school is 50 minutes).

Example 1 
State whether each of the following is a discrete or a continuous random 
variable.
1. The number of hairs on a Scottish Terrier
2. The height of a building

discrete continuous

0 50

Table 15.1 Sample space and 
the values of the random variable 
x in the two-dice experiment.
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3. The amount of fat in a steak
4. A high school student’s grade on a maths test
5. The number of fish in the Atlantic Ocean
6. The temperature of a wooden stove

Solution
1. Even though the number of hairs is ‘almost’ infinite, it is countable. So, 

it is a discrete random variable.
2. This can be any real number. Even when you say this building is 15  m 

high, the number could be 15.1 or 15.02, etc. Hence, it is continuous.
3. This is continuous, as the amount of fat could be zero or anything up to 

the maximum amount of fat that can be held in one piece.
4. Grades are discrete. No matter how detailed a score the teacher gives, 

the grades are isolated points on a scale.
5. This is almost infinite, but countable, hence discrete.
6. This is continuous, as the temperature can take any value from room 

temperature to 100 degrees.

Probability distribution
In Chapter 9, you learned how to work with the frequency distribution 
and relative or percentage frequency distribution for a set of numerical 
measurements on a variable x. The distribution gave the following 
information about x :
• The value of x that occurred.
• How often each value occurred.

You also learned how to use the mean and standard deviation to measure 
the centre and variability of the data set.

Here is an example of the frequency distribution of 25 families in Lower 
Austria that were polled in a marketing survey to list the number of litres 
of milk consumed during a particular week, reproduced below. As you 
will observe, the table lists the number of litres consumed along with the 
relative frequency with which that number is observed. As you recall from 
Chapter 10, one of the interpretations of probability is that it is understood 
to be the long-term relative frequency of the event.

Number of litres Relative frequency

0 0.08

1 0.20

2 0.36

3 0.20

4 0.12

5 0.04

A table like this, where we replace the relative frequency with probability, is 
called a probability distribution of the random variable.

Table 15.2
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The probability distribution for a discrete random variable is a table, graph or formula 
that gives the possible values of x, and the probability P(x) associated with each value of x.

Letting x be the number of litres of milk consumed by a family above, the 
probability distribution of x would be as follows:

x 0 1 2 3 4 5

P (x) 0.08 0.20 0.36 0.20 0.12 0.04

The other form of representing the probability distribution is with a 
histogram, as shown below. Every column corresponds to the probability 
of the associated value of x. The values of x naturally represent mutually 
exclusive events. Summing P(x) over all values of x is equivalent to adding all 
probabilities of all simple events in the sample space, and hence the total is 1.

The result above can be generalized for all probability distributions:

Required properties of probability distribution functions of 
discrete random variables

Let x be a discrete random variable with probability distribution function, 
P(x). Then:
• 0 < P(x) < 1, for any value x.

• The individual probabilities sum to 1; that is,  ∑ 
x
    

  

    P(x) 5 1 where the 

notation indicates summation over all possible values x.

Example 2 

Radon is a major cause of lung cancer after smoking. It is a radioactive gas 
produced by the natural decay of radium in the ground. Studies in areas 
rich with radium revealed that one-third of houses in these areas have 
dangerous levels of this gas. Suppose that two houses are randomly selected 
and we define the random variable x to be the number of houses with 
dangerous levels. Find the probability distribution of x by a table, a graph 
and a formula.

Solution

Since two houses are selected, the possible values of x are 0, 1 or 2. To 
find their probabilities, we utilize what we learned in Chapter 10. The 
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assumption here is that we are choosing the houses randomly and 
independently of each other!

P(x 5 2) 5 P(2) 5 P(1st house with gas and 2nd house with gas)

5 P(1st house with gas) 3 P(2nd house with gas) 5   1 _ 3   3   1 _ 3   5   1 _ 9  

P(x 5 0) 5 P(0) 5 P(1st house without gas and 2nd house 
without gas)

5 P(1st house without gas) 3 P(2nd house without gas) 

5   2 _ 3   3   2 _ 3   5   4 _ 9  

P(x 5 1) 5 1 – [P(0) 1 P(2)] 5 1 2  [   4 _ 9   1   1 _ 9   ]  5   4 _ 9  

Table
x 0 1 2

P(x)   4 _ 9    4 _ 9    1 _ 9  

Graph

Any type of graph can be used to give the probability distribution, as long 
as it shows the possible values of x and the corresponding probabilities. 
The probability here is graphically displayed as the height of a rectangle. 
Moreover, the rectangle corresponding to each value of x has an area 
equal to the probability P(x). The histogram is the preferred tool due to its 
connection to the continuous distributions discussed later in the chapter.

Formula/rule
The probability distribution of x can also be given by the following rule. 
Don’t be concerned now with how we came up with this formula, as we 
will discuss it later in the chapter. The only reason we are looking at it now 
is to illustrate the fact that a formula/rule can sometimes be used to give 
the probability distribution.

P(x) 5  (  2   x  )  (   1 __ 
3

   ) 
x
 (   2 __ 

3
   ) 

2 2 x
, where  (  2   x  )  represents the binomial 

coefficient you saw in Chapter 3.

Notice that when x is replaced by 0, 1 or 2 we obtain the results we are 
looking for:

P(0) 5  (  2   0  )  (   1 __ 
3

   ) 
0
 (   2 __ 

3
   ) 

2 2 0
 5 11    4 __ 

9
   5   4 __ 

9
  

P(1) 5  (  2   1  )  (   1 __ 
3

   ) 
1
 (   2 __ 

3
   ) 

2 2 1
 5 2    1 __ 

3
        2 __ 

3
   5   4 __ 

9
  

P(2) 5  (  2   2  )  (   1 __ 
3

   ) 
2
 (   2 __ 

3
   ) 

2 2 2
 5 1    1 __ 

9
    1 5   1 __ 

9
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Example 3 
Many universities have the policy of posting the grade distributions for 
their courses. Several of the universities have a grade-point average that 
codes the grades in the following manner: A 5 4, B 5 3, C 5 2, D 5 1 
and F 5 0. During the spring term at a certain large university, 13% of the 
students in an introductory statistics course received A’s, 37% B’s, 45% C’s, 
4% received D’s and 1% received F’s. The experiment here is to choose a 
student at random and mark down his/her grade. The student’s grade on 
the 4-point scale is a random variable x.

Here is the probability distribution of x:

x 0 1 2 3 4

P(x) 0.01 0.04 0.45 0.37 0.13

Is this a probability distribution? 

Solution

Yes, it is. Each probability is between 0 and 1, and the sum of all 
probabilities is 1.

What is the probability that a randomly chosen student receives a B or 
better? 

P(x > 3) 5 P(x 5 3) 1 P(x 5 4) 5 0.37 1 0.13 5 0.40

Example 4 
In the codes example in Chapter 10, we saw the probability with which 
people choose the first digits for the codes for their cellphones. The 
probability distribution is copied below for reference.

First digit 0 1 2 3 4 5 6 7 8 9

Probability 0.009 0.300 0.174 0.122 0.096 0.078 0.067 0.058 0.051 0.045

Here, x is the first digit chosen.

What is the probability that you pick a first digit and it is more than 5? 
Show a probability histogram for the distribution.

Solution

P(x > 5) 5 P(x 5 6) 1 P(x 5 7) 1 P(x 5 8) 1 P(x 5 9) 5 0.221

Note that the height of each bar shows the probability of 
the outcome at its base. The heights add up to 1, of course. 
The bars in this histogram have the same width, namely 
1. So, the areas also display the probability assignments 
of the outcomes. Think of such histograms (probability 
histograms) as idealized pictures of the results of very many 
repeated trials.
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Expected values
The probability distribution for a random variable looks very similar to 
the relative frequency distribution discussed in Chapter 9. The difference is 
that the relative frequency distribution describes a sample of measurements, 
whereas the probability distribution is constructed as a model for the entire 
population. Just as the mean and standard deviation gave you measures for 
the centre and spread of the sample data, you can calculate similar measures 
to describe the centre and spread of the population.

The population mean, which measures the average value of x in the 
population, is also called the expected value of the random variable x. It 
is the value that you would expect to observe on average if you repeat the 
experiment an infinite number of times. The formula we use to determine 
the expected value can be simply understood with an example.

Let’s revisit the milk consumption example. Let x be the number of litres 
consumed. Here is the table of probabilities again:

x 0 1 2 3 4 5

P (x) 0.08 0.20 0.36 0.20 0.12 0.04

Suppose we choose a large number of families, say 100  000. Intuitively, 
using the relative frequency concept of probability, you would expect to 
observe 8000 families consuming no milk, 20 000 consuming 1 litre, and 
the rest similarly done: 36  000, 20  000, 12  000 and 4000.

The average (mean) value of x, as defined in Chapter 9, would then be 
equal to

  sum of all measurements  _____________________ n    

5   0·8000 1 1·20  000 1 2·36  000 1 3·20  000 1 4·12  000 1 5·4000     __________________________________________________   
100  000

  

5   0·8000 _______ 
100  000

   1   1·20  000 _______ 
100  000

   1   2·36  000 _______ 
100  000

   1   3·20  000 _______ 
100  000

   1   4·12  000 _______ 
100  000

   1   5·4000 _______ 
100  000

  

5 0·0.08 1 1·0.20 1 2·0.36 1 3·0.20 1 4·0.12 1 5·0.04

5 0·P(0) 1 1·P(1) 1 2·P(2) 1 3·P(3) 1 4·P(4) 1 5·P(5) 5 2.2

That is, we expect to see families, on average, consuming 2.2 litres of milk! 
This does not mean that we know what a family will consume, but we can 
say what we expect to happen.

Let x be a discrete random variable with probability distribution P(x). The mean or 
expected value of x is given by 

m 5 E(x) 5 ƩxP(x)

Insurance companies make extensive use of expected value calculations. 
Here is a simplified example.

An insurance company offers a policy that pays you e10  000 when you 
totally damage your car or e5000 for major damages (50%). They charge 
you e50 per year for this service. The question is, how can they make profit?
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To understand how they can afford this, suppose that the ‘total damage’ car 
accident rate, in any year, is 1 out of every 1000 cars, and that another 2 
out of 1000 will have serious damages. Then we can display the probability 
model for this policy in a table like this:

Type of accident Amount paid x Probability P(X 5 x)

Total damage 10  000   1
 ___ 1000  

Major damage    5000   2
 ___ 1000  

Minor or no damage       0   997
 ___ 1000  

The expected amount the insurance company pays is given by

m 5 E(X ) 5 ƩxP(x) 5 e10  000 (   1 ____ 
1000

   )  1 e5000 (   2 ____ 
1000

   )  

   1 e0 (   997 ____ 
1000

   )  5 e20

This means that the insurance company expects to pay, on average, an 
amount of e20 per insured car. Since it is charging people e50 for the 
policy, the company expects to make a profit of e30 per car. Thinking about 
the problem in a different perspective, suppose they insure 1000 cars, then 
the company would expect to pay e10  000 for 1 car and e5000 to each of 
two cars with major damage. This is a total of e20  000 for all cars, or an 

average of   20  000 ______ 
1000

   5 e20 per car.

Of course, this expected value is not what actually happens to any 
particular policy. No individual policy actually costs the insurance 
company e20. We are dealing with random events, so a few car owners 
may require a payment of e10  000 or e5000, many others receive nothing! 
Because of the need to anticipate such variability, the insurance company 
needs to know a measure of this variability, which is nothing but the 
standard deviation.

Variance and standard deviation
For data in Chapter 9, we calculated the variance by computing the 
deviation from the mean, x – m, and then squaring it. We do that with 
random variables as well.

We can use similar arguments to justify the formulae for the population 
variance s2 and, consequently, the population standard deviation s. These 
measures describe the spread of the values of the random variable around 
the centre. We similarly use the idea of the ‘average’ or ‘expected’ value of 
the squared deviations of the x-values from the mean m or E(x).

Let x be a discrete random variable with probability distribution P(x) and mean m. The 
variance of x is given by

s 2 5 E ( (x 2 m)2 )  5 Ʃ(x 2 m)2P(x)

(This is sometimes called Var(x).)
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Note: It can also be shown, similar to what you saw in Chapter 9, that you 
have another ‘computation’ formula for the variance:

s2 5 Ʃ(x 2 m)2P(x) 5 Ʃx 2P(x) 2 m 2 5 Ʃx 2P(x) 2 [E(x)]2

    5 Ʃx 2P(x) 2  [  ƩxP(x) ] 2

The standard deviation s of a random variable x is equal to the positive square root of 
its variance.

Let us go back to the milk consumption example. Recall that we calculated 
the expected value, mean, to be 2.2 litres. In order to calculate the variance, 
we can tabulate our work to make the manual calculation simple.

x P (x) Deviation (x 2 m) Squared deviation (x 2 m)2 (x 2 m)2P (x)

0 0.08 22.2 4.84 0.3872
1 0.20 21.2 1.44 0.2880
2 0.36 20.2 0.04 0.0144
3 0.20 0.8 0.64 0.1280
4 0.12 1.8 3.24 0.3888
5 0.04 2.8 7.84 0.3136

Total Ʃ(x 2 m)2P(x) 1.52

So, the variance of the milk consumption is 1.52 litres2, or the standard 
deviation is 1.233 litres.

GDC notes

The above calculations, along with the expected value calculation, can be 
easily done using your GDC.

First, store x and P(x) into L1 and L2.

Then, to find x P(x), we multiply L1 and L2 and store the result in L3.

To find the expected value, you simply get the sum of the entries in L3, 

since they correspond to Ʃx P(x).

L2

L2( 1)=.08

L3L1 2
0
1
2
3
4
5

.08

.2

.36

.2

.12

.04

L1
(0 .2 .72 .6 .4…
*L2 L3

L1
(0 .2 .72 .6 .4…
*L2

sum(L3)
2.2

L3
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To find the variance, we need to find the deviations from the mean; so 
we make L4 that deviation, i.e. we store L1 2 2.2 into L4. Then, to get the 
squared deviations multiplied by the corresponding probability, we set 
up L5 to be L4 squared multiplied by L2, the probability. Now, to find the 
variance, just add the terms of L5.

Software note

In the comfort of home/class, the above calculation can be performed on a 
computer with a simple spreadsheet like the following one:

x P(x) xP(x) x 2 m (x 2 m)2 (x 2 m)2P(x)

0 0.08 0 22.2 4.84 0.3872

1 0.2 0.2 21.2 1.44 0.288

2 0.36 0.72 20.2 0.04 0.0144

3 0.2 0.6 0.8 0.64 0.128

4 0.12 0.48 1.8 3.24 0.3888 E4*B4

5 0.04 0.2 2.8 7.84 0.3136

Totals 1 2.2 1.52

A3 2 2.2 E6^2

A2*B2 SUM(C2:C7)

Example 5 

A computer store sells a particular type of laptop. The daily demand for the 
laptops is given in the table below. x is the number of laptops in demand. 
They have only 4 laptops left in stock and would like to know how well 
they are prepared for all eventualities. Work out the expected value of the 
demand and the standard deviation.

x 0 1 2 3 4 5

P(x) 0.08 0.40 0.24 0.15 0.08 0.05

Solution

E(x) 5 Ʃx P(x) 5  0 3 0.08 1 1 3 0.40 1 2 3 0.24 1 3 3 0.15 
1 4 3 0.08 1 5 3 0.05 5 1.90

Var(x) 5 s2 5 Ʃ (x 2 m)2P(x)

5  (0 2 1.9)20.08 1 (1 2 1.9)20.40 1 (2 2 1.9)20.24 
1 (3 2 1.9)20.15 1 (4 2 1.9)20.08 1 (5 2 1.9)20.05 5 1.63

s 5 1.28

Spreadsheet output is also given.

x P(x) x P (x) x 2 m (x 2 m)2 (x 2 m)2P(x)

0 0.08 0 21.9 3.61 0.2888

1 0.4 0.4 20.9 0.81 0.324

2 0.24 0.48 0.1 0.01 0.0024

3 0.15 0.45 1.1 1.21 0.1815

4 0.08 0.32 2.1 4.41 0.3528

5 0.05 0.25 3.1 9.61 0.4805

Totals 1 1.9 1.63

L1
(-2.2  -1.2 -.2…
-2.2

sum(L5)
1.52

(L4)2*L2  L5
(.3872 .228 .01…

L4
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The graph of the probability distribution is given below.

As an approximation, we can use the empirical rule to see where most of 
the demand is expected to be. Recall that the empirical rule tells us that 
about 95% of the values would lie within 2 standard deviations from the 
mean. In this case m 6 2s 5 1.9 6 2 3 1.28 ⇒ (20.66, 4.46). This interval 
does not contain the 5 units of demand. We can say that it is unlikely that 5 
or more customers of this shop will want to buy a laptop today.

GDC
After entering the demand in L1 and the probabilities in L2, it is enough to 
find the sum of their product. 

For the variance, we follow the same procedure as described in the 
previous example, see right.

Notice here that we combined several steps in one.

Expected value properties

We will start this sub-section with some examples.

Example 6 

The random variable X has a probability distribution function (PDF) given 
in the following table.

x 0 1 2 3 4 5

P(X 5 x) 0.2 0.05 0.5 0.1 0.1 0.05

Find E(X) and Var(X).

Solution

sum(L1*L2)
1.9

L1
(0 .4 .48 .45 .…
*L2

sum(L5)
1.63

(L1-1.9)2*L2  L5
(.2888 .324 .00…

L3
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E(X) 5 ∑ xP(x) 5 0  0.2 1 1  0.05 1 2  0.5 1 3  0.1 1 4  0.1 1 5  0.05 5 2 

Var(X) 5 ∑ (x 2 E(X))2 P(x) 5 (0 2 2)2  0.2 1 (1 2 2)2  0.05 1 … 5 1.8 
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Example 7 

For the data given in Example 6, find each of the following.

a) E(3x) b) Var(3x)

c) E(3x 1 5) d) Var(3x 1 5)

Solution

a) E(3X) 5 ∑ (3x)P(3x) 

  5 0  0.2 1 3  0.05 1 6  0.5 1 9  0.1 1 12  0.1 1 15  0.05 5 6 

b) Var(3X) 5 ∑ (3x 2 E(3X))2 P(3x) 
 5 (0 2 6)2  0.2 1 (3 2 6)2  0.05 1 … 5 16.2 

c) E(3X 1 5)  5 ∑ (3x 1 5)P(3x1 5) 

  5 5  0.2 1 8  0.05 1 11  0.5 1 14  0.1 1 17  0.1 1 20  0.05 
    5 11 

d) Var(3X 1 5)  5 ∑ (3x 1 5 2 E(3X 1 5))2 P(3x 1 5) 

  5 (5 2 11)2  0.2 1 (8 2 11)2  0.05 1 … 
    5 16.2 

In the previous examples you can observe that E(3X) 5 6 5 3E(X) and 
that E(3X 1 5) 5 11 5 3E(X) 1 5. We can generalize this result.

For a random variable X and constants a and b,

E(aX) 5 aE(X) and E(aX 1 b) 5 aE(X) 1 b

Also, you can observe that Var(3X) 5 16.2 5 9Var(X) as well as 
Var(3X 1 5) 5 16.2 5 9 Var(X).

We can also generalize this result.

For a random variable X and constants a and b:

Var(aX) 5 a2 Var(X) and Var(aX 1 b) 5 a2 Var(X) 

The proof of the statements in this section is beyond the scope of the syllabus,  
but here they are for interest.

E(aX 1 b) 5 ∑ (ax 1 b)p(x) 5 ∑ (axp(x) 1 bp(x))

 5 ∑ axp(x) 5 ∑ bp(x) 5 a ∑ xp(x) 1 b ∑ p(x)

 5 aE(X) 1 b(1) 5 aE(X) 1 b

Var(aX 1 b) 5 Var(Y) 5 ∑ (Y 2 E(Y))2 p(y)

 5 ∑ (aX 1 b 2 aE(X) 2 b)2 p(x)

 5 ∑ (a(X 2 E(X)))2 p(x)

 5 a2 ∑ (X 2 E(X))2 p(x) 5 a2Var(X)
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Example 8 

X has PDF as shown in the table below.

x 5 10 15 20 25

P(x)   3 ___ 20    7 ___ 30    1 ___ 10    3 ___ 10    13 ___ 60  

Find the following.

a) E(X) b) E(2X 2 3) c) Var(2X 2 3)

Solution

a) E(X) 5 5    3 __ 
20   1 10    7 __ 

30   1 15    1 __ 
10   1 20    3 __ 

10   1 25    13 __ 
60

   5 16

 Using a GDC, we can store the values of x in a list, L1 for example, and 
the probabilities in L2. Then multiply L1 and L2 and store them in L3, 
and finally get the sum of L3. Here is a TI-841 output:

L2

L2(6)

L3 2
5
10
15
20
25

L1
.15
.23333
.1
.3
.21667

sum(L1*L2)
16

 On a Casiofx-CG20 the output is:

Rad

TOOL EDIT DELETE DEL-ALL INSERT

Norm1

List 1
SUB
3
4
5
6

15
20
25

0.1
0.3

0.2166

List 2 List 3 List 4
d/c Real Rad Norm1Math d/c Real

Sum Prod Cuml �List%

Sum (List 1XList 2)
16

 The variance can be calculated using the GDC:

Rad Norm1 d/c Real

1-Variable
X
�x
�x2
�x
sx
n

=16
=16
=305
=7

=1
=

 Hence, Var(X) 5 72 5 49

b) E(2X 2 3) 5 2 E(X) 2 3 5 2 × 16 2 3 5 29

c) Var(2X 2 3) 5 22 Var(X) 5 4 × 49 5 196

Example 9 

The random variable X has the PDF defined by the rule:

P(X 5 x) 5 k(25 2 x 2), for x [ {1, 2, 3, 4, 5}.

a) Find the value of k. b) Find P(1 < x  3).

c) Find E(X) and Var(X). d) Find E(3X 1 2).
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Solution

a) We make a table summarizing the PDF of the variable.

x 1 2 3 4 5

P(x) 24k 21k 16k 9k 0

 Since X is a random variable, then the sum of all its probabilities must 
be 1.

 Hence, ∑ p(x) 5 24k 1 21k 1 16k 1 9k 1 0 5 1 ⇒ k 5   1 ___ 70  

b) P(1 < x  3) 5 P(X 5 2) 1 P(X 5 3) 5 37k 5   37 ___ 70  .

c) E(X) 5 ∑xP(x) 5 1  24k 1 2  21k 1 3  16k 1 4  9k 1 5  0 

  5 150k 

  5   15 ___ 7   

 Var(X) 5 ∑(x 2 E(x))2 P(x)

  5   ( 1 2   15 ___ 7   )  
2
   24k 1   ( 2 2   15 ___ 7   )  

2
   21k 1   ( 3 2   15 ___ 7   )  

2
   16k 

      1   ( 4 2   15 ___ 7   )  
2 
  9k 1   ( 5 2   15 ___ 7   )  

2
   0

  5   522 ___ 
7k

   5   522 ___ 
490

   5   
261

 ____
 245  

d) E(3X 1 2) 5 3 3   15 ___ 7   1 2 5   59 ___ 7  

(Problems marked with (*) are optional.)

 1 Classify each of the following as discrete or continuous random variables.

a) The number of words spelled correctly by a student on a spelling test.

b) The amount of water flowing through the Niagara Falls per year.

c) The length of time a student is late to class.

d) The number of bacteria per cc of drinking water in Geneva.

e) The amount of CO produced per litre of unleaded gas.

f ) The amount of a flu vaccine in a syringe.

g) The heart rate of a lab mouse.

h) The barometric pressure at Mount Everest.

i) The distance travelled by a taxi driver per day.

j) Total score of football teams in national leagues.

k) Height of ocean tides on the shores of Portugal.

l) Tensile breaking strength (in Newtons per square metre) of a 5 cm diameter 
steel cable.

m) Number of overdue books in a public library.

 2 A random variable y has this probability distribution:

y 0 1 2 3 4 5

P(y) 0.1 0.3 0.1 0.05 0.05

Exercise 15.1
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a) Find P(2).
b) Construct a probability histogram for this distribution.
c) Find m and s.(*)
d) Locate the interval m 6 s as well as m 6 2s on the histogram.(*)

 3 A discrete random variable x can assume five possible values: 12, 13, 15, 18, and 
20. Its probability distribution is shown below.

x 12 13 15 18 20

P(x) 0.14 0.11 0.26 0.23

a) What is P(15)?
b) What is the probability that x equals 12 or 20?
c) What is P(x < 18)?
d) Find E(x).
e) Find V(x).(*)

 4 Medical research has shown that a certain type of chemotherapy is successful 
70% of the time when used to treat skin cancer. In a study to check the validity 
of such a claim, researchers chose different treatment centres and chose five of 
their patients at random. Here is the probability distribution of the number of 
successful treatments for groups of five:

x 0 1 2 3 4 5

P(x) 0.002 0.029 0.132 0.309 0.360 0.168

a) Find the probability that at least two patients would benefit from the 
treatment.

b) Find the probability that the majority of the group does not benefit from the 
treatment.

c) Find E (x) and interpret the result.
d) Show that s (x) 5 1.02.(*)
e) Graph P(x). Locate m, m 6 s and m 6 2s on the graph. Use the empirical rule 

to approximate the probability that x falls in this interval. Compare this with 
the actual probability.

 5 The probability function of a discrete random variable X is given by

P(X 5 x) 5   kx __ 2  , for x 5 12, 14, 16, 18.

Set up the table showing the probability distribution and find the value of k.

 6 x has probability distribution as shown in the table.

x 5 10 15 20 25

P(x)   3 __ 20    7 __ 30  k   3 __ 10    13
 __ 60  

a) Find the value of k.
b) Find P(x . 10).
c) Find P(5 , x < 20).
d) Find the expected value and the standard deviation.

 7 The discrete random variable Y has a probability density function 

P(Y 5 y) 5 k (16 2 y2), for y 5 0, 1, 2, 3, 4.

a) Find the value of the constant k.

b) Draw a histogram to illustrate the distribution.
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c) Find P(1 < y < 3).

d) Find the mean and variance.

 8 The probability distribution of students categorized by age that visit a certain 
movie house on weekends is given below. The probabilities for 18- and 19-year-
olds are missing. We know that 

P(x 5 18) 5 2P(x 5 19)

a) Complete the histogram and describe the distribution.

b) Find the expected value and the variance.

 9 In a small town, a computer store sells laptops to the local residents. However, 
due to low demand, they like to keep their stock at a manageable level. The data 
they have indicate that the weekly demand for the laptops they sell follows the 
distribution given in the table below.

X: number of laptops bought 0 1 2 3 4 5

P(X 5 x) 0.10 0.40 0.20 0.15 0.10 0.05

a) Find the mean and standard deviation of this distribution.

b) Use the empirical rule to find the approximate number of laptops that is sold 
about 95% of the time.

c) Is it likely that 5 or more customers buy a laptop in any week?

10 The discrete random variable x has probability function given by

    (   1 _ 4   ) x 2 1 x 5 2, 3, 4, 5, 6

P(x) 5  {  k x 5 7
    0 otherwise

where k is a constant. Determine the value of k and the expected value of x.

11 The following is a probability distribution for a random variable y.

y 0 1 2 3

P(Y 5 y) 0.1 0.11 k (k – 1)2

a) Find the value of k.

b) Find the expected value.

12 A closed box contains eight red balls and four white ones. A ball is taken out 
at random, its colour noted, and then returned. This is done three times. Let X 
represent the number of red balls drawn. 
a) Set up a table to show the probability distribution of X.
b) What is the expected number of red balls in this experiment?

13 A discrete random variable Y has the following probability distribution function

P(Y 5 y) 5 k(4 – y), for y 5 0, 1, 2, 3 and 4.

15
0

0.2

0.4

0.1

0.3

0.5

16 17 18 19
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Examples of discrete random variables are abundant in everyday situations. 
However, there are a few discrete probability distributions that are widely 
applied and serve as models for a great number of the applications. In this 
book, we will study one of them only: the binomial distribution.

We will start our discussion of the binomial distribution with an example.

Suppose a cereal company puts miniature figures in boxes of cornflakes to 
make them attractive for children and thus boost sales. The manufacturer 
claims that 20% of the boxes contain a figure. You buy three boxes of this 
cereal. What is the probability that you’ll get exactly three figures?

To get three figures means that the first box contains a figure (0.20 chance), 
as does the second (also 0.20), and the third (0.20). You want three figures; 
therefore, this is the intersection of three events and the probability is 
simply 0.203 5 0.008.

If you want to calculate the probability of getting exactly two figures, the 
situation becomes more complicated. A tree diagram can help you visualize 
it better.

a) Find the value of k. b) Find P(1 < y , 3).

14 The PDF of a random variable X is given in the following table.

x 1 2 3 4

P(x) 2a a2 2a2 2   a __ 2    a __ 2  

 Calculate a as well as E(X).

15 The random variable X has the following PDF:

 P(X 5 x) 5   3k __ 5  x, for x 5 1, 2, 3, 4, 5.

 a) Find k.
 b) Find E(X) and Var(X).
 c) Find E(3X 1 5).

The binomial distribution15.2
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Let f stand for figure and n for no figure. There are three events of interest 
to us. Since we are interested in two figures, we want to see ffn, which has a 
probability of 0.2 3 0.2 3 0.8 5 0.22 3 0.8 5 0.032, and the other events 
of interest are fnf and nff, with probabilities 0.2 3 0.8 3 0.2 5 0.032 and 
0.8 3 0.2 3 0.2 5 0.032. 

Since the order of multiplication is not important, you see that three 
probabilities are the same. These three events are disjoint, as can be 
clearly seen from the tree diagram, and hence the probability of exactly 
two figures is the sum of the three numbers: 0.032 1 0.032 1 0.032. Of 
course, you may realize by now that it would be much simpler if you wrote 
3(0.032), since there are three events with the same probability.

What if you have five boxes?

The situation is similar, of course. However, a tree diagram would not be 
useful in this case, as there is too much information to assemble to see the 
solution. As you have seen above, no matter how you succeed in finding a 
figure, whether it is in the first box, the second or the third, it has the same 
probability, 0.2. So, to have two successes (finding figures) in the five boxes, 
you need the other three to be failures (no figures), with a probability of 
0.8 for each failure. Therefore, the chance of having a case like ffnnn is 
0.22  3  0.83. However, this can happen in several disjoint ways. How many? 
If you count them, you will find 10. This means the probability of having 
exactly two figures in five boxes is 10 3 0.22 3 0.83 5 0.2048. 
(Here are the 10 possibilities: ffnnn, fnfnn, fnnfn, fnnnf, nffnn, nnffn, nnnff, 
nfnfn, nnfnf, nfnnf .)

The number 10 is nothing but the binomial coefficient (Pascal’s entry) you 
saw in Chapter 3. This is also the ‘combination’ of three events out of five. 
(The proof of this result is beyond the scope of this book.)

The previous result can be written as  (  5   2  ) 0.22 0.83, where  (  5   2  )  is the 
binomial coefficient.

You can find experiments like this one in many situations. Coin-tossing is 
only a simple example of this. Another very common example is opinion 
polls which are conducted before elections and used to predict voter 
preferences. Each sampled person can be compared to a coin – but a biased 
coin! A voter you sample in favour of your candidate can correspond to 
either a ‘head’ or a ‘tail’ on a coin. Such experiments all exhibit the typical 
characteristics of the binomial experiment.

A binomial experiment is one that has the following five characteristics:

1. The experiment consists of n identical trials.

2. Each trial has one of two outcomes. We call one of them success, S, and the other 
failure, F.

3. The probability of success on a single trial, p, is constant throughout the whole 
experiment. The probability of failure is 1 2 p, which is sometimes denoted by q. That 
is, p 1 q 5 1.

4. The trials are independent.

5. We are interested in the number of successes x that are possible during the n trials. 
That is, x 5 0, 1, 2, …, n.
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In the cereal company’s example above, we started with n 5 3 and p 5 0.2 
and asked for the probability of two successes, i.e. x 5 2. In the second part, 
we have n 5 5.

Let us imagine repeating a binomial experiment n times. If the probability 
of success is p, the probability of having x successes is pppp…, x times ( p x), 
because the order is not important, as we saw before. However, in order 
to have exactly x successes, the rest, (n – x) trials, must be failures, that is, 
with probability of qqqq…, (n 2 x) times (qn 2 x ). This is only one order 
(combination) where the successes happen the first x times and the rest are 
failures. In order to cater for ‘all orders’, we have to count the number of 
orders (combinations) possible. This is given by the binomial coefficient  (  n   x  ) . 

We will state the following result without proof.

The binomial distribution 

Suppose that a random experiment can result in two possible mutually exclusive and 
collectively exhaustive outcomes, ‘success’ and ‘failure,’ and that p is the probability of a 
success resulting in a single trial. If n independent trials are carried out, the distribution of 
the number of successes ‘x’ resulting is called the binomial distribution. Its probability 
distribution function for the binomial random variable x is:

P(x successes in n independent trials) 

5 P(x) 5  (   n   x  ) px(1 2 p)n 2 x 5  (   n   x  ) pxqn 2 x, for x 5 0, 1, 2, … n.

Notation:
The notation used to indicate that a variable has a binomial probability distribution with 
n trials and success probability of p is: x ∼ B(n, p).

Example 6 

The computer shop orders its notebooks from a supplier, which like many 
suppliers has a rate of defective items of 10%. The shop usually takes a 
sample of 10 computers and checks them for defects. If they find two 
computers defective, they return the shipment. What is the probability that 
their random sample will contain two defective computers?

Solution
We will consider this to be a random sample and the shipment large 
enough to render the trials independent of each other. The probability of 
finding two defective computers in a sample of 10 is given by

P(x 5 2) 5  (  10   2  ) 0.120.910 2 2 5 45 3 0.01 3 0.43047 5 0.194

Of course, it is a daunting task to do all the calculations by hand. A GDC 
can do this calculation for you in two different ways.

The first possibility is to let the calculator do all the calculations in the 
formula above: Go to the math menu, then choose PRB, then go to #3.

NUM CPX PRB
1: Frac
2: Dec
3:3
4:3√(

6:fMin(
7 fMax(

5:x√

MATH (10 nCr 2)*.12*.
9ˆ8

.1937102445

NUM CPX PRB
1:rand
2:nPr
3:nCr
4:!

6:randNorm(
7:randBin(

5:randInt(

MATH
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The second one is direct. We go to the ‘DISTR’ button, then scroll down to 
‘binompdf ’ and write down the two parameters followed by the number of 
successes:

Using a spreadsheet, you can also produce this result or even a set of 
probabilities covering all the possible values. The command used here for 
Excel is (BINOMDIST(B1:G1,10,0.1,FALSE)) which produced the table 
below:

x 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

P (x) 0.349 0.387 0.194 0.057 0.011 0.001 0.000 0.000 0.000 0.000 0.000

Similarly, the GDC can also give you a list of the probabilities:

Like other distributions, when you look at the binomial distribution, you 
want to look at its expected value and standard deviation. 

Using the formula we developed for the expected value, ƩxP (x), we can of 
course add xP (x) for all the values involved in the experiment. The process 
would be long and tedious for something we can intuitively know. For 
example, in the defective items sample, if we know that the defective rate 
of the computer manufacturer is 10%, it is natural to expect to have 10 3 
0.1 5 1 defective computer! If we have 100 computers with a defective rate 
of 10%, how many would you expect to be defective? Can you think of a 
reason why it would not be 10?

This is so simple that many people would not even consider it. The 
expected value of the successes in the binomial is actually nothing but the 
number of trials n multiplied by the probability of success, i.e. np!

The binomial probability model
n 5 number of trials

p 5 probability of success, q 5 1 2 p probability of failure

x 5 number of successes in n trials

P(x) 5  (   n __ x   ) p x (1 2 p) n 2 x 5  (   n __ x   ) p x q n 2 x, for x 5 0, 1, 2, … n

Expected value 5 m 5 np

Variance 5 s 2 5 npq, s 5  √ 
____

 npq  

DRAW
1:normalpdf(

binompdf(10,.1,2

.1937102445
)

2:normalcdf(
3:invNorm(
4:invT(

6:tcdf(
7  2pdf(

5:tpdf(

DISTR

binompdf(10,.1,L

(.3486784401 .3…
1) L2

L2

L2( 1)=.3486784401…

L3 2
0
1
2
3
4
5

.34868

.38742

.19371

.0574

.01116

.00149

L1
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So, in the defective notebooks case, the expected number of defective items 
in the sample of 10 is np 5 10 3 0.1 5 1!

And the standard deviation is s 5  √
____

 npq   5  √
_____________

  10 3 0.1 3 0.9   5 0.949.

Example 7 

Among the studies carried out to examine the effectiveness of advertising 
methods, a study reported that 4 out of 10 web surfers remember 
advertisement banners after they have seen them.

a) If 20 web surfers are chosen at random and shown an ad, what is the 
expected number of surfers that would remember the ad?

b) What is the chance that 5 of those 20 will remember the ad?

c) What is the probability that at most 1 surfer would remember  
the ad?

d) What is the chance that at least two surfers would remember 
the ad?

Solution
a) x ~ (20, 0.4). The expected number is 

simply 20 3 0.4 5 8. We expect 8 of the 
surfers to remember the ad. Notice on 
the histogram below that the area in red 
corresponds to the expected value 8.

b) P(5) 5 (   20   5  ) 0.45 (0.6)15 5 0.0746, or see

 the output from the GDC to the right. 
Graphically, this area is shown on the 
histogram as the green area.

c) P(x < 1) 5 P(x 5 0) 1 P(x 5 1)5 0.000  524

d) P(x > 2)  5 1 2 P(x < 1)
5 1 2 0.000  524 5 0.999  475
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(Problems marked with (*) are optional.)
 1 Consider the following binomial distribution

P(x) 5  (   5   x  ) (0.6) x(0.4) 5 2 x, x 5 0, 1, …, 5

a) Make a table for this distribution.
b) Graph this distribution.
c) Find the mean and standard deviation in two ways:

 (i) by formula
 (ii) by using the table of values you created in part a).
d) Locate the mean m and the two intervals m 6 s and m 6 2s on the graph.
e) Find the actual probabilities for x to lie within each of the intervals m 6 s and 

m  6 2s and compare them to the empirical rule.

 2 A poll of 20 adults is taken in a large city. The purpose is to determine whether 
they support banning smoking in restaurants. It is known that approximately 
60% of the population supports the decision. Let x represent the number of 
respondents in favour of the decision.
a) What is the probability that 5 respondents support the decision?
b) What is the probability that none of the 20 supports the decision?
c) What is the probability that at least 1 respondent supports the decision?
d) What is the probability that at least two respondents support the decision?
e) Find the mean and standard deviation of the distribution.

 3 Consider the binomial random variable with n 5 6 and p 5 0.3. 
a) Fill in the probabilities below.

k  0  1  2  3  4  5  6

P(x < k)

b) Fill in the table below. Some cells have been filled for you to guide you.

Number of 
successes x

List the 
values of x

Write the 
probability 
statement

Explain it, if 
needed

Find the 
required 

probability

At most 3

At least 3

More than 3 4, 5, 6 P(x . 3) 1 2 P(x < 3) 0.070  47

Fewer than 3

Between 3 and 
5 (inclusive)

Exactly 3

 4 Repeat question 3 with n 5 7 and p 5 0.4.

 5 A box contains 8 balls: 5 are green and 3 are white, red and yellow. Three balls 
are chosen at random without replacement and the number of green balls y is 
recorded.
a) Explain why y is not a binomial random variable.
b) Explain why, when we repeat the experiment with replacement, then y is a 

binomial.
c) Give the values of n and p and display the probability distribution in tabular form.
d) What is the probability that at most 2 green balls are drawn?
e) What is the expected number of green balls drawn?
f ) What is the variance of the number of balls drawn?
g) What is the probability that some green balls will be drawn?

Exercise 15.2
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 6 On a multiple choice test, there are 10 questions, each with 5 possible answers, 
one of which is correct. Nick is unaware of the content of the material and 
guesses on all questions.
a) Find the probability that Nick does not answer any question correctly.
b) Find the probability that Nick answers at most half of the questions correctly.
c) Find the probability that Nick answers at least one question correctly.
d) How many questions should Nick expect to answer correctly?

 7 Houses in a large city are equipped with alarm systems to protect them from 
burglary. A company claims their system to be 98% reliable. That is, it will trigger 
an alarm in 98% of the cases. In a certain neighbourhood, 10 houses equipped 
with this system experience an attempted burglary.
a) Find the probability that all the alarms work properly.
b) Find the probability that at least half of the houses trigger an alarm.
c) Find the probability that at most 8 alarms will work properly.

 8 Harry Potter books are purchased by readers of all ages! 40% of Harry Potter 
books were purchased by readers 30 years of age or older! 15 readers are chosen 
at random. Find the probability that
a) at least 10 of them are 30 or older
b) 10 of them are 30 or older
c) at most 10 of them are younger than 30.

 9 A factory makes computer hard disks. Over a long period, 1.5% of them are 
found to be defective. A random sample of 50 hard disks is tested.
a) Write down the expected number of defective hard disks in the sample.
b) Find the probability that three hard disks are defective.
c) Find the probability that more than one hard disk is defective.

10 Car colour preferences change over time and according to the area the customer 
lives in and the car model he/she is interested in. In a certain city, a large dealer 
of BMW cars noticed that 10% of the cars he sells are ‘metallic grey’. Twenty of his 
customers are selected at random, and their car orders are checked for colour. 
Find the probability that
a) at least five cars are ‘metallic grey’
b) at most 6 cars are ‘metallic grey’
c) more than 5 are ‘metallic grey’
d) between 4 and 6 are ‘metallic grey’
e) more than 15 are not ‘metallic grey’.
In a sample of 100 customer records, find 
f ) the expected number of ‘metallic grey’ car orders
g) the standard deviation of ‘metallic grey’ car orders.(*) 
According to the empirical rule, 95% of the ‘metallic grey’ orders are between a 
and b.
h) Find a and b.(*) 

11 Dogs have health insurance too! Owners of dogs in many countries buy health 
insurance for their dogs. 3% of all dogs have health insurance. In a random 
sample of 100 dogs in a large city, find
a) the expected number of dogs with health insurance
b) the probability that 5 of the dogs have health insurance
c) the probability that more than 10 dogs have health insurance.

12 A balanced coin is tossed 5 times. Let x be the number of heads observed. 
a) Using a table, construct the probability distribution of x.
b) What is the probability that no heads are observed?
c) What is the probability that all tosses are heads?
d) What is the probability that at least one head is observed?
e) What is the probability that at least one tail is observed?
f ) Given that the coin is unbalanced in such a way that it shows 2 heads in every 

10 tosses, answer the same questions above.
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Continuous random variables
When a random variable x is discrete, you assign a positive probability to 
each value that x can take and get the probability distribution for x. The 
sum of all the probabilities associated with the different values of x is 1. 

You have seen, in the discrete variable case, that we graphically represent 
the probabilities corresponding to the different values of the random 
variable x with a probability histogram (relative frequency histogram), 
where the area of each bar corresponds to the probability of the specific 
value it represents. 

Consider now a continuous random variable x, such as height and weight, 
and length of life of a particular product – a TV set for example. Because 
it is continuous, the possible values of x are over an interval. Moreover, 
there are an infinite number of possible values of x. Hence, we cannot find 
a probability distribution function for x by listing all the possible values of 
x along with their probabilities, as you see in the histogram below. If we try 
to assign probabilities to each of these uncountable values, the probabilities 
will no longer sum to 1, as is the case with discrete variables. Therefore, 
you must use a different approach to generate the probability distribution 
for such random variables.

Suppose that you have a set of measurements on a continuous random 
variable, and you create a relative frequency histogram to describe their 
distribution. For a small number of measurements, you can use a small 
number of classes, but as more and more measurements are collected, you 
can use more classes and reduce the class width. 

The histogram will slightly change as the class width becomes smaller 
and smaller, as shown in the diagrams on the next page. As the number 
of measurements becomes very large and the class width becomes very 
narrow, the relative frequency histogram appears more and more like 
the smooth curve you see below. This is what happens in the continuous 
case, and the smooth curve describing the probability distribution of 
the continuous random variable becomes the PDF (probability density 

The normal distribution15.3
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function) of x, represented by a curve y 5 f (x). This curve is such that the 
entire area under the curve is 1 and the area between any two points is the 
probability that x falls between those two points.

Probability density function
Let x be a continuous random variable. The probability density function, 
f (x), of the random variable is a function with the following properties: 
1. f (x) . 0 for all values of x.
2. The area under the probability density function f (x) over all values of 

the random variable x is equal to 1.0.
3. Suppose this density function is graphed. Let a and b be two possible 

values of the random variable x, with a , b. Then the probability that 
x lies between a and b [P(a , x , b)] is the area under the density 
function between these points.

Notice that, based on this definition, the probability that x equals any 
point a is 0. This is so because the area above a value, say a, is a rectangle 
whose width is 0. So, for the continuous case, regardless of whether the 
endpoints a and b are themselves included, the area included between a 
and b is the same. 

P(a , x , b) 5 P(a < x < b) 5 P(a < x , b) 5 P(a , x < b)

Continuous probability distributions can assume a variety of shapes. 
However, for reasons of staying within (with some extensions) the 
boundaries of the IB syllabus, we will focus on one distribution. In fact, a 
large number of random variables observed in our surroundings possess 
a frequency distribution that is approximately bell-shaped. We call that 
distribution the normal probability distribution.

The normal distribution
The most important type of continuous random variable is the normal 
random variable. The probability density function of a normal random 
variable x is determined by two parameters: the mean or expected value m 
and the standard deviation s of the variable.

The normal probability density function is a bell-shaped density curve that 
is symmetric about the mean m. Its variability is measured by s. The larger 
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the value of s the more variability there is in the curve. That is, the higher 
the probability of finding values of the random variable further away from 
the mean. Figure 15.1 represents three different normal density functions 
with the same mean but different standard deviations. Note how the curves 
‘flatten’ as s increases. This is so because the area under the curve has to 
stay equal to 1.

Probability density function of the normal distribution

The probability density function for a normally distributed random variable x is

f (x) 5   1 ______ 
s √

___
 2p  
    e2 

  
(x 2 m)2

 _______ 
2s 2

  
  5   1 ______ 

s √
___

 2p  
     e 

2   1 __ 2    (   x 2 m
 ______ s     ) 
 
2

 for 2 , x , 

where m and s 2 are any number such that 2 , m ,  and 0 , s 2 , , and where e 
and p are the well-known constants e 5 2.718  28… and p  5  3.141  59….

Notation:
When a variable is normally distributed, we write X , N (m, s 2).

Although we will not make direct use of the formula above, it is interesting 
to note its properties, because they help us understand how the normal 
distribution works. Notice that the equation is completely determined by 
the mean m and the standard deviation s.

The graph of a normal probability distribution is shown in Figure 
15.2. As you notice, the mean or expected value locates the centre of 
the distribution, and the distribution is symmetric about this mean. 
Since the total area under the curve is 1, the symmetry of the curve 
implies that the area to the right of the mean and the area to the left 
are both equal to 0.5. The shape, or how ‘flat’ it is, is determined by 
s, as we have seen in Figure 15.1. Large values of s tend to reduce 
the height of the curve and increase the spread, and small values 
of s increase the height to compensate for the narrowness of the 
distribution.

σ � 0.5

µ

σ � 2

µ

σ � 4

µ

Figure 15.1

Area to the left
of the mean is 0.5

Area to the right
of the mean is 0.5

µ

Figure 15.2
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So, the normal distribution is fully determined by its mean, m, and 
its standard deviation, s. Changing m without changing s moves the 
normal curve along the horizontal axis without changing its spread. 
As you have seen above, the standard deviation s controls the spread 
of the curve. You can also locate the standard deviation by eye on 
the curve. One s to the right or left of the mean m marks the point 
where the curvature of the curve changes. That is, as you move right 
from the mean, at the point where x 5 m 1 s, the curve changes its 
curvature from downwards to upwards. Similarly, as you move one 
s to the left from the mean the curve changes its curvature from 
downwards to upwards.

Although there are many normal curves, they all have common properties. 
Here is one important one that you have seen in Chapter 9:

The empirical rule – restated
In the normal distribution with mean m and standard deviation s:
• Approximately 68% of the observations fall within s of the mean m.
• Approximately 95% of the observations fall within 2s of the mean m.
• Approximately 99.7% of the observations fall within 3s of the mean m.

Figure 15.4 illustrates this rule. Later in this section, you will learn how to 
find these areas from a table or from your GDC.

Example 8 

Heights of young German men between 18 and 19 years of age follow a 
distribution that is approximately normal, with a mean of 181  cm and a 
standard deviation of 8  cm (approximately). Describe this population of 
young men.

Solution
According to the empirical rule, we find that approximately 68% of those 
young men have a height between 173  cm and 189  cm, 95% of them 
between 165  cm and 197  cm, and 99.7% between 157 cm and 205  cm. 
Looking further, you can say that only 0.15% are taller than 205  cm, or 
shorter than 157  cm. 

As the empirical rule suggests, all normal distributions are the same if we 
measure in units of size s about the mean m as centre. Changing to these 
units is called standardizing. To standardize a value, measure how far it is 
from the mean and express that distance in terms of s. This is how the 
calculation can be done:

Standardizing
If x is a normal random variable, with mean m and standard deviation s, the 
standardized value of x is 

z 5   
x 2 m

 _____ s   

A standardized value is also called the z-score.

µµ � σ µ � σ

Figure 15.3

µ

�σ�σ

68%

95%

�2σ�2σ

99.7%

Figure 15.4
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The quantity x 2 m tells us how far our value is from the mean; dividing by 
s then tells us how many standard deviations that distance is equal to.

The standardizing process, as you notice, is a transformation of the normal 
curve. For discussion purposes, assume the mean m to be positive. The 
transformation x 2 m shifts the graph back m units. So, the new centre is 
shifted from m back m units. That is, the new centre is 0! Dividing by s 
is going to ‘scale’ the distances from the mean and express everything in 
terms of s. So, a point that is one standard deviation from the mean is 
going to be 1 unit above the new mean, i.e. it will be represented by 11. 
Now, if you look at the empirical rule we discussed earlier, points that are 
within one standard deviation from the mean will be within a distance of 1 
in the new distribution. Instead of being at m 1 s and m 2 s, they will be 
at 0 1 1 and 0 2 1 respectively, i.e. 21 and 11. (See Figure 15.6.)

The new distribution we created by this transformation is called the 
standard normal distribution. It has a mean of 0 and a standard deviation 
of 1. It is a very helpful distribution because it will enable us to read the 
areas under any normal distribution through the standardization process, 
as will be demonstrated in the examples that follow.

Probability density function of the standard normal distribution
The probability density function for standard normal distribution is

f (z) 5   1 ____ 
 √

___
 2p  
    e  2

  1 _ 
2
   (z)2

  for 2 , z , 

Since linear transformations can transform all normal functions to 
standard, this becomes a very convenient and efficient way of finding the 
area under any normal distribution.

Let us look at an example.

A young German man with a height of 192  cm has a z-score of

z 5   
x 2 m

 _____ s    5   192 2 181 _________ 
8

   5 1.375

or 1.375 standard deviations above the mean. Similarly, a young man with 
a height of 175  cm is

z 5   
x 2 m

 _____ s    5   175 2 181 _________ 
8

   5 20.75

or 0.75 standard deviations below the mean.

To find the probability that a normal variable x lies in the interval a to b, 
we need to find the area under the normal curve N (m, s 2) between the 
points a and b. However, there is an infinitely large number of normal 
curves –  one for each mean and standard deviation. (See Figure 15.7.)

A separate table of areas for each of these curves is obviously not practical. 
Instead, we use one table for the standard normal distribution, which gives 
us the required areas. When you standardize a and b, you get two standard 
numbers z1 and z2 such that the area between z1 and z2 is the same as the 
area we need.

0 z

x � µ
σ

Figure 15.5

0

�1�1

68%

95%

�2�2�3 �3

99.7%

Figure 15.6
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In the example above, if we are interested in the proportion of young 
German men whose height is between 175  cm and 192  cm, we calculate the 
z-scores for these numbers and then read the area from the table. Here is an 
abbreviated version of the table and instructions on how to use it. (There 
are many tables of the areas under normal distributions. We will use a table 
constructed in a similar way to the one used on IB examinations.)

z 0.00 0.01 → 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5987 0.6026 0.6064 0.6103 0.6141

1.2 0.8849 0.8869 0.8944 0.8962 0.8980 0.8997 0.9015

↓ → ↓

↓ → ↓

1.3 0.9032 0.9049 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9505 0.9515 0.9525 0.9535 0.9545

The table, as constructed, gives you the areas under the normal distribution 
to the left of some value z, as you see in Figure 15.8.

The table starts at 0, and gives the areas till z 5 3.9. To read an area to 
the left of a number z, say 1.37, you read the first column to find the first 
two digits of z. So, in the first column, we stop at the cell containing 1.3. 
To get the area for 1.37, we look at the first row and choose the column 
corresponding to 0.07. Where the row at 1.3 meets the column at 0.07 is 

Figure 15.7

181 192 0 1.375

192 � 181
8

z1 0 z2 a µ b

0 z

p

p � P(Z � z)

Figure 15.8

For a complete normal 
distribution table visit  
www.pearsonhotlinks.com, 
enter the ISBN or title of this 
book and select weblink 4.
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the area under the normal distribution corresponding to 1.37, namely, 
0.9147. That is, the probability of at most a height with z 5 1.37 is 0.9147. 
Since the table does not go to 4 decimal places, our answers will not be very 
precise. So, to find the probability corresponding to a height of 192  cm, we 
need a z of 1.375, which is not in the table. We can use 1.37, 1.38, or take 
an average. If we want an average, we read the neighbouring area of 0.9162, 
and get the average to be 0.915  45.

Unfortunately, due to limitations of space, this type of table does 
not cater for negative values of z. The good news is that, due to the 
symmetry of the distribution, the area to the left of a negative value 
of z is the same as the area to the right of its absolute value. So, if 
we are interested in the area to the left of 20.75, we look for the 
area to the right of 0.75, i.e. 1 2 P(z < 0.75) 5 1 2 0.7734 5 0.2266 
(see Figure 15.10). So, in the example above, if we want to know the 
probability of a young German man, chosen at random, having a 
height between 175  cm and 192  cm, we look up the corresponding 
area under the standard normal distribution between 20.75 and 
1.375. Since these two areas are cumulative, we need to subtract 
them, i.e. the required area is 0.915  45 2 0.2266 5 0.6885.

What is the chance that a young German man is taller than 175  cm?

This means that we have to look at the area above 20.75. Due to 
symmetry, the area in question, which is to the right of 20.75, is equal to 
the area below 0.75, which in turn can be read directly from the table as 
0.7734.

These calculations are much easier to calculate using a GDC, of course. 
Also, with the GDC, you do not need to standardize your variables 
either. However, because there are cases where you need to understand 

0�0.75

P(z � �0.75)

P(z � 0.75)

0.75

1 � P(z � 0.75)

Figure 15.10 P(z . 0.75) 
5 12 P(z , 0.75).

0�0.75

Figure 15.9

Figure 15.11

0�0.75

P(z � �0.75)

0.75 0�0.75 0.75

P(z � 0.75) P(z � �0.75)

Figure 15.12
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standardization and other cases where you are required to use a table, you 
need to know both methods.

Here is how your GDC can give you your answers.

You first go to the ‘Distribution’ menu and choose ‘normalcdf ’. Then you 
enter the numbers in the following order: Lower limit, upper limit, mean, 
and standard deviation. The result will be the area you need. See the screen 
images below.

If you want to use the standard normal, your commands will be the same, 
but you do not need to include the mean and standard deviation. They are 
the default.

If you need the probability that a young man is taller than 175  cm, you can 
also read it either by looking at the distribution with the original data or by 
standardizing.

Example 9 

The age of graduate students in engineering programmes throughout the US 
is normally distributed with mean m 5 24.5 and standard deviation s 5 2.5.

If a student is chosen at random, 
a) what is the probability he/she is younger than 26 years old?

b) what proportion of students is older than 23.7 years?

c) what percentage of students is between 22 and 28 years old?

d) what percentage of the ages falls within 1 standard deviation of the 
mean? 2 standard deviations? 3 standard deviations?

Solution
If we let X 5 age of students, then X ~ N(m 5 24.5, s 25 6.25).
a) To answer this, we can either standardize and then read the table for the 

area left of 0.6:

P ( z ,   26 2 24.5 ________ 
2.5

   )  5 P(z , 0.6) 5 0.7257, or use a GDC

Notice here that we put 0 as a lower limit. You can put a number as a 
lower limit far enough from the mean to make sure you are receiving 
the correct cumulative distribution.

normalcdf(-.75,1

.6888069418
.375)

DRAW
1:normalpdf(

normalcdf(175,19

.6888069418
2,181,8)

2:normalcdf(
3:invNorm(
4:invT(

6:tcdf(
7  2pdf(

5:tpdf(

DISTR

normalcdf(0,26,2

.7257469354
4.5,2.5)
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b) This can be done similarly:

P(x . 23.7) 5 P  ( z .   23.7 2 24.5 __________ 
2.5

   5 20.32 ) 

So, by symmetry we know that 

P(z . 20.32) 5 P(z , 0.32) 5 0.6255

With a GDC:

Also, notice here that we wrote 100 as an upper limit, which is an 
arbitrary number far enough to the right to be sure we include the 
whole population.

c) P(22 , x , 28)  5  P (   22 2 24.5 ________ 
2.5

   , z ,   28 2 24.5 ________ 
2.5

   )  5  P (21 , z , 1.4)

We find the area to the left of 1.4 and to the left of 21 and subtract them
5 0.9192 2 0.1587 5 0.7606 5 76.06%

With a GDC:

d) This, as you know, is the empirical rule we talked about before. Let us 
see what percentage of the approximately normal data will lie within 1, 
2 or 3 standard deviations.
We start with the traditional table:

P(21 < z < 1)  5 P(z < 1) 2 P(z < 21) 5 0.8413 2 0.1587 
5 0.6826

This is the exact value corresponding to the empirical rule’s 68%!

P(22 < z < 2)  5 P(z < 2) 2 P(z < 22) 5 0.9772 2 0.0228 
5 0.9544

Again, this is the exact value corresponding to the empirical rule’s 95%!

P(23 < z < 3)  5 P(z < 3) 2 P(z < 23) 5 0.9987 2 0.0013 
5 0.9973

And again, this is the exact value corresponding to the empirical rule’s 
99.7%!

The inverse normal distribution
Another type of problem arises in situations similar to the one above when 
we are given a cumulative probability and would like to find the value 
in our data that has this cumulative probability. For example, what age 

normalcdf(23.7,1

.6255157701
00,24.5,2.5

normalcdf(22,28,

.7605880293
24.5,2.5)
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marks the 95th percentile? That is, what age is higher or equal to 95% of 
the population? To answer this question, we need to reverse our steps. So 
far, we are given a value and then we look for the area corresponding to 
it. Now, we are given the area and we have to look for the number. That is 
why this is called the inverse normal distribution. Again, the approach is 
to find the standard inverse normal number and then to ‘de-standardize’ it. 
That is, to find the value from the original data that corresponds to the z-
value at hand.

There is an inverse normal table available online (see box on page 546). We 
will produce a part of the inverse normal table here for explanation.

p 0.000 0.001 → 0.005 0.006 0.007 0.008 0.009

0.50 0.0000 0.0025 0.0125 0.0150 0.0175 0.0201 0.0226

0.51 0.0251 0.0276 0.0376 0.0401 0.0426 0.0451 0.0476

0.52 0.0502 0.0527 0.0627 0.0652 0.0677 0.0702 0.0728

0.53 0.0753 0.0778 0.0878 0.0904 0.0929 0.0954 0.0979

↓ →

↓ →

0.74 0.6433 0.6464 0.6588 0.6620 0.6651 0.6682 0.6713

0.75 0.6745 0.6776 0.6903 0.6935 0.6967 0.6999 0.7031

0.76 0.7063 0.7095 0.7225 0.7257 0.7290 0.7323 0.7356

0.77 0.7388 0.7421 0.7554 0.7588 0.7621 0.7655 0.7688

0.78 0.7722 0.7756 0.7892 0.7926 0.7961 0.7995 0.8030

0.79 0.8064 0.8099 0.8239 0.8274 0.8310 0.8345 0.8381

The table gives a selection of probabilities above the mean and the body 
of the table gives the z-value corresponding to that area. You know that 
0 has a cumulative probability of 0.5. Look at the table and observe the 
intersection of the 0.50 row and the 0.000 column. It is 0, the mean of the 
standard normal distribution.

If we need to know what z-score the third quartile Q3 is, for example, we 
need to look up 0.75. The z-score corresponding to Q3 is 0.6745 as you see.

Suppose you want to find the z-score that leaves an area of 0.915 below it.

p 0.000 → 0.005

0.50 0.0000 0.0125

0.51 0.0251 0.0376

↓

0.91 1.3408 1.3722

In the first column, we choose 0.91, then at the intersection of the row at 
0.91 and the column at 0.005 the z-score corresponds to 0.915. So,

P (z , 1.3722) 5 0.9151

0 z

p

p � P(Z � z)

Figure 15.13

µ z

0.915

Figure 15.14
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The GDC can also be used in this case. The process is identical to the 
normal calculation. The difference is in choosing ‘invNorm’ instead.

In the young German men example, we would like to find what height 
leaves 95% of the population below it.

In this case, we look up the z-score corresponding to 0.95 and we find that 
it is z 5 1.6449.

Now z 5 1.6449 5   x 2 181 _______ 
8

   ⇒ x 2 181 5 8 3 1.6449

⇒ x 5 181 1 8 3 1.6449 5 194.16.

So, 95% of the young German men are shorter  
than 194.16  cm.

The GDC gives you this number with less effort:

Example 10 

Since November 2007, the average time it takes fast trains (Eurostar) to 
travel between London and Paris is 2 hours 15 minutes, with a standard 
deviation of 4 minutes. Assume a normal distribution.
a) What is the probability that a randomly chosen trip will take longer 

than 2 hours and 20 minutes?
b) What is the probability that a randomly chosen trip will take less than 2 

hours and 10 minutes?
c) What is the IQR of a trip on these trains?

Solution

We will do each problem using a table and a GDC to acquaint you with 
both methods.
a) The mean m 5 2.25 and s 5 0.067.

2 hours 20 minutes 5 2  1 __ 
3

   =   7 __ 
3

   hours; 4 minutes =   4 ___ 
60

   =   1 ___ 
15

   hour

P ( x .   7 __ 
3

   )  5 P ( z .   
  7 __ 
3

   2 2.25
 ________ 

  1 ___ 
15

  
   )  5 P(z . 1.25)

From the table: P(z . 1.25) 5 1 2 P(z , 1.25) 5 1 2 0.8944 5 0.1056
Using your GDC:

The number 100 is arbitrary… just so long as it is a large number.

invNorm(.5)
0

invNorm(.915)
1.37220381

invNorm(.75)
.6744897495

invNorm(.95,181,

194.158829
8)

normalcdf(7/3,10

.105649839
0,2.25,1/15)
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b) 2 hours 10 minutes 5   130 ___ 
60

   hours =   13 ___ 
6

   hours

P ( x ,   13 ___ 
6

   )  5 P ( z .   
  13 ___ 
6

   2 2.25
 _________ 

  1 ___ 
60

  
   )  5 P(z , 21.25)

From the table, and by symmetry, this is the same as P(z . 1.25), which 
we found in part a) above.

GDC

 

c) To find the IQR, we need to find Q1 and Q3.

Q1 is the number that leaves 25% of the data before it. So, we need to 
find the inverse normal variable that has an area of 0.25 before it.

From the table we can only do so using symmetry. So, we find the 
z-score that corresponds to 0.25 by finding its symmetrical number, 
which is the z-score with 0.75. So, we only need to find z(0.75). The 
table of standard inverse normal gives us z 5 0.6745.

So, Q1 corresponds to 20.6745. 

z 5 20.6745 5   x 2 2.25 _______ 
0.067

   ⇒ x 2 2.25 5 0.067 3 (20.6745) 

⇒ x 5 2.25 2 0.045 5 2.205

Q3 corresponds to 0.6745.

z 5 0.6745 5   x 2 2.25 _______ 
0.067

   ⇒ x 2 2.25 5 0.067 3 (0.6745) 

⇒ x 5 2.25 1 0.045 5 2.295

IQR 5 2.295 – 2.205 5 0.090 of an hour, i.e. 5.4 minutes.

Example 11 

The age at which babies develop the ability to walk can be described by a 
normal model. It is known that 5% of babies learn how to walk by the age 
of 10 months and 25% need more than 13 months. Find the mean and 
standard deviation of the distribution.

Solution

Looking at the diagram at left will help you visualize the 
solution. We will show two approaches to this problem.

The first approach is to consider the distance between 10 and 
13 months. In our data, that distance is 3 months, but how 
many standard deviations does that represent? Since we know

ShadeNorm(0,13/6

Area=.10565
low=0 up=2.16667

,2.25,1/15)
WINDOW
Xmin=2
Xmax=2.5
Xsc1=1
Ymin=-2
Ymax=6
Ysc1=1
Xres=1

normalcdf(0,13/6

.105649839
,2.25,1/15)

µ

z � �1.645 z � 0.674

25%

Walking age
(months)

3 months
2.319σ

5%

1310
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that 10 months represents the lower 5%, and 13 months represents the 
upper 25%, we can obtain z-scores for those two data points without 
knowing the mean and standard deviation. Use the inverse table or a GDC:

Therefore, the 3-month distance is equivalent to 0.674 – (–1.64) = 2.319 
standard deviations or:

2.319s 5 3 ⇒ s 5 1.294

And finally we use either of the data points (10 months or 13 months) in 
our z-score formula to find the mean:

z 5   
x 2 m

 _____ s    ⇒ 0.674 5   
13 2 m

 ______ 
1.294

   ⇒ m 5 12.128

Thus the mean age that babies begin to walk is 12.1 months with a 
standard deviation of 1.29 months.

The second approach uses a bit of algebra instead. After obtaining the 
z-scores from the inverse table or GDC (as above), we begin by writing two 
equations using the z-score formula:

21.645 5   
10 2 m

 ______ s    ⇒ m 2 1.645s 5 10,

0.674 5   
13 2 m

 ______ s    ⇒ m 1 0.674s 5 13

Aha! We have two linear equations with two unknowns. Solve these to 
obtain: 

m 5 12.128
s 5 1.294

Again, we conclude the mean age that babies begin to walk is 12.1 months 
with a standard deviation of 1.29 months.

 1 The time it takes to change the batteries of your GDC is approximately normal 
with mean 50 hours and standard deviation of 7.5 hours.  
Find the probability that your newly equipped GDC will last
a) at least 50 hours d) between 42.5 and 57.5 hours
b) between 50 and 75 hours e) more than 65 hours
c) less than 42.5 hours f ) 47.5 hours

 2 Find each of the following probabilities.
a) P(| z | , 1.2) c) P(x , 3.7), where x ~ N (3, 3)
b) P(| z | . 1.4) d) P(x . 23.7), where x ~ N (3, 3)

 3 A car manufacturer introduces a new model that has an in-city mileage of 11.4 
litres/100  kilometres. Tests show that this model has a standard deviation of 1.26. 
The distribution is assumed to be normal.  
A car is chosen at random from this model. 
a) What is the probability that it will have a consumption less than 8.4 

litres/100  kilometres?

Exercise 15.3

invNorm(.05)
-1.644853626

invNorm(.75)
.6744897495
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b) What is the probability that the consumption is between 8.4 and 14.4  litres/
100  kilometres?

 4 Find the value of z that will be exceeded only 10% of the time.

 5 Find the value of z 5 z0 such that 95% of the values of z lie between 2z0 and 
1z0.

 6 The scores on a public schools examination are normally distributed with a mean 
of 550 and a standard deviation of 100.
a) What is the probability that a randomly chosen student from this population 

scores below 400?
b) What is the probability that a student will score between 450 and 650?
c) What score should you have in order to be in the 90th percentile?
d) Find the IQR of this distribution.

 7 A company producing and packaging sugar for home consumption put labels 
on their sugar bags noting the weight to be 500  g. Their machines are known to 
fill the bags with weights that are normally distributed with a standard deviation 
of 5.7  g. A bag that contains less than 500  g is considered to be underweight and 
is not appreciated by consumers.
a) If the company decides to set their machines to fill the bags with a mean of 

512  g, what fraction will be underweight? 
b) If they wish the percentage of underweight bags to be at most 4%, what 

mean setting must they have?
c) If they do not want to set the mean as high as 512, but instead at 510, what 

standard deviation gives them at most 4% underweight bags?

 8 In a large school, heights of students who are 13 years old are normally 
distributed with a mean of 151  cm and a standard deviation of 8  cm.  
Find the probability that a randomly chosen child is
a) shorter than 166  cm b)  within 6  cm of the average.

 9 The time it takes Kevin to get to school every day is normally distributed with a 
mean of 12 minutes and standard deviation of 2 minutes. Estimate the number 
of days when he takes
a) longer than 17 minutes
b) less than 10 minutes
c) between 9 and 13 minutes.
There are 180 school days in Kevin’s school.

10 X has a normal distribution with mean 16. Given that the probability that X is less 
than 16.56 is 64%, find the standard deviation, s, of this distribution.

11 X has a normal distribution with variance of 9. Given that the probability that X is 
more than 36.5 is 2.9%, find the mean, m, of this distribution.

12 X has a normal distribution such that the probability that X is larger than 14.6 is 
93.5% and P(x . 29.6) 5 2.2%. Find the mean, m, and the standard deviation, s, 
of this distribution.

13 X ~ N(m, s 2), P(x . 19.6) 5 0.16 and P(X , 17.6) 5 0.012. Find m and s.

14 Bottles of mineral water sold by a company are advertised to contain 1 litre 
of water. To guarantee customer satisfaction the company actually adjusts its 
filling process to fill the bottles with an average of 1012  ml. The process follows a 
normal distribution with standard deviation of 5  ml.
a) Find the probability that a randomly chosen bottle contains more than 1010 

ml.
b) Find the probability that a bottle contains less than the advertised volume.
c) In a shipment of 10  000 bottles, what is the expected number of  ‘underfilled’ 

bottles?
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15 Cholesterol plays a major role in a person’s heart health. High blood cholesterol is 
a major risk factor for coronary heart disease and stroke. The level of cholesterol 
in the blood is measured in milligrams per decilitre of blood (mg/dl). According 
to the WHO, in general, less than 200  mg/dl is a desirable level, 200 to 239 is 
borderline high, and above 240 is a high risk level and a person with this level has 
more than twice the risk of heart disease as a person with less than a 200 level.  
In a certain country, it is known that the average cholesterol level of their adult 
population is 184  mg/dl with a standard deviation of 22 mg/ dl. It can be modelled 
by a normal distribution.
a) What percentage do you expect to be borderline high?
b) What percentage do you consider are high risk?
c) Estimate the interquartile range of the cholesterol levels in this country.
d) Above what value are the highest 2% of adults’ cholesterol levels in this country?

16 A manufacturer of car tyres claims that the treadlife of its winter tyres can be 
described by a normal model with an average life of 52  000  km and a standard 
deviation of 4000  km.
a) You buy a set of tyres from this manufacturer. Is it reasonable for you to hope 

they last more than 64  000  km?
b) What fraction of these tyres do you expect to last less than 48  000 km?
c) What fraction of these tyres do you expect to last between 48  000  km and 

56  000  km?
d) What is the IQR of the treadlife of this type of tyre?
e) The company wants to guarantee a minimum life for these tyres. That is, they 

will refund customers whose tyres last less than a specific distance. What 
should their minimum life guarantee be so that they do not end up refunding 
more than 2% of their customers?

17 Chicken eggs are graded by size for the purpose of sales. In Europe, modern 
egg sizes are defined as follows: very large has a mass of 73  g or more, large is 
between 63 and 73  g, medium is between 53 and 63  g, and small is less than 
53  g. The small size is usually considered as undesirable by consumers. 
a) Mature hens (older than 1 year) produce eggs with an average mass of 

67  g. 98% of the eggs produced by mature hens are above the minimum 
desirable weight. What is the standard deviation if the egg production can be 
modelled by a normal distribution?

b) Young hens produce eggs with a mean masss of 51  g. Only 28% of their eggs 
exceed the desired minimum. What is the standard deviation?

c) A farmer finds that 7% of his farm’s eggs are ‘underweight’, and 12% are very 
large. Estimate the mean and standard deviation of this farmer’s eggs.

  1	 Residents	of	a	small	town	have	savings	which	are	normally	distributed	with	a	mean	of	
$3000	and	a	standard	deviation	of	$500.
a)	 What	percentage	of	townspeople	have	savings	greater	than	$3200?
b)	 	Two	townspeople	are	chosen	at	random.	What	is	the	probability	that	both	of	them	

have	savings	between	$2300	and	$3300?
c)	 	The	percentage	of	townspeople	with	savings	less	than	d	dollars	is	74.22%.	

Find	the	value	of	d.

  2	 A	box	contains	35	red	discs	and	5	black	discs.	A	disc	is	selected	at	random	and	its	
colour	noted.	The	disc	is	then	replaced	in	the	box.
a)	 In	eight	such	selections,	what	is	the	probability	that	a	black	disc	is	selected

	 (i)	 exactly	once?
	 (ii)	 at	least	once?

Practice questions
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b)	 The	process	of	selecting	and	replacing	is	carried	out	400	times.	
What	is	the	expected	number	of	black	discs	that	would	be	drawn?

  3	 The	graph	shows	a	normal	curve	for	the	random	variable	X,	with	mean	m	and	standard	
deviation	s.

It	is	known	that	P(X	>	12)	5	0.1.
a)	 The	shaded	region	A	is	the	region	under	the	curve	where	x	>	12.	Write	down	the	

area	of	the	shaded	region	A.
It	is	also	known	that	P(X	<	8)	5	0.1.
b)	 Find	the	value	of	m,	explaining	your	method	in	full.
c)	 Show	that	s	5	1.56	to	an	accuracy	of	3	significant	figures.
d)	 Find	P(X	<	11).

  4	 A	fair	coin	is	tossed	eight	times.	Calculate
a)	 the	probability	of	obtaining	exactly	4	heads
b)	 the	probability	of	obtaining	exactly	3	heads
c)	 the	probability	of	obtaining	3,	4	or	5	heads.

  5	 The	lifespan	of	a	particular	species	of	insect	is	normally	distributed	with	a	mean	of	57	
hours	and	a	standard	deviation	of	4.4	hours.
The	probability	that	the	lifespan	of	an	insect	of	this	species	lies	between	55	and	
60	hours	is	represented	by	the	shaded	area	in	the	following	diagram.	This	diagram	
represents	the	standard	normal	curve.
a)	 Write	down	the	values	of	a	and	b.
b)	 Find	the	probability	that	the	lifespan	of	an	insect	of	this	species	is

  (i)	 more	than	55	hours
  (ii)	 between	55	and	60	hours.

90%	of	the	insects	die	after	t	hours.
c)	 (i)  Represent	this	information	on	

a	standard	normal	curve		
diagram,	similar	to	the	one	shown,		
indicating	clearly	the	area	representing	90%.

	 (ii)  Find	the	value	of	t.

  6	 An	urban	highway	has	a	speed	limit	of	50		km		h21.	It	is	known	that	the	speeds	of	
vehicles	travelling	on	the	highway	are	normally	distributed,	with	a	standard	deviation	of	
l0		km		h21,	and	that	30%	of	the	vehicles	using	the	highway	exceed	the	speed	limit.
a)	 Show	that	the	mean	speed	of	the	vehicles	is	approximately	44.8		km		h21.
(The	following	part	is	optional	and	is	currently	not	in	the	syllabus	of	Maths	SL.)
The	police	conduct	a	‘Safer	Driving’	campaign	intended	to	encourage	slower	driving,	
and	want	to	know	whether	the	campaign	has	been	effective.	It	is	found	that	a	sample	
of	25	vehicles	has	a	mean	speed	of	41.3		km		h21.
b)	 Given	that	the	null	hypothesis	is	

H0:	the	mean	speed	has	been	unaffected	by	the	campaign	state		
state	H1,	the	alternative	hypothesis.

c)	 State	whether	a	one-tailed	or	two-tailed	test	is	appropriate	for	these	hypotheses,	
and	explain	why.

d)	 Has	the	campaign	had	significant	effect	at	the	5%	level?

x
A

y

0 12

x

y

a b0
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  7	 Intelligence	quotient	(IQ)	in	a	certain	population	is	normally	distributed	with	a	mean	of	
100	and	a	standard	deviation	of	15.

a)	 What	percentage	of	the	population	has	an	IQ	between	90	and	125?

b)	 If	two	persons	are	chosen	at	random	from	the	population,	what	is	the	probability	
that	both	have	an	IQ	greater	than	125?

(The	following	part	is	optional	and	is	currently	not	in	the	syllabus	of	Maths	SL.)
c)	 The	mean	IQ	of	a	random	group	of	25	persons	suffering	from	a	certain	brain	

disorder	was	found	to	be	95.2.	Is	this	sufficient	evidence,	at	the	0.05	level	of	
significance,	that	people	suffering	from	the	disorder	have,	on	average,	a	lower	
IQ	than	the	entire	population?	State	your	null	hypothesis	and	your	alternative	
hypothesis,	and	explain	your	reasoning.

  8	 Bags	of	cement	are	labelled	25		kg.	The	bags	are	filled	by	machine	and	the	actual	
weights	are	normally	distributed	with	mean	25.7		kg	and	standard	deviation	0.50		kg.
a)	 What	is	the	probability	a	bag	selected	at	random	will	weigh	less	than	25.0		kg?
In	order	to	reduce	the	number	of	underweight	bags	(bags	weighing	less	than	25		kg)	to	
2.5%	of	the	total,	the	mean	is	increased	without	changing	the	standard	deviation.
b)	 Show	that	the	increased	mean	is	26.0		kg.
It	is	decided	to	purchase	a	more	accurate	machine	for	filling	the	bags.	The	requirements	
for	this	machine	are	that	only	2.5%	of	bags	be	under	25		kg	and	that	only	2.5%	of	bags	
be	over	26		kg.
c)	 Calculate	the	mean	and	standard	deviation	that	satisfy	these	requirements.
The	cost	of	the	new	machine	is	$5000.	Cement	sells	for	$0.80	per	kg.
d)	 Compared	to	the	cost	of	operating	with	a	26		kg	mean,	how	many	bags	must	be	

filled	in	order	to	recover	the	cost	of	the	new	equipment?

  9	 The	mass	of	packets	of	a	breakfast	cereal	is	normally	distributed	with	a	mean	of	750		g	
and	standard	deviation	of	25		g.
a)	 Find	the	probability	that	a	packet	chosen	at	random	has	mass

	 (i)	 less	than	740		g
	 (ii)	 at	least	780		g
	 (iii)	 between	740		g	and	780		g.

b)	 Two	packets	are	chosen	at	random.	What	is	the	probability	that	both	packets	have	a	
mass	that	is	less	than	740		g?

c)	 The	mass	of	70%	of	the	packets	is	more	than	x	grams.	Find	the	value	of	x.

10	 In	a	country	called	Tallopia,	the	height	of	adults	is	normally	distributed	with	a	mean	of	
187.5		cm	and	a	standard	deviation	of	9.5		cm.
a)	 What	percentage	of	adults	in	Tallopia	have	a	height	greater	than	197	cm?
b)	 A	standard	doorway	in	Tallopia	is	designed	so	that	99%	of	adults	have	a	space	of	

at	least	17		cm	over	their	heads	when	going	through	a	doorway.	Find	the	height	of	a	
standard	doorway	in	Tallopia.	Give	your	answer	to	the	nearest	cm.

11	 It	is	claimed	that	the	masses	of	a	population	of	lions	are	normally	distributed	with	a	
mean	mass	of	310		kg	and	a	standard	deviation	of	30		kg.
a)	 Calculate	the	probability	that	a	lion	selected	at	random	will	have	a	mass	of	350		kg	

or	more.
b)	 The	probability	that	the	mass	of	a	lion	lies	between	a	and	b	is	0.95,	where	a	and	b	

are	symmetric	about	the	mean.	Find	the	values	of	a	and	b.
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12	 Reaction	times	of	human	beings	are	normally	distributed	with	a	mean	of	0.76	seconds	
and	a	standard	deviation	of	0.06	seconds.
The	graph	below	is	that	of	the	standard	normal	curve.	The	shaded	area	represents	the	
probability	that	the	reaction	time	of	a	person	chosen	at	random	is	between	0.70	and	
0.79	seconds.

a)	 Write	down	the	values	of	a	and	b.
b)	 Calculate	the	probability	that	the	reaction	time	of	a	person	chosen	at	random	is

  (i)	 greater	than	0.70	seconds
  (ii)	 between	0.70	and	0.79	seconds.

Three	per	cent	(3%)	of	the	population	have	a	reaction	time	less	than	c	seconds.
c)	 (i)   Represent	this	information	on	a	diagram	similar	to	the	one	above.	

Indicate	clearly	the	area	representing	3%.
  (ii)  Find	c.

13	 A	factory	makes	calculators.	Over	a	long	period,	2%	of	them	are	found	to	be	faulty.	A	
random	sample	of	100	calculators	is	tested.

a)	 Write	down	the	expected	number	of	faulty	calculators	in	the	sample.

b)	 Find	the	probability	that	three	calculators	are	faulty.

c)	 Find	the	probability	that	more	than	one	calculator	is	faulty.

14	 The	speeds	of	cars	at	a	certain	point	on	a	straight	road	are	normally	distributed	with	
mean	m	and	standard	deviation	s.	15%	of	the	cars	travelled	at	speeds	greater	than	
90		km		h21	and	12%	of	them	at	speeds	less	than	40		km		h21.	Find	m	and	s.

15	 Bag	A	contains	2	red	balls	and	3	green	balls.	Two	balls	are	chosen	at	random	from	the	
bag	without	replacement.	Let	X	denote	the	number	of	red	balls	chosen.	The	following	
table	shows	the	probability	distribution	for	X.

x 0 1 2

P(X 5 x)   3 __ 10    6 __ 10    1 __ 10  

a)	 Calculate	E(X	),	the	mean	number	of	red	balls	chosen.

Bag	B	contains	4	red	balls	and	2	green	balls.	Two	balls	are	chosen	at	random	from	bag	B.
b)  (i)	 	Draw	a	tree	diagram	to	represent	the	above	information,	including	the	

probability	of	each	event.
	 (ii)	 	Hence,	find	the	probability	distribution	for	Y,	where	Y	is	the	number	of	red	balls	

chosen.
A	standard	die	with	six	faces	is	rolled.	If	a	1	or	6	is	obtained,	two	balls	are	chosen	from	
bag	A,	otherwise	two	balls	are	chosen	from	bag	B.
c)	 Calculate	the	probability	that	two	red	balls	are	chosen.
d)	 Given	that	two	red	balls	are	obtained,	find	the	conditional	probability	that	a	1	or	6	

was	rolled	on	the	die.

x

y

a b0
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16	 Ball	bearings	are	used	in	engines	in	large	quantities.	A	car	manufacturer	buys	these	
bearings	from	a	factory.	They	agree	on	the	following	terms:	The	car	company	chooses	
a	sample	of	50	ball	bearings	from	the	shipment.	If	they	find	more	than	2	defective	
bearings,	the	shipment	is	rejected.	It	is	a	fact	that	the	factory	produces	4%	defective	
bearings.
a)	 What	is	the	probability	that	the	sample	is	clear	of	defects?
b)	 What	is	the	probability	that	the	shipment	is	accepted?
c)	 What	is	the	expected	number	of	defective	bearings	in	the	sample	of	50?

17	 Each	CD	produced	by	a	certain	company	is	guaranteed	to	function	properly	with	a	
probability	of	98%.	The	company	sells	these	CDs	in	packages	of	10	and	offers	a	money-
back	guarantee	that	all	the	CDs	in	a	package	will	function.
a)	 What	is	the	probability	that	a	package	is	returned?
b)	 You	buy	three	packages.	What	is	the	probability	that	exactly	1	of	them	must	be	

returned?

18	 The	table	below	shows	the	probability	distribution	of	a	random	variable	X.

x 0 1 2 3

P(X 5 x) 2k 2k2 k2 1 k 2k2 1 k

a)	 Calculate	the	value	of	k.
b)	 Find	E(X	).

19	 It	is	estimated	that	2.3%	of	the	cherry	tomato	fruits	produced	on	a	certain	farm	are	
considered	to	be	small	and	cannot	be	sold	for	commercial	purposes.	The	farmers	have	
to	separate	such	fruits	and	use	them	for	domestic	consumption	instead.
a)	 12	tomatoes	are	randomly	selected	from	the	produce.	Calculate

	 (i)	 the	probability	that	three	are	not	fit	for	selling
	 (ii)	 the	probability	that	at	least	four	are	not	fit	for	selling.

b)	 It	is	known	that	the	sizes	of	such	tomatoes	are	normally	distributed	with	a	mean	of	
3		cm	and	a	standard	deviation	of	0.5		cm.	Tomatoes	that	are	categorized	as	large	will	
have	to	be	larger	than	2.5		cm.	What	proportion	of	the	produce	is	large?

Questions	1–15:	©	International	Baccalaureate	Organization
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‘If digressions can bring knowledge of new truths, why should they 
trouble us? … how do we know that we shall not discover curious 
things that are more interesting than the answers we originally sought?’

Galileo, Discourses and Mathematical Demonstrations Relating to 
Two New Sciences, 1638

At the end of the Mathematics Standard Level course, you will take two 
written exams covering the entire syllabus that will constitute the External 
Assessment component of the course: Paper 1 (no GDC) and Paper 2 
(GDC required). These written exams will contribute 80% to your final 
grade for the course that will be reported to you about six weeks after the 
exams finish.

Internal Assessment (IA) is another important component of the 
Mathematics Standard Level course and will contribute 20% to your final 
grade for the course. Thus, IA does comprise a significant part of the 
overall assessment for the course and should be taken seriously. It should 
also be pointed out that your work in completing the IA component differs 
in important ways from the written exams for the course.

•	 You do not perform IA work under strict time constraints as with 
written examinations.

•	 You have some freedom to help decide what mathematical topic you 
wish to explore.

•	 Your IA work involves writing about mathematics and not just doing 
mathematical procedures.

•	 Regular discussion with, and feedback from, your teacher will be 
essential.

•	 You should endeavour to explore a topic in which you have a genuine 
personal interest.

•	 You will be rewarded for evidence of creativity, curiosity and 
independent thinking.

16 The Mathematical 
Exploration – Internal 
Assessment
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The Mathematical Exploration
To satisfy the Internal Assessment component, you are required to write 
a report on a mathematical topic that you choose in consultation with 
your teacher. This report is formally referred to as the Mathematical 
Exploration. Throughout this chapter ‘Mathematical Exploration’ and 
‘report’ refer to the same thing, i.e. the written piece of work that you 
submit for the Internal Assessment component of the course. 

The Mathematical Exploration is aptly named because your primary 
objective in writing this report is to explore a topic in which you are 
genuinely interested and that is at an appropriate level for the course. 
Your teacher may provide you with a list of ideas (or ‘stimuli’) from which 
to choose a topic or which may help you to develop your own ideas for 
a topic to explore (see the list of 200 ideas printed later in this chapter). 
It is your responsibility to determine whether or not you are sufficiently 
interested in a particular topic – and it is your teacher’s responsibility 
to determine if an exploration of the topic can be conducted at a level 
mathematically suitable for the course. Your teacher will help you 
determine if an exploration of a certain topic can potentially address the 
five assessment criteria satisfactorily. Your report should be approximately 
6 to 12 pages long.

Internal Assessment Criteria
Your Mathematical Exploration report will be assessed by your teacher 
according to the following five criteria.

A Communication: This criterion assesses the organisation and 
coherence of the exploration. A well-organised exploration has an 
introduction and a rationale (which includes a brief explanation of 
why the topic was chosen). It describes the aim of the exploration and 
has a conclusion.

B Mathematical presentation: This criterion assesses to what extent you 
are able to:

•	 use appropriate mathematical language (notation, symbols and 
terminology);

•	 define key terms, where necessary;

•	 use multiple forms of mathematical representation such as formulae, 
diagrams, tables, charts, graphs and models.

C Personal engagement: This criterion assesses the extent to which 
you engage with the exploration, and present it in such a way that 
clearly shows your own personal approach. Personal engagement 
may be recognised in different attributes and skills. These include 
thinking independently and/or creatively, addressing personal interest, 
presenting mathematical ideas in your own way, using simple language 
to describe complex ideas, and applying unfamiliar mathematics.
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D Reflection: This criterion assesses how well you review, analyse and 
evaluate the exploration. Although reflection may be seen in the 
conclusion to the exploration, you should also give evidence of reflective 
thought throughout the exploration. Reflection may be demonstrated 
by consideration of limitations and/or extensions and relating 
mathematical ideas to your own previous knowledge.

E Use of mathematics: This criterion assesses to what extent and how 
well you use mathematics in your exploration. The chosen topic should 
involve mathematics either in the Mathematics Standard Level syllabus, 
at a similar level, or beyond the level of the syllabus. The mathematics 
included in the report can be regarded as correct even if there are a few 
minor errors, so long as they do not cause a disruption to the flow of 
mathematics or lead to an incorrect or inaccurate result.

Your report will earn a numerical score out of a total of 20 possible marks. 
The five criteria do not contribute equally to the overall score for your 
Mathematical Exploration. For example, criterion E (Use of mathematics) 
is 30% of the overall score, whereas criteria B (Mathematical presentation) 
and D (Reflection) contribute 15% each.

It is very important that you familiarize yourself with the assessment 
criteria and refer to them while you are writing your report. The scoring 
levels for each criteria and associated descriptors are as follows.

A   Communication

0
The exploration does not reach the standard described by the descriptors 
below.

1 The exploration has some coherence.

2 The exploration has some coherence and shows some organisation.

3 The exploration is coherent and well organised.

4 The exploration is coherent, well organised, concise and complete.

B   Mathematical presentation

0
The exploration does not reach the standard described by the descriptors 
below.

1 There is some appropriate mathematical presentation.

2 The mathematical presentation is mostly appropriate.

3 The mathematical presentation is appropriate throughout.
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C   Personal engagement

0
The exploration does not reach the standard described by the descriptors 
below.

1 There is evidence of limited or superficial personal engagement.

2 There is evidence of some personal engagement.

3 There is evidence of significant personal engagement.

4 There is abundant evidence of outstanding personal engagement.

D   Reflection

0
The exploration does not reach the standard described by the descriptors 
below.

1 There is evidence of limited or superficial reflection.

2 There is evidence of meaningful reflection.

3 There is substantial evidence of critical reflection.

E   Use of Mathematics

0
The exploration does not reach the standard described by the descriptors 
below.

1 Some relevant mathematics is used.  

2 Some relevant mathematics is used.  Limited understanding is demonstrated.

3
Relevant mathematics commensurate with the level of the course is used.  
Limited understanding is demonstrated.

4
Relevant mathematics commensurate with the level of the course is used.  
The mathematics explored is partially correct.  Some knowledge and 
understanding are demonstrated.

5
Relevant mathematics commensurate with the level of the course is used.  The 
mathematics explored is mostly correct.  Good knowledge and understanding 
are demonstrated.

6
Relevant mathematics commensurate with the level of the course is used.  The 
mathematics explored is correct.  Thorough knowledge and understanding are 
demonstrated.

Guidance
Conducting an in-depth individual exploration into the mathematics of 
a particular topic can be an interesting and very rewarding experience. 
It is important to take all stages of your work on the Mathematical 
Exploration seriously – not only because it is worth 20% of your final 
grade for the course, but also because of the opportunity to pursue your 
own personal interests without the pressure of examination conditions. 
The Mathematical Exploration will require a significant amount of time 
and energy to complete successfully. It should not be approached as simply 
an extended homework assignment. The task of writing the report will 
demand a considerable amount of research, analysis, reading, consultation 
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(with your teacher only), thinking, writing, editing, mathematical work, 
problem solving and proofreading. Hopefully, it will also be enjoyable, 
thought provoking and satisfying, and give you the opportunity to gain a 
deeper appreciation for the beauty, power and usefulness of mathematics.

Although it is required that your Mathematical Exploration be completely 
your own work, you should be consulting with your teacher on a regular 
basis throughout the time given to you to research and write your report. 
Your teacher should provide support and advice during the planning 
and writing stages of your report. Both you and your teacher will need to 
sign the internal assessment coversheet verifying the authenticity of your 
Mathematical Exploration.

All of the work connected with the exploration must be your own. Your 
Mathematical Exploration must reflect intellectual honesty in research 
practices and must provide the reader with the exact sources of quotations, 
ideas and points of view with a complete and accurate bibliography. There 
are a number of acceptable bibliographic styles. Whatever style is chosen, 
it must include all relevant source information and be applied consistently. 
Group work is not allowed with the Mathematical Exploration. Also, if 
you are writing an Extended Essay for mathematics you are not allowed to 
submit the same piece of work for the Mathematical Exploration – and you 
are strongly advised not to write about the same mathematical topic for 
both.

In organizing a successful Mathematical Exploration, consider the 
following suggestions.

1 Select a topic in which you are genuinely interested. Include a brief 
explanation in the early part of your report about why you chose your 
topic – including why you find it interesting.

2 Consult with your teacher that the topic is at the appropriate level of 
mathematics, i.e. that it is at the same level of mathematics in the SL 
syllabus, or beyond.

3 Find as much information about the topic as possible. Although 
information found on internet websites can be very helpful, try to 
also find information from books, journals, textbooks and other print 
material.

4 Prepare and organize your material into a thorough and interesting 
report. Although there is no requirement that you present your report 
to your class, it should be written so that your fellow classmates can 
follow it without trouble. Your report needs to be logically organized 
and use appropriate mathematical terminology and notation.

5 The most important aspects of your report should be about 
mathematical communication and using mathematics. Although 
other aspects of your topic (e.g. historical, personal, cultural etc.) can be 
discussed, be careful not to lose focus on the mathematical features.
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6 Two of the assessment criteria – personal engagement and reflection 
– are about what you think about the topic you are exploring. Don’t 
hesitate to pose your own relevant and insightful questions as part of 
your report, and then to address these questions using mathematics at a 
suitably sophisticated level along with sufficient written commentary.

7 Although your teacher will expect and require you to work 
independently, you are allowed to consult with your teacher – and your 
teacher is allowed to give you advice and feedback to a certain extent 
while you are working on your report. It is especially important to 
check with your teacher that any mathematics in your report is correct. 
Your teacher will not give mathematical answers or corrections, but can 
indicate where any errors have been made or where improvement is 
needed.

Mathematical Exploration SL – 
Student Checklist

Is your report written entirely by yourself – and trying to avoid simply replicating work and ideas 
from sources you found during your research?

c Yes c No

Have you strived to: apply your personal interest; develop your own ideas; and use critical thinking 
skills during your exploration and demonstrate these in your report?

c Yes c No

Have you referred to the five assessment criteria while writing your report? c Yes c No

Does your report focus on good mathematical communication – and does it read like an article for 
a mathematical journal?

c Yes c No

Does your report have a clearly identified introduction and conclusion? c Yes c No

Have you documented all of your source material in a detailed bibliography in line with the IB 
academic honesty policy?

c Yes c No

Not including the bibliography, is your report 6 to 12 pages? c Yes c No

Are graphs, tables and diagrams sufficiently described and labelled? c Yes c No

To the best of your knowledge, have you used and demonstrated mathematics that is at the same 
level, or above, of that studied in IB Mathematics SL?

c Yes c No

Are formulae, graphs, tables and diagrams in the main body of text? (preferably no full-page 
graphs; and no separate appendices)

c Yes c No

Have you used technology – such as a GDC, spreadsheet, mathematics software, drawing and 
word-processing software – to enhance mathematical communication?

c Yes c No

Have you used appropriate mathematical language (notation, symbols, terminology) and defined 
key terms?

c Yes c No

Is the mathematics in your report performed correctly? c Yes c No

Has calculator/computer notation and terminology not been used? (y = x2, not y = x^2; ≈, not =    
for approximate values;π , not pi;

 
x , not abs(x); etc)

c Yes c No

At suitable places in your report – especially in the conclusion – have you included reflective and 
explanatory comments about the mathematical topic being explored?

c Yes c No



566

The Mathematical Exploration – Internal Assessment16

List of 200 ideas/topics for a 
Mathematical Exploration
The topics listed here range from fairly broad to quite narrow in scope. 
It is possible that some of these 200 could be the title or focus of a 
Mathematical Exploration, while others will require you to investigate 
further to identify a narrower focus to explore. Do not restrict yourself 
only to the topics listed below. This list is only the ‘tip of the iceberg’ with 
regard to potential topics for your Mathematical Exploration. Reading 
through this list may stimulate you to think of some other topic in which 
you would be interested in exploring. Many of the items listed below may 
be unfamiliar to you. A quick search on the internet should give you a 
better idea what each is about and help you determine if you’re interested 
enough to investigate further – and see if it might be a suitable topic for 
your Mathematical Exploration.

Algebra and number theory

Modular arithmetic Goldbach’s conjecture Probabilistic number theory

Applications of complex numbers Diophantine equations Continued fractions

General solution of a cubic equation Applications of logarithms Polar equations

Patterns in Pascal’s triangle Finding prime numbers Random numbers

Pythagorean triples Mersenne primes Magic squares and cubes

Loci and complex numbers Matrices and Cramer’s rule Divisibility tests

Egyptian fractions Complex numbers and transformations Euler’s identity: eiπ + 1 = 0

Chinese remainder theorem Fermat’s last theorem Natural logarithms of complex numbers

Twin primes problem Hypercomplex numbers Diophantine application: Cole numbers

Odd perfect numbers Euclidean algorithm for GCF Palindrome numbers

Factorable sets of integers of the form 
ak + b

Algebraic congruences Inequalities related to Fibonacci 
numbers

Combinatorics – art of counting Boolean algebra Graphical representation of roots of 
complex numbers

Roots of unity Fermat’s little theorem Prime number sieves

Recurrence expressions for phi (golden 
ratio)

Geometry

Non-Euclidean geometries Cavalieri’s principle Packing 2D and 3D shapes

Ptolemy’s theorem Hexaflexagons Heron’s formula

Geodesic domes Proofs of Pythagorean theorem Minimal surfaces and soap bubbles

Tesseract – a 4D cube Map projections Tiling the plane – tessellations

Penrose tiles Morley’s theorem Cycloid curve

Symmetries of spider webs Fractal tilings Euler line of a triangle

Fermat point for polygons and 
polyhedra

Pick’s theorem and lattices Properties of a regular pentagon

Tangrams Conic sections Nine-point circle

Geometry of the catenary curve Regular polyhedra Euler’s formula for polyhedra
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Geometry (continued)

Eratosthenes – measuring earth’s 
circumference

Stacking cannon balls Ceva’s theorem for triangles

Constructing a cone from a circle Conic sections as loci of points Consecutive integral triangles

Area of an ellipse Mandelbrot set and fractal shapes Curves of constant width

Sierpinksi triangle Squaring the circle Polyominoes

Reuleaux triangle Architecture and trigonometry Spherical geometry

Gyroid – a minimal surface Geometric structure of the universe Rigid and non-rigid geometric 
structures

Calculus/analysis and functions

Mean value theorem Torricelli’s trumpet (Gabriel’s horn) Integrating to infinity

Applications of power series Newton’s law of cooling Fundamental theorem of calculus

Brachistochrone (minimum time) 
problem

Differential equations L’Hôpital’s rule and evaluating limits

Hyperbolic functions The harmonic series Torus – solid of revolution

Projectile motion Why e is base of natural logarithm 
function

Statistics and modelling

Traffic flow Logistic function and constrained 
growth

Modelling growth of tumours

Modelling epidemics/spread of a virus Modelling the shape of a bird’s egg Correlation coefficients

Central limit theorem Modelling change in record 
performances for a sport

Hypothesis testing

Modelling radioactive decay Least squares regression Modelling the carrying capacity of the 
earth

Regression to the mean Modelling growth of computer power 
past few decades

Probability and probability distributions

The Monty Hall problem Monte Carlo simulations Random walks

Insurance and calculating risks Poisson distribution and queues Determination of π  by probability

Lotteries Bayes’ theorem Birthday paradox

Normal distribution and natural 
phenomena

Medical tests and probability Probability and expectation

Games and game theory

The prisoner’s dilemma Sudoku Gambler’s fallacy

Poker and other card games Knight’s tour in chess Billiards and snooker

Zero sum games

Topology and networks

Knots Steiner problem Chinese postman problem

Travelling salesman problem Königsberg bridge problem Handshake problem

Möbius strip Klein bottle

Logic and sets

Codes and ciphers Set theory and different ‘size’ infinities Mathematical induction 

Proof by contradiction Zeno’s paradox of Achilles and the 
tortoise

Four colour map theorem
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Numerical analysis

Linear programming Fixed-point iteration Methods of approximating π
Applications of iteration Newton’s method Estimating size of large crowds

Generating the number e Descartes’ rule of signs Methods for solving differential 
equations

Physical, biological and social sciences

Radiocarbon dating Gravity, orbits and escape velocity Mathematical methods in economics

Biostatistics Genetics Crystallography

Computing centres of mass Elliptical orbits Logarithmic scales – decibel, Richter, 
etc.

Fibonacci sequence and spirals in 
nature

Predicting an eclipse Change in a person’s BMI over time

Concepts of equilibrium in economics Mathematics of the ‘credit crunch’ Branching patterns of plants

Column buckling – Euler theory

Miscellaneous

Paper folding Designing bridges Mathematics of rotating gears

Mathematical card tricks Curry’s paradox – ‘missing’ square Barcodes

Applications of parabolas Music – notes, pitches, scales… Voting systems

Flatland by Edwin Abbott Terminal velocity Towers of Hanoi puzzle

Photography Art of M.C. Escher Harmonic mean

Sundials Navigational systems The abacus

Construction of calendars Slide rules Different number systems

Mathematics of juggling Global positioning system (GPS) Optical illusions

Origami Napier’s bones Celtic designs/knotwork

Design of product packaging Mathematics of weaving

Website support
Further guidance and information concerning Internal Assessment is 
available from the authors’ website at www.wazir-garry-math.org. You are 
encouraged to register with our site. Along with a considerable amount 
of support for other aspects of the IB Mathematics Standard Level 
course, there will be a section on our website devoted specifically to the 
Mathematical Exploration. We will be regularly updating our site so that 
you will have access to thorough and useful advice, materials and updates 
regarding how to get the most out of your Mathematical Exploration.



Paper 1 – Non-GDC paper
Full marks are not necessarily awarded for a correct answer with no 
working. Answers must be supported by working and/or explanations. 
Where an answer is incorrect, some marks may be given for a correct 
method, provided this is shown by written working. You are therefore 
advised to show all working. 

Sample paper 1 – A
Section A
1 [Maximum mark: 5]
 From January till July, the mean number of visitors per month to a 

museum was 1200. From August till December, the mean number of 
visitors to the museum was 1500. 

 What was the mean number of visitors per month for the whole year?

2 [Maximum mark: 6]
 In an arithmetic sequence, the first term is 23 and the fifth term is 13.

a) Find the common difference d.
b) If the nth term is 101, find the value of n.

3 [Maximum mark: 10]
 Let f (x) 5 ln x and g (x) 5   x 1 3 _____ 

2x
  , x  0.

 Find
a) (g  f )(e), where e is the base of the natural logarithm
b) g21(4)
c) the domain of (f  g )(x).

4 [Maximum mark: 6]
The diagram shows a circle with radius 10  cm. The minor arc subtends 
an angle of 2 radians at the centre.
Find
a) the length of the minor arc
b) the area of the shaded region.

 

10 cm

2 radians

Sample Examination 
Papers
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5 [Maximum mark: 6]
A vector equation of a line is

 (   x     y   )  5  (  22    3  )  1 t  (   3     5   ) , t [ R.

Find the equation of the line in the form ax 1 by 5 c, where a, b and c  [  N.

6 [Maximum mark: 6]
Consider the expansion of  ( 2x 2   3 __ 

x 2
   ) 9. Find

a) the number of terms in the expansion

b) the value of the term independent of x in this expansion.

7 [Maximum mark: 6]
A particle is moving eastward along a straight line with the speed, at any 
time t . 0, given by v  (t) 5   3 __ 

2
   √

_____
 t 1 4   2 1.

Find the displacement s(t) if s(0) 5 2.

Section B
8 [Maximum mark: 18]

A parallelogram ABCD is given with consecutive vertices A(23, 24), 
B(4, 22) and C(5, 3).

a) Find the vector  
 ___

 
›
 AB  and hence the coordinates of D.

b) Find a vector equation of the line (DC), i.e. r 5 r0 1 t v.

c) Show that the point E(12, 5) is on the line (DC) and find the 
corresponding value of t for this point.

A point T with coordinates (x, 10) is given.

d) If | 
 ___

 
›
 TE  | 5 14, find the possible values of x.

e) In each case above, find the cosine of the angle TED.

9 [Maximum mark: 14]
Consider the function f (x) 5 x 3 1   3 _ 2   x 2 2 4x.
a) Show that the x-coordinates of the two points where this function has 

a tangent parallel to the line with equation y 5 2x 2 7 are x 5 22 
and x 5 1.

b) Find the area of the shaded region which is bounded by the curve of 
the function f (x), the x-axis and the two lines x 5 22 and x 5 1.

x

y

�2

0

2

4

6

�1�2�3 1 2
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10 [Maximum mark: 13]
The heights of students in an IB maths class at a large school are 
normally distributed with mean height of 174  cm. It is known that the 
proportion of the class whose height is less than 185  cm is 97.5%.
a) A student is selected at random. What is the probability that he/she 

is taller than 185  cm?
b) The probability that a student is taller than k is 97.5%. Find the 

value of k.
c) The class has 220 students. What is the expected number of 

students with heights between 163 and 185  cm?
d) Three students from this class are chosen at random. What is the 

probability that at least two of them are taller than 185  cm?

Sample Paper 1 – B
Section A
1 [Maximum mark: 6]

A box contains 15 red marbles and 7 white ones. Three marbles are 
selected at random, one after the other, without replacement.
a) What is the probability that exactly two of the marbles are red?
b) The first marble is white. What is the probability that the second and 

third marbles are red?

2 [Maximum mark: 5]
The diagram shows part of the graph of y 5 a(x 2 h)2 1 k.

The graph has its vertex at the point (2, 3) and crosses the x-axis at the 
point (5, 0).
Find the value of:

 a) h b) k c) a

3 [Maximum mark: 7]
A sequence is defined by

vn 5 5 1   1 _ 2   (n 2 1).

a) Write down the value of v1 and v30.

b) Find  ∑ 
n 5 1

  

30

     (   9 1 n _____ 
2

   ) .

x

y

�4

�3

�2

�1

1

0

2

3

4

�3 �2 �1 1 2 3 4 5 6 7
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4 [Maximum mark: 6]
The diagram shows the graph of the function
f (x) 5 2x 2 2 20x 1 51.

a) Write f (x) in the form f (x) 5 a(x 2 h)2 1 k.

b) g(x) is a translation of f (x) by a vector  (   23        2   ) . Write the equation of 
the function g(x).

5 [Maximum mark: 7]
Consider the angle u such that p < u <   3p ___ 

2
   and sin  u 5 2  20 ___ 

29
  . Find

a) cos u
b) cos 2u

c) cos  (   p __ 
2

   2 u ) 
6 [Maximum mark: 7]

In triangle ABC, AB 5 6  cm, AC 5 11  cm, and the angle at A has cos A 5   3 _ 4   .
Find a) sin  A
  b) the area of triangle ABC
  c) BC

7 [Maximum mark: 7]

Marco recorded the time he has to wait for the school bus every 
morning for a period of 160 days. The cumulative frequency graph for 
his waiting times is shown in the diagram.
a) Use the graph to find
 (i) the median
 (ii) the interquartile range.
b) For 65% of the time, he had to wait more than k minutes. Find k.

y � g(x)

y � f(x)
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Section B 
8 [Maximum mark: 16]

Two lines L1 and L2 are described by their respective vector equations

r1 5
22

3
1

1 l
1
2
1

 ; r 2 5
24

9
4

1 m
23

4
2

a) Find the cosine of the acute angle formed by these two lines.
b)  (i)  A is a point on L1 corresponding to l 5 1. Find the coordinates 

of the point A.
  (ii) Show that A is also on L2.

c) A third line L3 has the equation r3 5  
2

 
 

 1   
0

  1 m   
x
 
 

 y   
10

 . Find x and y if 

 L3 is perpendicular to both L1 and L2.

9 [Maximum mark: 16]

A part of the graph of the function f (x) 5 e sin  x cos x is given in the 
diagram. 
a) Find the coordinates of the point A.
b) At what other point does the graph cross the horizontal axis on the 

interval [0, 2p]?
c) Find the derivative of the function, and hence show that the 

 maximum value is at the point with x-coordinate arcsin  (   a 1  √
__

 b  
 ______ 

2
   ) , 

i.e. find the values of a and b.
d) Find the area of the shaded region.

10 [Maximum mark: 13]

a) Show that   1 _ 6   
 25 2 3
 2 22 0
 14 22 26

 is the inverse of  
 2 1 1
 2 22 1
 4 3 1

 .

b) Hence, find the solution of the system
  2x 1 y 1 z 5 23
  2x 2 2y 1 z 5 29
  4x 1 3y 1 z 5 21
c) Find the value of k so that the determinant of A 5 23.

 A 5 
 k 1 1
 k 22 1
 4 3 1

 

2

1

0

�1

�2

x

y
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Paper 2 – GDC paper
Full marks are not necessarily awarded for a correct answer with no 
working. Answers must be supported by working and/or explanations. 
Where an answer is incorrect, some marks may be given for a correct 
method, provided this is shown by written working. You are therefore 
advised to show all working. 

Sample paper 2 – A
Section A 
1 [Maximum mark: 7]

Two ships A and B start from the same port. Ship A moves west at a 
constant speed of 25 km/h and ship B moves in a direction N 50° E 
(clockwise from north) at a constant speed of 30 km/h. How far apart 
are the two ships after two hours?

2 [Maximum mark: 6]
F(x) is an anti-derivative of f (x) 5   2 _____ x 1 e   1 2 cos x, x  2 e. F(0) 5 3. 
Find an expression for F(x).

3 [Maximum mark: 6]
Consider the arithmetic series: 3 1 7 1 11 1 …

a) Find an expression for Sn, the sum of the first n terms.

b) Find the value of n such that Sn 5 3916.

4 [Maximum mark: 7]
A particle moves in a straight line path with speed, in metres per second, 
given by 

 v 5   2t _____ 
3 1 t2   

a) Find the distance travelled in the first 3 seconds.
b) Find the acceleration after 3 seconds.

5 [Maximum mark: 6]
Find the angle between the two vectors u 5 2i 2 3j 1 2k and 
v 5 i 1 2j 2 3k

6 [Maximum mark: 6]
Find the value of n such that the determinant of the matrix A is zero.

 A 5 
 1 2 k
 k 1 21
 4 3 2

 

7 [Maximum mark: 7]
Antonio plays darts and has a probability of hitting the bullseye 40% of 
the time. He throws 6 darts at the target.

a) Find the probability that he hits the bullseye exactly 3 times.

b) Find the probability that he hits the bullseye at least 3 times.
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Section B
8 [Maximum mark: 10]

The figure right shows part of the  
graph of the function  
f (x) 5 x 3 2 7x 2 1 14x 2 6.
a) Find the x-coordinate of the 

points where the curve crosses the  
x-axis.

b) Find the area of the shaded region.
c) Find the volume of the solid  

resulting from rotating the shaded  
region around the x-axis through an angle of 360°.

9 [Maximum mark: 18]
The masses of bags of flour filled by a machine are normally distributed 
with a mean of 500  g and standard deviation of 6  g.
If the weight of a bag is less than a, it is considered ‘underweight’ and 
has to be refilled. If the weight of the bag is more than b, it is considered 
‘overweight’ and has to be refilled.

a) If 3% of the bags are underweight, show that the value of  
a 5 488.72  g.

b) If 2% of the bags are overweight, show that the value of  
b 5 512.32  g.

c) We need to adjust the mean so that the machine will give us less 
underweight bags. (Keep the standard deviation at 6.) What should 
the new mean be so that the underweight bags will only be 2% of the 
output?

d) We keep the mean at 500  g, but adjust the standard deviation. How 
large should the standard deviation be so that we receive only 2% 
underweight bags?

e) If we want the underweight bags to be 2% and the overweight bags 
1%, what should the mean and standard deviations be to achieve this?

10 [Maximum mark: 17]
The three vertices of a triangle PQR lie on the following two lines:

L1: r 5
0
3
1

1 l
1
1

22
 ; L2: r 5

2
21
22

1 m
3

23
25

a) L1 and L2 intersect at the vertex P. Show that P has the coordinates 
(21, 2, 3).

b) Q lies on line L1 and corresponds to l 5 2, while R lies on L2 and 
corresponds to m 5 1. Find the lengths of the sides of triangle PQR.

c) Find the measure of the vertex angle at P.
d) Find the area of the triangle.
e) Find a vector equation of the line (QR).

f) Find a point S on [QR] such that  
 ___

 
›
 QS  5 2  

 ___
 
›
 SR .

0 x

y
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Sample paper 2 – B
Section A
1 [Maximum mark: 7]

The diagram shows two concentric circles  
with radii of 10 and 7  cm. The shaded  
region is 53.41  cm2. Find the measure of 
the central angle a, giving your answer to 
the nearest degree.

2 [Maximum mark: 6]
Let f (x) 5 cos(2x 2 1), 0 < x < p.
a) Sketch the graph of this function,  

starting with y 5 cos x and then applying all necessary 
transformations.

b) Find the exact locations of the extreme values.

3 [Maximum mark: 7]
In triangle IBO, IB 5 8  cm, OB 5 11  cm, and the area of the triangle is 
38.105  cm2. Find the two possible values of angle IBO.

4 [Maximum mark: 6]
The two lines L1 and L2 intersect at a point A.
L1: r 5 i 1 6j 1 t (2i 1 3j) 
L2: r 5 3i 1 2j 1 s (i 2 j) 
a) Find the coordinates of the point A.
b) Find the angle between the two lines.
c) Find the area of triangle ABC, where B is a point on L1 that 

corresponds to t 5 3 and C is a point on L2 corresponding to s 5 3.

5 [Maximum mark: 6]
The speed of an object moving in a rectilinear fashion is given by

 v(t) 5 2t – sin t, where t represents time after 12:00.
The displacement of the object at t 5 0 is 2  cm. Find an expression for 
the displacement of the object in terms of t.

6 [Maximum mark: 7]
The sum of the first two terms of a geometric sequence is 9. The sum 
to infinity of the corresponding geometric series is 12. Find all possible 
values of the first term and the common ratio.

7 [Maximum mark: 6]
A supermarket packages tomatoes in bags with masses that are normally 
distributed with a mean of 2.5  kg and standard deviation of 0.3  kg. 20% 
of the bags weigh more than x kg. Find the value of x.

Section B
8 [Maximum mark: 17]

Consider the function f (x) 5   x 2 2 4 ______ 
e x

   defined over the set of real 
numbers.
a) Find the derivative of this function.

O

α
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b) Find the zeros of the function.
c) Identify all asymptotes.
d) Find the extreme values and where they happen, and graph the 

function.
e) Find the area of the region bounded by the function and the x-axis.
f) Set up an integral to give the volume of the solid generated as we 

rotate the region in e) about the x-axis through 360°, giving your 
answer to 3 d.p.

9 [Maximum mark: 11]
In a small country there is a wave of new ‘start-up’ technical companies. 
The number of companies is given by

 N 5 2840 1 100t
where t is the number of years since 1992.
a)  (i) How many companies were there at the start of 2006?
 (ii) In what year did the number of companies first reach 4000?
In 1986 there were 120  000 people working in that industry. After t years, 
the size of the workforce in this industry is described by

 W 5 120  000(1.03)t.
b)  (i) Find the number of workers at the beginning of 2006.
 (ii) In what year will the number of workers first exceed 220  000?

10 [Maximum mark: 17]
An IB group (year 1 and year 2) in a large school has 310 students. The 
three best subjects are given in the table below.

Year 1 Year 2

English 60 45

Maths 75 55

Humanities 20 55

a) A student is chosen at random.
  (i) Find the probability that the student’s best subject is maths.
  (ii)  Find the probability that a student is in year 2 with maths as a 

best subject.
  (iii) Are the events year 2 and maths independent? Justify.
b)  (i)  A year 1 student is chosen. What is the probability that he/she 

has maths as a best subject?
  (ii)  A maths student is selected. What is the probability that he/she 

is in year 2?
c) Assume this population is representative of all IB candidates around 

the world and that the probability that a student chooses maths as a 
best subject is independent of other students’ decisions.

  (i)  From a group of 20 students, what is the probability that maths 
is a best subject for 4 of them?

  (ii)  From a group of 20 students, what is the probability that maths 
is a best subject for at most 4 of them?
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18 Theory of Knowledge
What is TOK?
Theory of knowledge is concerned with how we know what we claim to 
know. As an IB diploma student you take classes in a number of areas of 
knowledge corresponding to the IB hexagon. While we call what we learn 
in each of these subjects ‘knowledge’, each seems to go about the process 
of getting this knowledge in a different way. Theory of knowledge examines 
these different ways of knowing and asks a number of questions about what 
sort of things can be considered facts, knowledge, good evidence and truth 
in each of the IB subjects.

Mathematics is rather puzzling as an area of knowledge. Most other subjects 
that we study in the IB base their knowledge claims upon observations 
of the world. Mathematics does not. Yet mathematics has profoundly 
practical applications in the world. How can this be? Knowledge claims 
in the sciences – while often fairly secure – are nonetheless provisional in 
some sense. Science allows the possibility that it is wrong – that some new 
observation or discovery will overturn previously held beliefs. The statements 
of mathematics, on the other hand, are certain. 1 + 1 = 2 is not just probably 
true. It is certain. It cannot be otherwise. This is because 1 + 1 = 2 can be 
proved. These features give mathematics a special place in TOK.

Explain why probability 
theory is certain even 
though it deals in 
probabilities.

What is mathematics?
It is remarkably difficult to pin down exactly what mathematics 
is about. A first attempt might be: ‘mathematics is the study of 
numbers’. Certainly, much of our school mathematics is concerned 
with operations on numbers and the relations between them. 
This is what is called arithmetic. But there is much more to 
mathematics than numbers, and mathematicians do not take 
kindly to being thought of as simply good at adding up the bill 
in the restaurant (actually many of them are not). One of the 
oldest fields of mathematical thought is geometry. When we 
study geometrical objects such as points, lines, planes, triangles, 
circles and ellipses we are not studying numbers as such. Rather 
we are studying the structure of space itself – in particular those 
aspects that stay unchanged under various types of geometrical 
transformation. These aspects we call invariants. Modern 
mathematics takes this idea further and studies structures, which 
are far removed from numbers or even our everyday intuitions 
about space and time. We could do far worse than define 
mathematics as the study of transformations and invariants.

Think of your favourite topic in 
the SL course. In this topic, can 
you identify (1) a mathematical 
transformation and (2) an invariant 
under this transformation? If 
you get stuck, ask your maths 
teacher. (Hint: when studying a 
function f (x) defined on the real 
numbers, the function itself is 
a transformation of the whole 
real number line, and the set of 
points that are unmoved by the 
function, i.e. for which f (x) = x are 
the invariants. This set is the fixed 
point set of the function. These 
points would be represented 
graphically as the points where 
the graph of y = f (x) intersected 
the 45 degree line y = x.)
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What are the foundations of 
mathematics?
Sets
Modern mathematicians build up the raw materials of their subject from 
quite humble beginnings. Let us look at how they do this. They start off  
with some basic concepts about sets. A set, as you know, is just a collection 
of elements placed inside curly brackets. For example, we could consider 
a set A = {1, 2, 3, 4}. We can say that 1 belongs to A: 1  A, but that 5 does 
not belong to A: 5  A. The notions of what it is to be a set and to belong 
to a set are primitive. This means that they cannot be explained in terms 
of more simple notions. If you keep on asking the question ‘why?’ (as some 
small children do), the questions stop when you get to a primitive concept 
(you fi nd yourself answering: ‘it just is’). Aristotle was aware of this when he 
stated that any explanation has to end somewhere. We can now answer 
him that explanations end in primitive concepts.

Think about an 
explanation in one of 
your IB subjects. Keep 
on asking the question 
‘why?’ until you can go no 
further. What you are left 
with is a primitive notion. 
Are the primitive notions 
in physics diff erent from 
those in history?

Mappings
We also need the idea of a mapping between sets. A mapping from A to 
B is a rule that assigns an element of B to each element of A. The functions 
that you study in your Standard Level Mathematics course are examples of 
mappings between the set of real numbers and itself.

Notice that for a mapping 
to be well defi ned, every 
member of the domain 
set has to have an arrow 
(and only one arrow) 
pointing from it. But some 
members of the range set 
can have more than one 
arrow pointing to them 
(and the number 2 has no 
arrow pointing to it). This is 
an example of a many-to-
one mapping. What is the 
mapping represented here?

Bertrand Russell and A. N .Whitehead, in their monumental book Principia 
Mathematica (1913), reduced the whole of mathematics to these simple 
notions. With a bit of work and a great deal of care and patience we can 
establish basic truths of arithmetic, such as 1 + 1 = 2. (Proving this takes 
about four pages of quite sophisticated mathematical argument; this is a 
surprise to many students who think that 2 is defi ned to be 1 + 1.)

Because we can build the whole of mathematics out of these primitive ideas 
of sets and mappings, does this mean that this is what mathematics is about?

2 16

4
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9

0
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4
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Mathematics and the real world
1 + 1 = 2?

The objects of mathematics, such as the number systems that we use, are built up 
from elementary ideas about sets. In this sense, mathematics can be seen as a rather 
elaborate abstract game, which seems to be about nothing in particular. Bertrand Russell 
wrote: ‘Mathematics is a subject where we do not know what we are talking about, nor 
whether what we are saying is true.’ A possible response to this could be: ‘We don’t need 
to establish formally that 1 + 1 = 2. It is easy to prove. Here I have one apple and there 
another apple. I put them together and I have two apples!’  What is wrong with this 
approach? Think carefully about what abstractions we are making from the real world 
in order that this argument works. Does it still work with two glasses of water poured 
together, or two piles of sand pushed together, or two rabbits (male and female) left 
together for a suitable length of time? These are all examples of the rather curious and 
sometimes awkward connection between the world of mathematics and the real world.

The Platonist view of mathematics

Plato was aware of the tension between the world of perfect geometrical objects – 
points with no area, lines with no width, perfect circles and triangles – and the messy 
physical world. There are no perfectly thin lines, infinitely small points and perfect circles 
in the real world. But he thought there was a world of perfect mathematical objects 
underlying the imperfect physical world of our everyday experiences. This mathematical 
world existed independently of human beings. There would still be nine planets in the 
solar system long after human beings have ceased to exist on Earth (well, eight actually!).
Plato’s thinking can help explain the usefulness of mathematics. After all, mathematics 
is often described as the language of the natural sciences – it is almost impossible to 

The barber of 
Seville
Russell’s paradox is similar 
to the story of the barber 
of Seville. There was a 
man who lived in Seville 
who was a barber. He 
had a monopoly on the 
shaving industry in Seville. 
He shaved every man in 
the town who did not 
shave himself. What is 
contradictory about this?

Russell’s paradox1

In constructing mathematics from set theory, we must be careful 
that we do not allow sets to be members of themselves. Consider the 
collection D = {d: d is a set and d contains more than 1 element}. By this 
definition, D actually belongs to itself, since D contains more than one 
element. There is something rather strange about this, which might 
make us suspicious. The self-reference involved in thinking about sets 
that are members of themselves leads to a famous paradox discovered 
by the English philosopher and mathematician Bertrand Russell. He 
considered the set that is defined as follows: S = {s: s is a set and s does 
not belong to itself }. The question he then asked was: Does S belong to 
itself or not? If the answer is yes – S does belong to itself, then, by the 
definition of S, S does not belong to itself. If S does not belong to itself, 
then, by the definition of S, S does belong to itself. Either way we get a 
contradiction. Russell realized that certain large collections (such as that 
of all sets) were actually too big to be a set. A collection like this is called 
a proper class.

1Bertrand Russell The Principles of Mathematics (1903) Cambridge



Plato thought that underlying the messy real 
world was the perfect world of mathematics. 
The five regular polyhedra shown are often 
called the Platonic solids.

Think about the question of whether 
mathematics is ‘out there’ in the 
world or whether it is an invention 
of human beings. Does this question 
occur in other areas of knowledge? 
Does it make sense to ask if 
English literature is out there in the 
world? Does it make sense to ask if 
chemistry is invented by humans?
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do biology, chemistry or physics without it. But increasingly, 
mathematics is becoming the lingua franca of the social 
sciences. For example, cutting-edge research in economics 
is highly mathematical. Governments use highly complex 
mathematical models to make predictions about future inflation, 
unemployment and growth rates. This makes a lot of sense, if we 
grant that mathematics is ‘out there’ as part of the structure of 
our physical and social world, as Plato thought it was. That would 
explain why mathematical methods are so effective in solving real 
world problems. This is called the Platonist view of mathematics.

Formalist and constructivist mathematics
There are two responses to Plato’s view that mathematics is ‘out 
there’. One emphasizes the game-like nature of mathematics 
and the other the fact that it is played by human beings. The 
formalist approach treats mathematics as an abstract formal 
game. The game proceeds using an agreed set of rules from 
agreed starting points, or axioms. The individual symbolic 
statements of mathematics mean nothing outside the game, just 
as ‘checkmate’ is meaningless outside chess and ‘fifteen-love’ is 
meaningless outside the game of tennis. 

The formalist must concede that any use mathematics has in the outside 
world is largely a coincidence. Is this a point against the formalist view of 
mathematics?

The constructivist sees mathematics as a human activity.  To this 
way of thinking, when there are no more humans there will be 
no more mathematics. Mathematics is produced by individuals 
or societies in much the same way as literature and other cultural 
artefacts. Again, the constructivist has the problem of explaining 
the success of mathematics in describing, understanding and 
predicting the outside world. How can a man-made system fit the 
non-human world so well?

There is another problem with the constructivist view of 
mathematics. It seems that we are accountable to the truths of 
mathematics. Mathematicians speak of mathematics as having an 
independent existence – maths is there to be discovered rather 
than being man-made. It is certainly true, as we shall see later, that 
maths can throw up quite unexpected results. Is this compatible 
with the description of mathematics as being built up out of a 
few basic and abstract raw materials? In order to try to answer this 
question, we need to look a little more closely at what constitutes 
mathematical truth.

Tetrahedron

Cube
(hexahedron)

Octahedron

Dodecahedron

Icosahedron
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What is truth in mathematics?
Let us look again at what we mean by mathematical truth. Mathematical 
statements are true if they can be proved. Before it is proved, a mathematical 
statement is called a conjecture. Once it is proved it is called a theorem. So, 
theorems are mathematical truths. 

The idea of proof in mathematics is very old. In around 300  BC, the geometer Euclid 
of Alexandria formalized the notion of proof in his book The Elements. He proved 
a number of truths about geometrical figures. A proof is a list of statements. Each 
statement is derived from the preceding statement in the list using only the rules 
of logic. This is called chain reasoning. But what starts the chain in the first place? 
The first statement in the chain must be, in some sense, either true by definition 
or self-evident in some way. These self-evident truths are called axioms. They are 
considered to be basic or primitive mathematical truths. By definition, they cannot 
be proved. A mathematical proof builds a chain of reasoning from the axioms to final 
mathematical results – theorems. 

They are very special from a TOK perspective because it seems that a theorem is an 
example of knowledge that is certain. A mathematical theorem is not just probably 
true. It is true in the sense that, given the definitions of the terms it uses and the 
axiom system used to prove it, it cannot be otherwise. In TOK, we rarely meet 
truths that are certain in this absolute sense. 

Theorem, theory and proof

Be careful that you do not confuse the word ‘theorem’ with the similar-sounding 
‘theory’. In mathematics, a theory is an established piece of mathematical work 
that might contain many theorems. In other words, mathematical theories are 
pieces of true mathematics. In science, the word is more problematic. It might 
apply to an established piece of science that has been tested and found to yield 
accurate predictions and to give good explanations of phenomena in the physical 
world. But the term can also refer to a more tentative idea that has not yet been 
thoroughly tested. It is a common mistake in TOK essays to make a statement such 
as: ‘The theory of evolution is only a theory so it cannot be considered 
knowledge’. Evolution theory belongs to the first type of theory – it is as 
well supported by evidence as the fact 
that water is H

2
O – but the essay treats it 

as belonging to the second.

A word of warning is also needed about 
the word proof. Strictly speaking, 
proof is the mathematical process 
outlined above – where a mathematical 
statement is derived from axioms in 
a step-by-step manner. Proof implies 
absolute certainty. Be careful applying 
this word outside mathematics.  

Part of a manuscript by the French 
mathematician Evariste Galois.



Draw a circle. Label 2 points on 
its circumference. Draw a line 
between them. This line divides 
the circle into 2 regions.

4 points, 8 regions

Add third point C. Draw lines 
between C and the other points. 
There are now 4 regions.

5 points, 16 regions
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C

C CD D

E
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Absolute certainty is generally not achievable in science for a number of reasons that you may have 
discovered in your TOK course. Scientific results are not proved in this strict sense, it is better to describe 
them as being ‘secure’ or ‘well supported by the evidence’.

To see how mathematical proof works, let us prove a simple theorem.

Theorem: Let x and y be odd integers. Then x + y is an even integer.
Proof: The definition of an odd number is that it is an even number plus 1. An even number is a number in 
the 23 table. 

So, write x = 2m + 1 for some integer m. In a similar fashion, y = 2n + 1 for some integer n.

x + y = (2m + 1) + (2n + 1) = 2m + 2n + 2

We can take out the common factor of 2 to give:  x + y = 2(m + n + 1)

Since m, n and 1 are integers, it follows that m + n + 1 is also an integer.2

Hence, x + y is 23 an integer and so must be even.    QED

We write QED (Quad Erat Demonstrandum – meaning ‘which 
was to be shown’) at the end, to show that the proof is finished.

Let us take a closer look at some features of 
this method of proof. First notice that we 
have in effect proved an infinite sequence of 
statements including: 3 + 5 is even,  
3 + 7 is even, 5 + 7 is even, and so on. 
We could have attempted to do a sort of 
mathematical experiment by checking 
whether the result holds for some randomly 
chosen odd numbers: 3 + 5 = 8, which is 
even; 3 + 7 = 10, which is even; 5 + 7 = 12, 
which is even; and so on. But this is not a 
proof. There is always an infinite number 
of examples that we have not tried and 
for which the result might not hold. This 
is what mathematicians call a semantic 
method. But, as you have probably learned 
from studying the natural sciences in TOK, it 
takes a single counter-example to disprove a 
conjecture. The same is true in mathematics. 
Why not try Moser’s circle problem (shown 
right) to see what we mean? 
A proof is a syntactic method. It does not 
look at particular examples of odd numbers 
but rather depends on features that all odd 
numbers have in common (namely their 
oddness!). We have been able to do this by 
using algebra. We have substituted letters 
for numbers to allow us to talk generally 
about odd numbers rather than specific 
examples. This is typical of a mathematical 

Moser’s circle problem illustrates the difference 
between an experimental approach to mathematics  
– a semantic method (trying out a conjecture to see 
if it works) and proving it – a syntactic method.

2There is a further subtlety here in the statement that n + m + 1 is an integer 
because m and n are. This is because the integers are closed under addition 
because Z+ is a group – closure is a property of groups. Groups are structures 
that underlie most mathematics.

The question is: Can you predict how many regions there will be 
when you add a sixth point? Can you prove why this is so?
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proof. Once the conjecture is proved we can state categorically that it is true, now 
and for all time. It does not depend on culture, nationality, personal points of view, 
language or gender.  It does not matter who proved it. It could be a university 
professor of mathematics or it could be an eight-year-old. It simply does not 
matter. In mathematics, proof means truth and that is the end of the story.

Axioms

A mathematical statement is true if it could be derived from the basic axioms of 
set theory by using only the rules of logic. In the SL course, the rules of logic are 
packaged in a convenient way to help us solve problems. We call this package 
‘the rules of algebra’. These are rules such as: You can add the same number to 
both sides of an equality and it remains equal (if y = x then y + 5 = x + 5).

We can use these rules of algebra to solve mathematical problems. Each 
problem we solve is a little theorem. An example is: If x + 5 = 10 then x = 5. This 
is rather a simple theorem, but it is a theorem nevertheless. If you write any of 
your standard maths problems in the form ‘If … (problem to be solved)  then 
(solution)’ you get a theorem. (This assumes that you have solved the problem 
correctly!) But there is one additional set of assumptions that we do not explicitly 
mention when we solve these problems (or prove these theorems). That is, the 
assumptions that the axioms of set theory on which we base all our mathematics 
(and without which none of our mathematics would mean anything) are true. 
But how do we choose which axioms to use? How do we know that we have 
chosen a good set of axioms? These questions are not easy to answer. We shall 
examine them using a concrete example.

Euclid’s postulates

What axioms did Euclid propose for doing plane geometry?
Here are Euclid’s axioms. He called them ‘postulates’.

In some sense, Euclid’s axioms express mathematical intuitions about the nature of 
geometrical objects. What is clear in any case is that they are not established using 
observation of the external world. Objects such as points, lines, circles and planes do 
not exist in the real world with the perfect qualities they possess in mathematics.

Euclid’s postulates

1  A straight line segment can be drawn joining any two points.

2  Any straight line segment can be extended indefinitely in a straight line.

3  Given any straight line segment, a circle can be drawn having the given line segment 

as radius and one endpoint as centre.

4  All right angles are congruent.

5  If two lines are drawn, which intersect a third in such a way that the sum of the inner 

angles on one side is less than two right angles, then the two lines inevitably must 

intersect each other on that side, if extended far enough.



3A ‘great circle’ is the largest circle that can be drawn on 
a sphere, and is the intersection between the surface 
of a sphere and a plane passing through the centre of 
the sphere. The shortest path between two points on a 
sphere follows a great circle.

Problem: To construct an equilateral triangle on 
a given line segment using Euclid’s axioms.
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Euclidian geometry
Let us try to use Euclid’s postulates to do some 
geometry (see right).

Let us now examine the construction and see which 
postulates were used. 

Step 1: drawing the arcs is allowed by postulate 3 
(twice).

Step 2: drawing the line segments AC and BC is 
allowed by postulate 1 (twice).

It follows from step 1 that the line segments AC and 
BC are both equal to AB. Therefore, they must be 
equal (this is sometimes quoted as a separate axiom 
– that two line segments equal to the same line 
segment must be of equal length).

Non-Euclidian geometry

Take a look at Euclid’s postulate 5. This cannot be 
proved as a theorem from the other axioms (that this 
is impossible can itself be proved!) although many 
people have attempted this. Euclid himself only used 
the first four axioms in the first 28 propositions of the 
Elements, but he was forced to use the fifth axiom, 
so-called ‘parallel postulate’, in the 29th proposition. 
The independence of the parallel postulate means 
that we can choose whether we accept it or not. If 
we accept it, parallel lines do not meet. The geometry 
we get is the familiar geometry of the plane. This is 
the geometry that we can use to construct buildings 
and other physical objects. In 1823, Janos Bolyai and 
Nicolai Lobachevsky independently realized that 
entirely self-consistent non-Euclidian geometries 
could be envisaged in which the fifth axiom did 
not hold. There are two quite different geometries 
in this case: those in which parallel lines meet at 
some point – elliptical geometry – and those in 
which parallel lines diverge – hyperbolic geometry. 
An example of elliptical geometry is the geometry 
of long distance travel on the Earth’s surface. The 
shortest path between two points (say the most 
efficient route of a jet airliner) is a curve called a great 
circle.3 The parallel lines of longitude are great circles 
that meet at the poles. If parallel lines diverge, we get 
so-called hyperbolic geometry. An example of doing 
hyperbolic geometry would be to draw lines on a 
saddle.

Why not try out a construction yourself, using 
the postulates of Euclidian geometry? Extend 
the arcs below the segment AB to meet again 
at D. Join CD with a line segment. The task is to 
prove that CD is the perpendicular bisector of 
AB using Euclid’s postulates. (The perpendicular 
bisector of AB is a line segment CD that cuts AB 
exactly in half and the angle it makes with AB is 
exactly a right angle.)

A B

A B

A

C

D

B



Do you hold any contradictory 
beliefs? If so, what are the 
implications for what you consider 
to be knowledge?
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Consistency and completeness

We saw that postulate 5 is independent of the other four - that 
it could not be derived from them. More generally, there are two 
questions that can be asked of any set of axioms:
(1) Is the set consistent? In other words, is it impossible to derive 
a contradiction from them (to derive both the statements ‘P is 
true’ and  ‘not P is true’)?
(2) Is the set complete? That is, any (semantically) true statement 
can be derived from them.

Are Euclid’s axioms complete? Surprisingly, the German 
mathematician David Hilbert4 showed that Euclid needs another 
15 axioms to have a complete set to do what we now call 
Euclidian geometry. 

In 1931, the Austrian logician Kurt Godel5 proved the devastating 
result that you could not prove the consistency and the 
completeness of the axioms for set theory that were used in 
Principia Mathematica. This famous incompleteness theorem 
proves, by an ingenious argument, that consistency and 
completeness is unprovable in any system rich enough to include 
the laws of arithmetic. So, it could be that mathematics is based 
upon rather shaky foundations.  This might mean that there 
is a true statement of mathematics lurking somewhere in the 
recesses of the subject, which is not provable within the system. 
More serious, from a mathematical point of view, is the possibility 
that we can derive a contradiction of the form ‘P is true’ and ‘not 
P is true’ from the axioms using the rules of logic. Producing a 
contradiction means instant death for any area of knowledge. 
If you believe that ‘P is true’ and that ‘not P is true’ then one of 
your beliefs has to be false. This makes the combined belief ‘P is 

<A/w 1706b>

In elliptical geometry, parallel lines 
converge.

In hyperbolic geometry, parallel 
lines diverge.

5Über formal unentscheidbare Sätze der 
Principia Mathematica und verwandter 
Systeme, I. Monatshefte für Mathematik und 
Physik 38, 173-98 (1931)

4David Hilbert Foundations of Geometry 
(1902) Gottingen

A

A’



To what extent is 
mathematics really a 
language?

Similar equations can 
be found in the other 
natural sciences. Can 
you think of any?

Is there a sense in 
which these equations 
are elegant or 
beautiful?
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true and not P is true’ false under all circumstances. So, if an area 
of knowledge throws up a contradiction, it simply cannot ever be 
true. It is condemned to being false whatever the actual state of 
the world. Since knowledge can be thought of (at least as a first 
approximation) as justified true belief, a statement that is forever 
false cannot be knowledge.

Beautiful equations

Einstein suggested that the most incomprehensible thing about 
the universe was that it was comprehensible. From a TOK point 
of view, the most incomprehensible thing about the universe is 
that it is comprehensible in the language of mathematics. Galileo 
wrote: ‘Philosophy is written in this grand book, the universe … It 
is written in the language of mathematics, and its characters are 
triangles, circles, and other geometric figures….’ 6

What is perhaps most puzzling is not just that we can describe the 
universe in mathematical terms, but the mathematics we need to 
do this is mostly simple, elegant and even beautiful. 

To illustrate this, let us look at some of the famous equations of 
physics. Most of you will be familiar with at least some of the 
following: 

6Galileo, Il Saggiatore (1623) 
Rome

I must admit that I find it perplexing that the whole crazy complex universe 
can be described by such simple, elegant and even beautiful equations. 
It seems that our mathematics fits the universe rather well. It is difficult to 
believe that maths is just a mind game that we humans have invented. 

But the argument for simplicity and beauty goes further. Symmetry in the 
underlying algebra led mathematical physicists to propose the existence of 
new fundamental particles, which were subsequently discovered. In some 
cases, beauty and elegance of the mathematical description have even been 
used as evidence of its truth. The physicist Paul Dirac said: ‘It seems that if one 
is working from the point of view of getting beauty in one’s equations, and if 
one has really a sound insight, one is on a sure line of progress.’ 

Relation between force and acceleration: F 5 ma (more generally this is F 5   d __ 
dt

   (mv))

Gravitational force between two bodies: F 5   
Gm

1
m

2 ______ 
r2  

Energy of rest mass: E 5 mc2

Kinetic energy of a moving body: E 5   1 _ 2  mv2

Electrostatic force between two charges: F 5   
kq

1
q

2 _____ 
r2  

Maxwell’s equations: , 3 B 2   d E ___ 
dt

   5 4pJ   , 3 E 1   d B ___ 
dt

   5 0   , ? B 5 0   , ? E 5 4pr

Einstein’s field equation for general relativity: Rmv 2   1 _ 2  gmv 5 8pTmv
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Dirac’s own equation for the electron must qualify for being 
one of the most profoundly beautiful of all. Its beauty lies in the 
extraordinary neatness of the underlying mathematics – it all 
seems to fit so perfectly together:

 ( bmc2 1  ∑ 
k 5 1

   

3

   a 
k
p

k
 c )  c(x, t) 5 ih   

dc
 

___
 dt   (x, t)

The physicist and mathematician Palle Jorgensen7 has written: 
‘[Dirac] … liked to use his equation for the electron as an example, 
stressing that he was led to it by paying attention to the beauty of 
the math, more than to the physics experiments.’ 

I shall leave the last word on this subject to Dirac himself, writing 
in Scientific American in 1963:

‘I think that there is a moral to this story, namely that it is more 
important to have beauty in one’s equations than to have them fit 
experiment.’

By any standards, this is an extraordinary statement for a 
mathematical physicist to make.

7Palle Jorgensen Operator Commutation 
Relations (1984) New York

‘God used beautiful mathematics in creat-
ing the world.’
Paul Dirac
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How good are your mathematical 
intuitions?
Mathematics can sometimes surprise us. Our mathematical intuitions can 
sometimes let us down, badly. In this section, we shall try out two basic 
scenarios upon our unsuspecting intuitions and see how they fare.

Scenario 1: The rare genetic disease

Consider the following. There is a very rare genetic disease amongst the 
population. Very few people have the disease. As a precaution, a test has been 
developed to check in a particular case whether a person has the disease or 
not. Although the test is quite good, it is not perfect – it is only 99% accurate. 
A person X takes the test and it shows positive. The question for your intuition: 
What is the probability that X actually has the disease?

Think about this for a moment before we go on with the analysis.

Many of the students and teachers that I have worked with in the past have 
given the same answer: The probability that X actually has the disease, given a 
positive test result, is around 99%. Did you say the same? 

If you did, your mathematical intuition let you down – very badly.

Let us put some numbers into this problem. For the sake of simplicity, let us 
assume that the country in which the test takes place has a population of 10 
million. We are told that the disease is very rare. Let us assume that only 100 
people have it in the whole country. 

We are told that the test is 99% accurate so that of the 100 cases of the disease 
the test would show positive in 99 cases and negative in 1 case. So far, so good.

Now let us look at the 9 999 900 people who do not have the disease. In  
99% of these cases the test does its job and records a negative result. But in  
1% of these cases the test records a positive result. 1% of 9 999 900 is 99 999. 
This means that if the whole population were tested 99 999 + 99 = 100 098  
test results would be positive. Of these, only 99 people have the disease. 
Therefore, the probability of having the disease, given a positive test result, is 
99/100 098 = 0.0989% – in other words, about a tenth of a per cent or one in 
one thousand. This is a bit different from the 99% that most people guess. How 
well did you do?

What went wrong with the intuition here? 

The important factor in this problem is not just the accuracy of the test but the 
accuracy of the test relative to the incidence of the disease. Because the disease is 
so rare, the actual number of people with the disease is overwhelmed by the 
false positive results of the test – the 1% or so of the population who do not 
have the disease, but the test shows positive anyway. If more people had the 
disease and if the test was more accurate, the test scoring positive would be a 
better predictor of X actually having the disease. 

Try this problem out with 
some other numbers to 
check how the test could 
be made more useful.
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Scenario 2: The Monty Hall game

The second scenario is also based on probability theory. The problem 
refers to a TV game show, which is loosely based on the actual show Let’s 
Make a Deal 8. A contestant in the show is shown three doors and told 
(truthfully), by the game show host Monty Hall, that behind one of the 
doors is a luxury sports car and behind the other two doors are goats. The 
contestant is told that she must pick a door. She will be allowed to take 
home whatever is behind the door she picks. We shall assume at this stage 
that she prefers to win the car. So she goes ahead and picks a door. At this 
point, Monty Hall opens another door to reveal a goat. (Whenever this 
game is played, Monty Hall chooses a door concealing a goat.) He then 
asks the competitor: ‘Do you want to switch to the other closed door?’

What does your intuition tell you? Should the contestant switch or should 
she stick to her original choice?

8A widely known state-
ment of the problem was 
published in Marilyn vos 
Savant’s Ask Marilyn col-
umn in Parade (1990).

Take a little time to think this through. You might like to try this game with a 
friend to see experimentally what the best strategy is.

Clearly, because there is one car and two goats, the probability of picking the 
car if the competitor does not switch doors is 1/3. 

If she does switch, what is the probability of winning the car? Let us ask a 
related question. If she does switch, under what circumstances can she lose 
the car? Clearly, the only way she can lose the car is if her original choice was 
right. In other words, she has a 1/3 probability of losing. This must mean that 
by switching, her probability of winning the car is 2/3.

In other words, by switching she doubles her probability of winning.

Does this make sense? Even after this explanation many of the students and 
teachers that attend my workshops are not convinced. They argue that they 
cannot see how an asymmetry has been introduced into the situation.

The crucial point is that Monty Hall knows where the car is. He always opens a 
door to reveal a goat. It is this act that produces the required asymmetry. 

The Monty Hall problem: should 
the contestant switch?
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Is the fact that mathematics 
can surprise us and go against 
our intuitions evidence 
that mathematics exists 
independently of us?

Consider an extreme version of the Monty Hall problem. Imagine 
100 closed doors containing 1 car and 99 goats. Let us suppose, for 
the sake of the argument, that our contestant chooses door number 
1. Monty Hall then opens 98 doors to reveal goats. The contestant 
would be foolish not to switch to the one remaining door (and 
multiply her probability of winning by a factor of 99).

Try this problem out on your friends and relatives. Are their 
mathematical intuitions letting them down?

What is a social fact?
The philosopher John Searle9 points out that many of the facts in our 
lives are actually socially constructed. He uses money as his central 
example. Money is money because we believe it to be money. There 
is something rather strange about this. Normally speaking, when we 
define a term X, we do not expect the definition to refer to X. Did 
we not learn in TOK that it was bad to define X in terms of itself? Was 
this not the reason why our TOK teacher advised us to keep clear 
of dictionary definitions: ‘knowledge – that which is known’. Searle 
thinks that this sort of circularity is characteristic of what he calls a 
socially constructed fact. He asserts that the social agreements 
that we make collectively that something should be money makes it 
such. So ‘X functions as money in society S’ is a socially constructed 
fact. As such, statements about it are objective and capable of being 
evaluated as true or false. Our socially constructed reality includes 
the concepts of wife, girlfriend, driving licence, bank account, traffic 
lights, rules of etiquette, nationality, legality, country, nationality, 
debt, honour, and so on. Many of the physical objects around us 
are defined in terms of their function, and hence in terms of our 
intentions, and hence are socially constructed. The concept of a chair 
or a knife is socially constructed. This is what makes them so difficult 
to define without using the words ‘function’ or ‘intention’. 

10Reuben Hersch What Is 
Mathematics, Really? (1997) Oxford

Is mathematics a social fact?

Reuben Hersch10 argues that numbers (and any other mathematical entities) are social constructions. If 
we acknowledge that they are not just out there in the world independent of human beings and they 
are not just thoughts in people’s heads (our intuitions can be wrong after all) then what are they? There 
is a third possibility. Mathematics is a construction of human society.

Hersch proposes that mathematics is itself a whole interconnected web of socially constructed reality. 
Here he is in an interview with John Brockman on the Edge website:11 

9John R. Searle The Construction of Social 
Reality (1995) London

Try to define a chair without making 
reference to human intentions.

11 http://www.edge.org/3rd_culture/hersh/hersh_
p1.html (accessed Feb 2008)
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‘Mathematics is neither physical nor mental, it’s social. It’s part of culture, it’s part of history, it’s like 
law, like religion, like money, like all those very real things, which are real only as part of collective 
human consciousness. Being part of society and culture, it’s both internal and external. Internal 
to society and culture as a whole, external to the individual, who has to learn it from books and in 
school. That’s what math is.’

When asked what he called his theory of mathematics, Hersch replied 
that he calls it humanism ‘because it’s saying that math is something 
human. There’s no math without people. Many people think that ellipses 
and numbers and so on are there whether or not any people know about 
them; I think that’s a confusion.’

Hersch points out that we do use numbers to describe physical reality 
and that this seems to contradict the idea that numbers are a social 
construction. It is important to note here that we use numbers in two 
distinct ways: as nouns and adjectives. When we say nine apples, nine 
is an adjective. ‘If it’s an objective fact that there are nine apples on the 
table, that’s just as objective as the fact that the apples are red, or that 
they’re ripe, or anything else about them, that’s a fact’. The problem 
occurs when we make a subconscious switch to ‘nine’ as an abstract 
noun in the sort of problems we deal with in maths class. Hersch thinks 
that this is not really the same nine. They are connected, but the number 
nine is an abstract object as part of a number system. It is a human 
creation.

Politics and maths learning
Hersch sees both a political and a pedagogic dimension to his 
thinking about mathematics. He thinks that a humanistic vision of 
mathematics chimes in with more progressive politics. How can politics 
enter mathematics? As soon as we think of mathematics as a social 
construction then the exact arrangements by which this construction 
comes about – the institutions that build and maintain it – become 
important. These arrangements are political. Particularly interesting for us 
here is how a different view of maths can bring about changes in maths 
teaching and learning. Let us return to Hersch:

‘Let me state three possible philosophical attitudes towards mathematics.  Platonism says 
mathematics is about some abstract entities, which are independent of humanity. Formalism says 
mathematics is nothing but calculations. There’s no meaning to it at all. You just come out with the 
right answer by following the rules. Humanism sees mathematics as part of human culture and 
human history. It’s hard to come to rigorous conclusions about this kind of thing, but I feel it’s almost 
obvious that Platonism and Formalism are anti-educational, and interfere with understanding, and 
Humanism at least doesn’t hurt and could be beneficial. Formalism is connected with rote, the 
traditional method, which is still common in many parts of the world. Here’s an algorithm; practise 
it for a while; now here’s another one. That’s certainly what makes a lot of people hate mathematics. 
(I don’t mean that mathematicians who are formalists advocate teaching by rote. But the formalist 



Do you agree with Reuben 
Hersch’s humanist picture of 
mathematics – that mathematics 
is a social construction? Do you 
think he is right in his association 
of formalism with rote learning 
of maths and Platonism with the 
idea of maths being something 
remote that some people simply 
‘do not get’?
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conception of mathematics fits naturally with the rote method of 
instruction.)  There are various kinds of Platonists. Some are good 
teachers, some are bad. But the Platonist idea, that, as my friend Phil 
Davis puts it, Pi is in the sky, helps to make mathematics intimidating 
and remote. It can be an excuse for a pupil’s failure to learn, or for 
a teacher’s saying, “Some people just don’t get it.”  The humanistic 
philosophy brings mathematics down to earth, makes it accessible 
psychologically, and increases the likelihood that someone can learn 
it, because it’s just one of the things that people do.‘

Are you really only intelligent if you can do maths?
There is a possibility that the arguments explored in this section 
might cast light on an aspect of mathematics learning which has 
seemed puzzling – why it is that mathematical ability is seen to be 
closely correlated with a certain type of intelligence. Mathematics 
has, moreover, seemed to polarize society into two distinct groups: 
those that can do it and those that cannot. Those that cannot do it 
often feel the stigma of failure. Is Hersch right in attributing this to 
a formalistic or platonic view? Is he right to suggest that if maths is 
just a meaningless set of formal exercises, then it will not be valued 
in the main by society? If maths is out there to be discovered, it does 
seem reasonable to imagine that a particular individual who does 
not make the discovery might experience a sense of failure. The 
interesting question in this case is: What practical consequences in 
the classroom would follow from a humanist view of mathematics?

The golden ratio
There are some intriguing links between mathematics and the arts. 
One link that seems to fascinate many students of mathematics is the 
ancient idea of the golden ratio. Consider a line segment AB. The 
Greek mathematicians were interested in dividing AB by placing a 
point X in such a way that the ratio of the smaller piece to the longer 
piece was equal to the ratio of the longer piece to the whole line.

In other words:   XB/AX = AX/AB

A	 X	 B

Let us rescale our units so that AB = 1 unit. Let  AX = x. Then XB = 1 2 x.

The equation above gives us:   1 2 x _____ x     5   x __ 1  

Rearranging gives us:               1 2 x 5 x²

This gives the quadratic equation:  x² 1 x 2 1 5 0

Solving this equation using the quadratic formula gives:

x 5   21 1  √
__

 5   ________ 2   and x 5   21 2  √
__

 5   ________ 2   or x 5 0.618  033  988  75… or  

21.618  033  988  75…



The Parthenon in Athens.
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The first of these solutions is known as the golden 
ratio. Because of the special symmetry of the 
relationship between the different parts of the line 
segment above, this ratio was thought to be special 
or perfect in some way. Rectangles in which the ratio 
of the shorter to the longer side is equal to the golden 
ratio were thought to be especially beautiful. Try this 
out yourself in the rectangle beauty contest. Choose 
the rectangle that is most pleasing to you. Measure the 
sides and calculate the ratio between the shorter and 
the longer side. How close are you to the golden ratio?

A4 paper has dimensions of 210  mm 3 297  mm. 
210/297 = 0.707, which is a little high. A4 paper is a 
little too ‘fat’ to be a golden rectangle.

Measure some rectangles in your school or home 
environment – for example, credit cards, postcards, 
books, tables. How close are they to golden rectangles?

The golden ratio and the arts

There are many studies of the occurrence of the 
golden ratio in the natural and human worlds. It 
occurs in nature in connection with spirals and the 
Fibonacci sequence. The golden ratio has also been 
exploited by human beings in art, architecture and 
music. For example, the golden ratio was exploited 
by the ancient Greeks in their designs for temples 
and other buildings. The Parthenon in Athens is 
constructed using the golden section at key points.

The Greek letter f is often used for the golden section. 

A2, A3 and A5 paper are also all a little too fat to be 
golden rectangles. Why is this?

Rectangle beauty contest

Which rectangle do you find the most pleasing?

A B

C

D

E

φ

φ

φ φ

φ
φ

φ



Think of a film you have seen 
recently. At what point in the 
film did the moment of highest 
tension occur? How far into the 
film did this happen? Calculate 
this as a proportion. Is it close to 
62%? 
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Golden ratios have been consciously used in the structure of 
some musical compositions. The French composer Debussy is 
known to have used this ratio in his orchestral piece La Mer, for 
example. The 55 bar introduction to ‘Dialogue du vent et de 
la mer’ breaks down into five sections of 21, 8, 8, 5 and 13 bars 
in length, which are numbers in the Fibonacci sequence. The 
golden ratio point of bar 34 in this passage is signalled by the 
entry of the trombones and percussion. More generally, we can 
ask ourselves how many pieces of music (or films or plays or 
dance performances) have some sort of structurally significant 
event roughly two-thirds of the way through the piece?

The Fibonacci sequence
The golden ratio is linked closely to the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

What are the next two terms in the sequence?

If we divide successive terms in the sequence:

  1 _ 1   5 1,     1 _ 2   5 0.5,     2 _ 3   5 0.6667,     3 _ 5   5 0.6,     5 _ 8   5 0.625,

  8 __ 13   5 0.6154,     13
 __ 21   5 0.6190,     21

 __ 34   5 0.6176, …

What is going on here? 

Much has been written about how this sequence 
occurs in nature. It is naturally associated with certain 
types of growth. Ian Stewart, in his book Nature’s 
Numbers, describes how these numbers are naturally 
associated with the spiral growth of many types of shell, 
for example. There is nothing mystical about this link. 
But it is tempting to think again about the Platonists 
and their view of mathematics as somehow embedded 
in the outside world.

The golden ratio suggests a strong link between 
mathematics and the arts. In theory of knowledge, 
it also raises a set of interesting questions about the 
nature of beauty. If we find certain rectangles pleasing 
because of the golden ratio, we might also find certain 
faces beautiful because of the ratios between the 
features, and find certain paintings or pieces of music 
beautiful, because of their proportions. Beauty would 
not be entirely in the eye of the beholder – it would be 
in the mathematics.
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Chapter 1
Exercise 1.1
  1

	 �1 0 1 2 3 4

5

5 6 7

3
4

	 distance	5			17
	__	4		

  2

	 �12 �11 �10 �9 �8 �7 �6 �5 �4 �3 �2 �1 0 1

�2�11

	 distance	5	9
  3

	 4 5 6 7 8 9 10 11 12 13 14 15

13.46

	 distance	5	7.4
  4

	 �3 �2

�

�1 0 1 2 3 4 5 6 7 8 9 10

75
3

	 distance	5			26	___	
3

		

  5

	 �10 �9 �8 �7 �6 �5 �4 �3 �2 �1 0 1 2 3

�3π 2π
3

	 distance	5			11p ____	
3

	 	

  6

	 �4 �3 �2 �1 0 1

5
6�9

4�

	 distance	5			17	___	
12

		

  7	 25	<	x	<	3	 closed	interval,	bounded
  8	 210	,	x	<	22	 half-open	interval,	bounded
  9	 x	>	1	 half-open	interval,	unbounded
10	 x	,	4	 open	interval,	unbounded
11	 0	<	x	,	2p	 half-open	interval,	bounded
12	 a	<	x	<	b	 closed	interval,	bounded
13	 ]6,	[  14	 ]2,	28]  15	 ]2,	9[
16	 [0,	12[  17	 ]25,	[  18	 [23,	3]
19	 x	>	6	[6,	[  20	 4	<	x	,	10	[4,	10[
21	 x	,	0	]2,	0[  22	 0	,	x	,	25	]0,	25[
23	 {1,	3,	5,	7}  24	 {1,	2,	3,	4,	5,	6,	7,	8,	9}
25	   26	 {1,	2,	3,	4,	5,	6,	7,	8}
27	 {2,	4,	6}  28	 {1,	2,	3,	4,	5,	6,	7,	8,	9}
29	 Z		R  30	 N		Q  31	 N		Z
32	 Z		Q  33	 |x |	,	6  34	 |x |	>	4
35	 |x |	<	p  36	 |x |	.	1  37	 13
38	 4  39	 225  40	 25
41	 3	2  √

__
	3		  42	 21

43	 x	5	25,	5  44	 x	5	21,	7
45	 x	5	24,	16  46	 x	5	22,	2  4	_	

3
		

Exercise 1.2
  1	 2	√

__
	2		    2	 2    3	 6

  4	 3    5	 2    6	 		
	√

__
	3		
	___	

2
	 	

  7	 5	√
__

	2		    8	 3	√
__

	7		    9	 12	√
__

	2		

10	 4	√
__

	2		  11	 10	√
__

	3		  12	 10	√
__

	3			2		√
__

	2		

13	 4	√
__

	6			1		√
__

	3		  14	 			
√

__
	2			___	

2
	 	  15	 		

3	√
__

	5		
	____	5	 	

16	 		2	√
___

	21			_____	7	 	  17	 		
	√

__
	3		
	___	

9
	 	  18	 		4	√

__
	2			____	

3
	 	

19	 		
	√

__
	6		
	___	

3
	 		

Exercise 1.3
  1	 2    2	 27    3	 16
  4	 16    5	 8    6	 8

  7	 		4	_	9		    8	 		3	_	4		    9	 		125
	___	8	 	

10	 		1	_	9		  11	 1  12	 		16
	__	3		

13	 		264
	___	27	 	  14	 3a2b4  15	 23a3b6

16	 9a2b4  17	 10x5y3  18	 		 4	___	
3w

  

19	 		3m6
	____	

4n4		  20	 		m
6
	___	

8n6		  21	 32m	1	n

22	 		
y 2

	__	
x	2

		  23	 		 b ___	
4a5		  24	 x

25	 		
4(a	1	b)2

	________	
3

	 	  26	 		
(x	1	4y )			

3
	_	2			
	________	

2
	 	  27	 	√

______

	p2	1	q2		

28	 26n	1	2m

Exercise 1.4
  1	 2.54	3	102    2	 7.81	3	1023    3	 7.41	3	106

  4	 1.04	3	1026    5	 4.98	   6	 1.99	3	1023

  7	 1.49	3	108    8	 8.99	3	1025    9	 0.0027
10	 50		000		000  11	 0.000		000		090		35
12	 4		180		000		000		000  13	 2.5	3	103  14	 2	3	104

15	 8.2	3	1025  16	 5.6	3	1018

Exercise 1.5
  1	 n	2	2	n	2	20    2	 10y	2	2	9y	2	9
  3	 x	2	2	49    4	 25m	2	1	20m	1	4
  5	 x	3	2	3x	2	1	3x	2	1    6	 1	2	a
  7	 a	2	1	a	2	b2	1	b    8	 4x	2	1	12x	1	9	2	y	2

  9	 a	3	1	3a2b	1	3ab	2	1	b 3  10	 a	2x	2	1	2abx	1	b	2

11	 24  12	 4x	3	2	8x	2	1	13x	2	5
13	 12(x	1	2)(x	2	2)  14	 x	2(x	2	6)
15	 (x	1	4)(x	2	3)  16	 2(m	2	1)(m	1	7)
17	 (x	2	8)(x	2	2)  18	 (y	1	1)(y	1	6)
19	 3(n	2	5)(n	2	2)  20	 2x(x	1	1)(x	1	9)
21	 (a	1	4)(a	2	4)  22	 (3y	1	1)(y	2	5)
23	 (5n	2	1	2)(5n	2	2	2)  24	 a(x	1	3)2

25	 (m	1	1)2(2n	2	1)  26	 (x	1	1)(x	2	1)(x	2	1	1)
27	 y(6	2	y)  28	 2y	2(2y	2	2	5y	2	48)
29	 (2x	2	5)2

30	 (2x	1	3)23(4x	1	3)	5			 4x	1	3	________	
(2x	1	3)3		

Answers



31	 		 1	_____	
x	1	1

		  32	 		1	___	
2n

    33	 		a	1	b _____	5	 	

34	 x	1	2  35	 21  36	 4x	1	h

37	 		22x	1	5	________	
15

	 	  38	 		b	2	a _____ 
ab

     39	 		28x	1	6	________	
2x	2	1

	 	

40	 		x	2	1	x	1	3	_________	
x	2	1	3x

     41	 		 2x _______	
x	2	2	y	2

		  42	 		 22	_____	
x	2	2

		

43	 6  44	 		
3y	2	10

	___________	
y	2	2	3y	2	10

		  45	 		 1	_______	
ab	2	b	2

		

46	 		25x	2	2	5x _________	
2

	 	  47	 		3	1		√
__

	2			_______	7	 	  48	 10	2	5	√
__

	3		

49	 		
11	1	4	√

__
	6		
	________	5	 	  50	 		

7	2		√
__

	5		
	_______	44	 	

Exercise 1.6

  1	 x	5	h	2			n __ m      2	 a	5			v	2	1	t _____ 
b

   

  3	 b1	5			2A ___ 
h

   	2	b2    4	 r	5 6 √
___

			2A ___	
u
    

  5	 k	5			
gh

 __ 
f
       6	 t	5			 x _____ 

a	1	b
  

  7	 r	5		3	√
___

			3V ___	
ph

        8	 k	5			
g
 __________ 

F(m1	1	m2)
		

  9	 y	5	2			2	_	3			x	2	5  10	 y	5 24

11	 y	5			5	_	4			x	1	6  12	 x	5			7	_	3		

13	 y	5	24x	1	11  14	 y	5	2			5	_	2			x	2	7
15	 a)	 17	 b)	 	( 0,			5	_	2			)	

16	 a)	 	√
___

	40			 b)	 (2,	3)

17	 a)	 		
	√

___
	82		
	____	

3
	 		 b)	 	( 21,			7	_	6			)	

18	 a)	 	√
____

	533			 b)	 	( 1,			11
	__	2			)	

19	 k	5	1	or	9  20	 k	5	211	or	23
21	 	( 	√

__
	5			)	2	1		( 	√

___
	45			)	2	5		( 	√

___
	50			)	2

22	 Sides	are:		√
___

	29		,		√
___

	29		,		√
___

	58		
23	 Sides	are:		√

___
	45		,		√

___
	10		,		√

___
	45		,		√

___
	10		

24	 (5,	1)  25	 	( 4,			1	_	2			)	  26	 (3,	24)  27	 (3.8,	21.6)

28	 No	solution  29	 (21,	2)  30	 (21,	3)  31	 (23,	28)

32	 Lines	are	coincident;	solution	set	is	all	points	on	the	line	
	 y	5	2			1	_	4			x	2			3	_	4		

33	 	( 		20	___	
3

		,			40	___	
3

			)	  34	 	( 		1	_	2		,	3	)	  35	 (25,	10)

36	 (5,	23)  37	 (14.1,	10.4)  38	 	( 		11	___	
19

		,	2			18	___	
19

			)	

Chapter 2
Exercise 2.1
  1	 a)	 G	 b)	 Function    2	 a)	 L	 b)	 Function
  3	 a)	 H	 b)	 Function	   4	 a)	 K	 b)	 Not	function
  5	 a)	 J	 b)	 Function    6	 a)	 C	 b)	 Function
  7	 a)	 A	 b)	 Function    8	 a)	 I	 b)	 Function
  9	 a)	 F	 b)	 Function

10	 A	5			C	2	___	4p
    11	 A	5			

l	2	√
__

	3		
	____	4	 	  12	 x	[	R

13	 x	[	R  14	 t		<	3  15	 t	[	R  16	 r	>	0
17	 x	[	R,	x		63
18	 No,	a	vertical	line	does	not	represent	a	function.
19	 Domain:	x	[	R,	x		5,	range:	y	[	R,	y		0
20	 a)	 (i)	 	√

___
	17				 (ii)	 7	 (iii)	 0

	 b)	 x	,	4	 c)	 Domain:	x	>	4,	range:	y	>	0

	 d)

	 	

y

x0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20

21	 Domain:	x	[(2,	23)(3,	);	range:	y	[(0,	)

x

y

�1

1

0

2

3

4

5

�4�5�6�7 �3 �2 �1 1 2 3 4 5 6 7

Exercise 2.2
  1	 a)	 (f		g)(5)	5	1,	(g		f  )(5)	5			1	_	7		

	 b)	 (f		g)(x)	5			 2	_____	
x	2	3

		,	(g		f  )(x)	5			 1	______	
2x	2	3

		

  2	 a)	 1	 b)	 27	 c)	 7
	 d)	 247	 e)	 21	 f)	 279
	 g)	 1	2	2x	2	 h)	 24x	2	1	12x	2	7
	 i)	 4x	2	9	 j)	 2x	4	1	4x	2	2	2
  3	 (f		g)(x)	5	12x	1	7,	domain:	x	[	R;	

(g		f  )(x)	5	12x	2	1,	domain:	x	[	R
  4	 (f		g)(x)	5	4x 2	1	1,	domain:	x	[	R;

(g		f  )(x)	5	22x 2	2	2,	domain:	x	[	R
  5	 (f		g)(x)	5		√

______

	x	2	1	2		,	domain:	x	[	R;
(g		f  )(x)	5	x	1	2,	domain:	x	>	21

  6	 (f		g)(x)	5			 2	_____	
x 	1	3

		,	domain:	x	[	R,	x		23;

	 (g		f  )(x)	5	2			x	1	2	_____	x	1	4		,	domain:	x	[	R,	x		24

  7	 (f		g)(x)	5	x,	domain:	x	[	R;	(g		f  )(x)	5	x,	domain:	x	[	R
  8	 a)	 (g		h)(x)	5		√

______

	9	2	x	2		,	domain:	23	<	x	<	3,	range:	y	>	0
	 b)	 (h		g)(x)	5	2x	1	11,	domain:	x	>	1,	range:	y	<	10
  9	 h(x)	5	x	1	3,	g(x)	5	x	2

10	 h(x)	5	x	2	5,	g(x)	5		√
__

	x  
11	 h(x)	5		√

__
	x  ,	g(x)	5	7	2	x

12	 h(x)	5	x	1	3,	g(x)	5			1	__	x  
13	 h(x)	5	x	1	1,	g(x)	5	10x

14	 h(x)	5	x	2	9,	g(x)	5		3	√
__

	x  
15	 a)	 Domain	of	f :	x	>	0  b)	 Domain	of	g :	x	[	R

c)	 (f		g)(x)	5		√
______

	x	2	1	1		,	domain	of	(f		g):	x	[	R
16	 a)  D(	f				)	5	{x	[	R:	x		0}	 b)	 D(g)	5	R

	 c)	 f	(g	(x))	5	f (x	1	3)	5			 1	_____	
x	1	3

			⇒	D(f		g)	5	{x	[	R:	x		23}

597
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Answers

17	 a)  Domain	of	f :	x		61	 b)	 Domain	of	g :	x	[	R

	 c)	 (f		g)(x)	5			 3	_______	
x	2	1	2x

  , domain	of	(f		g):	x		0,	22

18	 a)  Domain	of	f :	x	[	R  b)	 Domain	of	g :	x	[	R
c)	 (f		g)(x)	5	x	1	3, domain	of	(f		g):	x	[	R

Exercise 2.3
  1	 a)	 2	 b)	 6
  2	 a)	 21	 b)	 b
  3	 4
  4	 6

	 5

	

x

y
f

g

�8

�10

�6

�4

�2

2

0

4

6

8

10

�8�10 �6 �4 �2 2 4 6 8 10

  6

	

x

y
f

g

�8

�10

�6

�4

�2

2

0

4

6

8

10

�8�10 �6 �4 �2 2 4 6 8 10

  7

	

x

y
f

g

�8

�10

�6

�4

�2

2

0

4

6

8

10

�8�10 �6 �4 �2 2 4 6 8 10

	 8

	

x

y

f and g

�4

�5

�3

�2

�1

1

0

2

3

4

5

�4�5 �3 �2 �1 1 2 3 4 5

  9

	

x

y

f

g

�2

0

2

4

6

8

�2 2 4 6 8

10

	

x

y

f

g

�1

�2

�3

0

1

2

3

�1�2�3 1 2 3
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11

	

x

y

f

g�1

�2

�3

�4

�5

0

1

2

3

�1�2�3�4�5 1 2 3

12

	

x

y

f

g

�2

�4

�6

0

2

4

6

�2�4�6 2 4 6

13	 f	21(x)	5			1	_	2			x	1			3	_	2		,	x	[	R

14	 f	21(x)	5	4x	2	7,	x	[	R

15	 f	21(x)	5	x 2,	x	>	0

16	 f	21(x)	5			1	__	x  	2	2,	x	[	R,	x		0

17	 f	21(x)	5		√
_____

	4	2	x  ,	x	<	4

18	 f	21(x)	5	x 2	1	5,	x	>	0

19	 f	21(x)	5			1	__	a   x 2   b __ a  ,	x	[	R

20	 f	21(x)	5			√
_____

	x 1 1	  21,	x	>	21

21	 		3	_	2		

22	 5

23	 24

24	 		7	_	2		

25	 g21		h21	5			1	_	2			x	2	1

26	 h21		g21	5			1	_	2			x	1			1	_	2		

27	 (g		h)21	5	  
1
	_ 

2
	 	x	1	  

1
	_ 

2
	 

28	 (h		g)21	5	  
1
	_ 

2
	  x	2	1

29	 f (f (x))	5	f  (    a _____ 
x	1	b

  	2	b ) 	5			 a ____________  
   a _____ 
x	1	b

  	2	b	1	b
  	2	b	5			 	a  ______ 

    a _____ 
x	1	b

  	
			2	b	

	 	 5			a __	
1

						x	1	b _____ a   	2	b	5	x	1	b	2	b	5	x

Since	f (f (x))	5	x,	then	the	function	f 	is	its	own	inverse.

Exercise 2.4
	 1

	

x

y

�4

�8

�2

�6

0

4

8

2

6

�2�4 2 4

	 2

	 x

y

0

4

8

2

6

2 4 6 8 10

	 3

	 x

y

2

0

4

6

8

10

12

�8 �6 �4 �2 2 4 6 8

	 4

	

x

y

2

0
�2

�4

�6

�8

4

6

8

�8 �4�6 �2 4 82 6
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Answers

	 5

	 x

y

2

0

4

6

8

2 4 6 8 10

  6

	

x

y

0

�2

�4

2

4

�2 2 4 6

  7

	

x

y

2

0

�2

4

6

8

�8�10�12 �4�6 �2 2

  8

	

x

y

0

�4

�8

�10

�2

�6

2

�2�4 2 4

	 9

	

x

y

0

�2

2

4

6

�8 �4�6 �2 4 8 102 6

10

	
x

y

0

2

4

�8�10 �4�6 �2 42

11

	 x

y

4

0

8

2

6

10

2 4 6 8

12

	 x

y

2

4

6

8

10

12

�4 �2 20 4

13

	 x

y

2

4

6

8

10

�4�6 �2 40 2 6
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14

	

x

y

2

0
�2

�4

�6

�8

�10

4

6

8

10

�4 �2 2 4

15	 y	5	2x	2	1	5  16	 y	5		√
___

	2x  

17	 y	5	2|x	1	1|  18	 y	5			 1	_____	
x	2	2

			2	3

19	 a)

	 	

x

y

�4

�5

�6

�3

�2

�1

1

0

2

3

4

�4�5 �3 �2 �1 1 2 3 4 5

	 b)

	 	

x

y

�3

�2

�1

1

0

2

3

4

�4 �3 �2 �1 1 2 3 4 5 6 7 8

	 c)

	 	

x

y

�3

�4

�2

�1

1

0

2

3

4

5

6

�4�5 �3 �2 �1 1 2 3 4 5

	 d)

	 	

x

y

�3

�2

�1

1

0

2

3

4

�4�5 �3 �2 �1 1 2 3 4 5

	 e)

	 	

x

y

�3

�2

�1

1

0

2

3

4

�4�5 �3 �2 �1 1 2 3 4 5

	 f)

	 	

x

y

�3

�2

�1

1

0

2

3

4

�4�5 �3 �2 �1 1 2 3 4 5

	 g)

	 	
x

y

�1

1

0

2

3

4

5

6

7

8

9

10

�4�5 �3 �2 �1 1 2 3 4 5

20	 Horizontal	translation	3	units	right;	vertical	translation	5	
units	up	(or	reverse	order).

21	 Reflect	over	the	x-axis;	vertical	translation	2	units	up	(or	
reverse	order).

22	 Horizontal	translation	4	units	left;	vertical	shrink	by	factor			1	_	2			
(or	reverse	order).

23	 Horizontal	translation	1	unit	right;	horizontal	shrink	by	
factor			1	_	3		;	vertical	translation	6	units	down.
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Answers

Exercise 2.5
  1	 a)	 f (x)	5	(x	2	5)2	1	7;	axis	of	symmetry:	x	5	5,	vertex	(5,	7)
	 b)	 	Horizontal	translation	5	units	right;	vertical	translation	7	

units	up.
	 c)	 Minimum:	7
  2	 a)	 f (x)	5	(x	1	3)2	2	1;	axis	of	symmetry:	x	5	23,	

	 vertex	(23,	21)
	 b)	 	Horizontal	translation	3	units	left;	vertical	translation	1	

unit	down.
	 c)	 Minimum:	21
  3	 a)	 f (x)	5	22(x	1	1)2	1	12;	axis	of	symmetry:	x	5	21,	

	 vertex	(21,	12)
	 b)	 	Horizontal	translation	1	unit	left;	reflection	over	x-axis;	

vertical	stretch	by	factor	2;	vertical	translation	12	units	up.
	 c)	 Maximum:	12

  4	 a)	 f (x)	5	4		( x	2			1	_	2			)	
2
	1	8;	axis	of	symmetry:	x	5			1	_	2		,	

	 vertex	(		1	_	2		,	8)
	 b)	 	Horizontal	translation			1	_	2			unit	right;	vertical	stretch	by	

factor	4;	vertical	translation	8	units	up.
	 c)	 Maximum:	8
  5	 a)	 f (x)	5			1	_	2		(x	1	7)2	1			3	_	2		;	axis	of	symmetry:	x	5	27,	

	 vertex	(27,			3	_	2		)
	 b)	 	Horizontal	translation	7	units	left;	vertical	shrink	by	

factor			1	_	2		;	vertical	translation			3	_	2			unit	up.
	 c)	 Minimum:			3	_	2		
  6	 x	5	2,	x	5	24
  7	 x	5	5,	x	5	22
  8	 x	5			3	_	2		,	x	5	0
  9	 x	5	6,	x	5	21
10	 x	5	3
11	 x	5			1	_	3		,	x	5	24
12	 x	5	3,	x	5	2
13	 x	5	2,	x	5			1	_	4		
14	 x	5	22	6		√

__
	7		

15	 x	5	5,	x	5	21
16	 No	real	solution
17	 x	5	24	6		√

___
	13		

18	 x	5	2,	x	5	24

19	 x	5			2	6		√
___

	22			_______	
2

	 	

20	 a)	 x	5	2	6		√
__

	5		
	 b)	 axis	of	symmetry:	x	5	2
	 c)	 minimum	value	of	f		is	25
21	 a)	 f (x)	5	(x	1	3)2	2	7	 b)	 vertex	(23,	27)
22	 a)	 f (x)	5	(x	2	1)2	1	3	 b)	 vertex	(1,	3)
23	 a)	 f (x)	5	4		( x	2			1	_	2			)	2	2	2	 b)	 vertex		( 		1	_	2		,	22	)	
24	 Two	real	solutions  25	 No	real	solutions
26	 Two	real	solutions  27	 No	real	solutions
28	 p	5	62	√

__
	2		  29	 k	,	4

30	 k	,	21,	k	.	1  31	 m	,	23,	m	.	3

Exercise 2.6
1	 x-intercepts:	none

  y-intercept:	​( 0,	​​1	_​
2

	​​)​	
	 Vertical	asymptote:	x	=	–2
	 Horizontal	asymptote:	y	=	0	(x-axis)
	 Domain:	x ∈ 핉,	x	≠	–2
	 Range:	y ∈ 핉,	y	≠	0

	

2

–2

–2 20 4 x

y

–4–6

–4

–6

4

6

0, ( (1
2

2	 x-intercepts:	none

  y-intercept:	​( 0,	–​​3	_​
2

	​​)​	
	 Vertical	asymptote:	x	=	2
	 Horizontal	asymptote:	y	=	0	(x-axis)
	 Domain:	x ∈ 핉,	x	≠	2
	 Range:	y ∈ 핉,	y	≠	0

	

0, – ( (3
2

2

–2

y

–4

–6

4

6

–2 20 4 6 x–4–6

3	 x-intercept:	​( 0,	–​​4	_​
3

	​​)​
  y-intercept:	(0,	–2)
	 Vertical	asymptote:	x	=	2
	 Horizontal	asymptote:	y	=	3
	 Domain:	x ∈ 핉,	x	≠	2
	 Range:	y ∈ 핉,	y	≠	3

 

5

–5

–5 50 10 15 x

y

–10

–10

10

15

(0, –2) 

0, – ( (4
3
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4	 x-intercept:	(0,	0)
	 y-intercept:	(0,	0)
	 Vertical	asymptote:	x	=	4
	 Horizontal	asymptote:	y	=	​​1	_​

2
	​	

	 Domain:	x ∈ 핉,	x	≠	4

	 Range:	y ∈ 핉,	y	≠	​​1	_​
2

	​

	

2

–2

–2 20 4 6 8 x

y

–4

–4

–6

4

6

(0, 0)

5	 x-intercepts:	none
  y-intercept:	(0,	–1)
	 Vertical	asymptote:	x	=	​​10	__​

3
	​	

	 Horizontal	asymptote:	y	=	0	(x-axis)

	 Domain:	x ∈ 핉,	x	≠	​​10	__​
3

	​
	 Range:	y ∈ 핉,	y	≠	0

 

0 5 10 x

y

–5

–5

–10

5

10

(0, –1) 

6	 x-intercept:	(5,	0)
	 y-intercept:	(0,	5)
	 Vertical	asymptote:	x	=	​​1	_​4	​	
	 Horizontal	asymptote:	y	=	​​1	_​4	​
	 Domain:	x ∈ 핉,	x	≠	​​1	_​4	​

	 Range:	y ∈ 핉,	y	≠	​​1	_​4	​

 

2

–2

–2 20 4 6 x

y

–4–6

–4

–6

4

6

(0, 5)

(5, 0)

7	 x-intercept:	​( 	​​7	_​
2

	​,	0	)​	
	 y-intercept:	​( 0,	​​7	_​

3
	​​)​

	 Vertical	asymptote:	x	=	–3
	 Horizontal	asymptote:	y	=	–2
	 Domain:	x ∈ 핉,	x	≠	–3
	 Range:	y ∈ 핉,	y	≠	–2

	

5

–5

–5 50 10 15 x

y

–10–15

–10

–15

10

15

0,  ( (7
3

, 0( (7
2

8	 x-intercept:	​( –​​5	_​
6

	​,	0	)​	
  y-intercept:	​( 0,	–​​5	__​

12
	​​)​	

	 Vertical	asymptote:	x	=	6
	 Horizontal	asymptote:	y	=	3
	 Domain:	x ∈ 핉,	x	≠	6
	 Range:	y ∈ 핉,	y	≠	3
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Answers

 

5

–5

–5 50 10 15 x

y

–10

–10

–15

10

15

20

9	 Domain:	x ∈ 핉,	x	≠	4
	 Range:	y ∈ 핉,	y	≠	1

	

2

–2

–2 20 4 6 8 10 12 x

y

–4

–4

4

6

8

10	 Domain:	x ∈ 핉,	x	≠	0
	 Range:	y ∈ 핉,	y	≠	1

	

2

–2

–2 20 4 6 x

y

–4–6

–4

–6

4

6

11	 Domain:	x ∈ 핉,	x	≠	0
	 Range:	y ∈ 핉,	y	≠	10

 

5

0 2 x

y

–2

10

15

12	 Domain:	x ∈ 핉,	x	≠	6
	 Range:	y ∈ 핉,	y	≠	3

 

10

–10

–10 100 20 30 x

y

–20–30

–20

20

30

13	 a)	 The	graph	of	y	=	​​mx	+	n _____​
x	+	1

	 ​,	n	>	0,	m	>	0	will	have	a	vertical	

	 	 	asymptote	of	x	=	–1	and	a	horizontal	asymptote	of	
y = m.	The	domain	of	the	function	is	x ∈ 핉,	x	≠	–1	and	its	
range	is	y ∈ 핉,	y	≠	m.

	 	

x

y = m

x = –1

y

	 b)	 The	graph	of	y	=	​​mx	+	n _____​
x	+	1

	 ​,	n	>	0,	m	<	0	will	have	a	vertical	

	 	 	asymptote	of	x	=	–1	and	a	horizontal	asymptote	of	
y = m.	The	domain	of	the	function	is	x ∈ 핉,	x	≠	–1	and	its	
range	is	y ∈ 핉,	y	≠	m.
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x

y = m

x = –1

y

14	 m	=	6	and	n	=	–4

15	 Vertical	asymptote	is	x	=	–3;	and	horizontal	asymptote	is	
y	=	3.

Practice questions
  1	 a)	 a	5	23,	b	5	1	 b)	 range:	y	>	0
  2	 a)	 5	 b)	 29
  3	 a)	 g21(x)	5	23x	1	4	 b)	 x	5			2	_	3		
  4	 a)	 (g		h)(x)	5	2x	2	3	 b)	 24
  5	 a)	 f	(x)	5	(x	1	4)2	2	5	 b)	 f 21(x)	5	24	1		√

_____
	x	1	5		

c)	 domain:	x	> 25
  6	 a)

	 	

x

y

�1

�2

0

1

2

�2 �1 1 2 3

	 b)	 Maximum	at		( 21,	2			1	_	2			)	;	minimum	at		( 0,	2			3	_	2			)	

  7	 a)	 k	5			1	_	2			 b)	 p	5	25	 c)	 q	5	3

	 8	 a)

	 	 x

y

2

4

6

�4 �2 20 4

	 b)	 x	5	4,	x	5	24	 c)	 range:	y	>	1

  9	 a)

	 	

x

y

�2

�4

0

2

4

�4 �2 2 4

	 b)	 h(x)	5			 1	_____	x	1	4			2	2

	 c)	 (i)	 x-intercept:		( 2  7	_	
2
		,	0	)	;	y-intercept:		( 0,	2			7	_	4			)	

	 	 (ii)	 Vertical	asymptote:	x	5	24;	
	 	 horizontal	asymptote:	y	5	22

	 	 (iii)

	 	 	

x

y

�2

�4

�6

0

2

�4�6�8 �2

10	 a)	 (i)  	√
___

	11		    (ii)  7    (iii)  0
	 b)	 x	,	23	 c)	 g	(	f	(x))	5	x	2	2,	x	>	23

11	 a)	 4	 b)	 (g21		h)(x)	5	2x 2	1	6	 c)	 x	5	62	√
__

	2		

12	 a)	 f 21(x)	5			1	_	3			x	1			1	_	3		

	 b)	 (f			g)(x)	5			12	___	x  	2	1

	 c)	 (f 		g)21(x)	5			 12	_____	
x	1	1

		

	 d)	 (g		g)(x)	5	x

13	 a)	 f	(x)	5	2(x	1	2)2	1	9
	 b)	 g	(x)	5	2(x	2	3)2	1	11

14	 a)	 g (x)	5	3(x	2	1)2	2	7
	 b)	 Vertex:	(1,	27)	 c)	 x	5	1
	 d)	 y-intercept:	(0,	24)	 e)	 p	5	3,	q	5	21,	r	5	3

15	 a)	 (i)  a	5	8    (ii)	b	5	23
	 b)	 Reflection	over	x-axis

16	 a)

x

y

�1

�2

0

1

2

�4�5�6�7�8 �2�3 �1 1 2 3 4 5 6 7 8
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Answers

x

y

�1

�2

0

1

2

�4�5�6�7�8 �2�3 �1 1 2 3 4 5 6 7 8

	 b)	 A9(23,	22)

17	 a)	 p	5	23,	q	5			1	_	3			 b)	 x	5	2  4	_	
3
		

	 c)	 f	(x)	5	x	2	1			8	_	3			x	2	1

18	 A(25,	0),	B ( 2			3	__	
2

		,			49	___	4			)		,	C(2,	0)

Chapter 3
Exercise 3.1
  1	 21,	1,	3,	5,	7,	97
  2	 2,	6,	18,	54,	162,	4.786	3	1023

  3	 		2	__	
3

		,	2			2	__	
3

		,			6	___	
11

		,	2			4	__	
9

		,			10	___	
27

		,	2   50	____	
1251

		

  4	 1,	2,	9,	64,	625,	1.776	3	1083

  5	 3,	11,	27,	59,	123,	4.50	3	1015	

  6	 0,	3,			3	__	7		,			21	___	
13

		,			39	___	55		,	approx.	1

  7	 2,	6,	18,	54,	162,	4.786	3	1023

  8	 21,	1,	3,	5,	7,	97

Exercise 3.2

  1	 3,			19	___	5		,			23	___	5		,			27	___	5		,			31	___	5		,	7

  2	 a)	 Arithmetic,	d	5	2,	a50	5	97
	 b)	 Arithmetic,	d	5	1,	a50	5	52
	 c)	 Arithmetic,	d	5	2,	a50	5	97
	 d)	 Not	arithmetic,	no common difference
	 e)	 Not	arithmetic,	no common difference
	 f	)	 Arithmetic,	d	5	27,	a50	5	2341
  3	 a)	 26
	 b)	 an	5	22	1	4(n	2	1)
	 c)	 a1	5	22,	an	5	an 2	1	1	4	for	n	.	1
  4	 a)	 1
	 b)	 an	5	29	2	4(n	2	1)
	 c)	 a1	5	29,	an	5	an 2	1	2	4	for	n	.	1
  5	 a)	 57
	 b)	 an	5	26	1	9(n	2	1)
	 c)	 a1	5	26,	an	5	an 2	1	1	9	for	n	.	1

  6	 a)	 9.23
	 b)	 an	5	10.07	2	0.12(n	2	1)
	 c)	 a1	5	10.07,	an	5	an 2	1	2	0.12	for	n	.	1

  7	 a)	 79
	 b)	 an	5	100	2	3(n	2	1)
	 c)	 a1	5	100,	an	5	an 2	1	2	3	for	n	.	1

  8	 a)	 2			27	___	4		

	 b)	 an	5	2	2			5	_	4		(n	2	1)
	 c)	 a1	5	2,	an	5	an21	2			5	_	4			for	n	.	1

  9	 13,	7,	1,	25,	211,	217,	223

10	 299,	299			1	_	4		,	299			1	_	2		,	299			3	_	4		,	300

11	 an	5	210	1	4(n	2	1)	5	4n	2	14

12	 an	5	2			142	___	
3

	 		1			11	___	
3

		(n	2	1)	5	251	1			11	___	
3

			n

Exercise 3.3
  1	 3,	6,	12,	24,	48,	96
  2	 a)	 Arithmetic,	d	5	3,	a10	5	27
	 b)	 Geometric,	r	5	2,	b10	5	4096
	 c)	 Neither,	c10	5	21534
	 d)	 Geometric,	r	5	3,	u10	5	78		732
	 e)	 Geometric,	r	5	2.5,	a10	5	7629.394		531		25
	 f)	 Geometric,	r	5	22.5,	a10	5	27629.394		531		25
	 g)	 Arithmetic,	d	5	0.75,	a10	5	8.75

	 h)	 Geometric,	r	5	2			2	__	
3

		,	a10	5	2			1024	____	
2187

		

  3	 a)	 		2187	____	
64

	 		 b)	 an	5	22	( 2  3	_	
2
			)	

n	2	1

	 c)	 a1	5	22,	an	5	2  3	_	
2
			an	2	1,	n	.	1

  4	 a)	 		390		625	_______	
117		649

			 b)	 an	5	35	( 		5	_	7			)	
n	2	1

	 c)	 a1	5	35,	an	5			5	_	7			an	2	1,	n	.	1

  5	 a)	 2			3	__	64			 b)	 an	5	26		( 		1	_	2			)	
n	2	1

	 c)	 an	5	26,	an	5			1	_	2			an	2	1,	n	.	1

  6	 a)	 1216	 b)	 9.5	3	2n21

	 c)	 a1	5	9.5,	an	5	2an	2	1,	n	.	1

  7	 a)	 69.833		729		609		375	5			893		871		739	__________	
12		800		000

		

	 b)	 an	5	100		( 		19	___	
20

			)	
n	2	1

	 c)	 a1	5	100,	an	5			19
	__	20			an	2	1,	n	.	1

  8	 a)	 0.002		085		685		73	5			 2187	________	
1		048		576

		

	 b)	 an	5	2	( 		3	_	8			)	
n	2	1

	 c)	 a1	5	2,	an	5			3	_	8			an	2	1,	n	.	1

  9	 7,	35,	175,	875,	4375  10	 36

11	 1.5,	an	5	24	( 		1	_	2			)	
n	2	1

  12	 		49	___	
3

		

13	 10th	term  14	 Yes,	10th	term
15	 €2228.92  16	 £945.23
17	 €2968.79  18	 7745	thousands

Exercise 3.4
  1	 11		280    2	 2  10		5469	_______	

1024
	 	    3	 0.7

  4	 		10	___	7		      5	 		
16	1	4	√

__
	3		
	________	

39
	 	

  6	 a)	 		52	___	
99

			 b)	 		449	___	
990

			 c)	 		7459	____	
2475

		

  7	 13		026.135	(£13		026.14)

Exercise 3.5
  1	 a)	 x	5	1	10x 4y	1	40x	3y	2	1	80x	2y	3	1	80xy	4	1	32y 5

	 b)	 a	4	2	4a	3b	1	6a	2b	2	2	4ab	3	1	b	4

	 c)	 x	6	2	18x	5	1	135x	4	2	540x	3	1	1215x	2	2	1458x	1	729
	 d)	 16	2	32x	3	1	24x	6	2	8x	9	1	x	12

	 e)	 x	7	2	21bx	6	1	189b	2x	5	2	945b	3x	4	1	2835b	4x	3	
	 	 2	5103b	5x	2	1	5103b	6x	2	2187b	7

	 f)	 64n	6	1	192n	3	1	240	1			160	___	
n	3

			1			60	___	
n	6

			1			12	___	
n9			1			 1	___	

n	12		

	 g)	 		81	___	
x	4

			2			216	_____	
x	2	√

__
	x  
  	1			216	___	x   	2	96	√

__
	x  	1	16x	2
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  2	 a)	 56	 b)	 0	 c)	 1225	 d)	 32	 e)	 0
  3	 a)	 x	7	1	14x	6y	1	84x	5y	2	1	280x	4y	3	1	560x	3y	4	1	672x	2y	5	

	 	 1	448xy	6	1	128y	7

	 b)	 a	6	2	6a	5b	1	15a	4b	2	2	20a	3b	3	1	15a	2b	4	2	6ab	5	1	b	6

	 c)	 x	5	2	15x	4	1	90x	3	2	270x	2	1	405x	2	243
	 d)	 x	18	2	12x	15	1	60x	12	2	160x	9	1	240x	6	2	192x	3	1	64
	 e)	 x	7	2	21bx	6	1	189b	2x	5	2	945b	3x	4	1	2835b	4x	3	2	5103b	5x	2	

	 	 1	5103b	6x	2	2187b	7

	 f)	 64n	6	1	192n	3	1	240	1			160	___	
n	3

			1			60	___	
n	6

			1			12	___	
n	9

			1			 1	___	
n	12		

	 g)	 		81	___	
x	4

			2			216	_____	
x	2	√

__
	x  
  	1			216	___	x   	2	96	√

__
	x  	1	16x	2

	 h)	 112	 	 i)	 1792	√
__

	3		
	 j)	 16	 	 k)	 223	1	10i √

__
	2		

  4	 a)	 x	45	2	90x	43	1	3960x	41

	 b)	 	Does	not	exist	as	the	powers	of	x	decrease	by	2’s	starting	
at	45.	There	is	no	chance	for	any	expression	to	have	zero	
exponent.

	 c)	 	( 		45							43			)	x	2	( 		22	___	x    ) 
43

	1		( 		45							44			)	x  (   22	___	x    ) 		
44

	1		( 		22	___	x    ) 		
45

5	2	( 		45							43			)			2
43
	___	

x	41			

	 	 	 1		( 		45							44			)			2
44
	___	

x	43			2			2
45
	___	

x 45		

	 d)	 	( 		45							21			)	x	24	( 		22	___	x    ) 
21

	5	2	( 		45							21			)			221x	3

  5	 	( 		n     
k
   ) 	5			 n!	_________	

k!(n	2	k)!
			5			 n!	_________	

(n	2	k)!k!
			5			 n!	___________________		

(n	2	k)!(n	2	(n	2	k))!
			

	 	 	 	5		( 		 n             
n	2	k

   ) 

  6	 (1	1	1)n	5		( 		n 				0			)		1		( 		n 				1			)		1		( 		n 				2			)	…	1		( 		n     n   ) 

  2n 5 1 1  (   n     1	  )  1  (   n     2	  ) …	1	 (   n     n   ) 	⇒	2n 2 1 5  (   n     1	  )  1  (   n     2	  ) …	 (   n     n   ) 	

  7	 Answers	vary    8	 	( 		1	_	3			1			2	_	3			)	
6
	5	1

  9	 	( 		2	_	5			1			3	_	5			)	
8
	5	1  10	 	( 		1	_	7			1			6	_	7			)	

n
	5	1

Practice questions
  1	 21,	1,	3,	5,	7    2	 21,	1,	5,	13,	29
  3	 		3	_	2		,			3	_	4		,			3	_	8		,			3	__	16		,			3	__	32		    4	 5,	8,	11,	14,	17
  5	 1,	7,	25,	19,	229    6	 3,	7,	13,	21,	31
  7	 Arithmetic,	d	5	3    8	 Geometric,	r	5	23
  9	 Geometric,	r	5	2  10	 Neither
11	 Neither  12	 Arithmetic,	d	5	1.3
13	 a)	 32	 b)	 23	1	5(n	2	1)	
	 c)	 a1	5	23,	an	5	an	2	1	1	5	for	n	.	1
14	 a)	 29	 b)	 19	2 4(n	2	1)
	 c)	 a1	5	19,	an	5	an	2	1	2	4	for	n	.	1
15	 a)	 69	 b)	 28	1	11(n	2	1)
	 c)	 a1	5	28,	an	5	an	2	1	1	11	for	n	.	1
16	 a)	 9.35	 b)	 10.05	2	0.1(n	2	1)
	 c)	 a1	5	10.05,	an	5	an	2	1	2	0.1	for	n	.	1
17	 a)	 93	 b)	 100	2	(n	2	1)
	 c)	 a1	5	100,	an	5	an	2	1	2	1	for	n	.	1
18	 a)	 2			17

	__	2			 b)	 2	2	1.5(n	2	1)
	 c)	 a1	5	2,	an	5	an	2	1	2	1.5	for	n	.	1
19	 a)	 384	 b)	 3	3	2n	2	1

	 c)	 a1	5	3,	an	5	2an	2	1	for	n	.	1
20	 a)	 8748	 b)	 4	3	3n	2	1

	 c)	 a1	5	4,	an	5	3an	2	1	for	n	.	1
21	 a)	 25	 b)	 5	3	(21)n	2	1

	 c)	 a1	5	5,	an	5	2an	2	1	for	n	.	1
22	 a)	 2384	 b)	 3	3	(22)n	2	1

	 c)	 a1	5	3,	an	5	22an	2	1	for	n	.	1
23	 a)	 2			4	_	9			 b)	 972	3		(2			1	_	3		)n	2	1

	 c)	 a1	5	972,	an	5	(2			1	_	3		)an	2	1	for	n	.	1
24	 15,	9,	3,	23,	29,	215,	221
25	 99,	99.25,	99.5,	99.75,	100
26	 an	5	4n	2	1

27	 an	5	286	1	(		19
	__	3		)(n	2	1)

28	 7,	21,	63,	189,	567,	1701

29	 624
30	 a4	5	63,	r	5	6		( 		1	_	2			)	,	an	5	24		( 		1	_	2			)	n	2	1

	or	an	5	24		( 2		1	_	2			)	
n	2	1

31	 		98
	__	9		  32	 10th	term  33	 Yes,	10th	term

34	 €3714.87  35	 £2921.16  36	 €2098.63

37	 11		400  38	 		210		938	_______	
177		147

			<	1.191  39	 49.2

40	 		6	_	5		  41	 		
3	1		√ 

__
	6		
	_______	

2
	 	

42	 a)	 		7	__	
9

			 b)	 		38	___	
110

			 c)	 		31		808	______	
9900

	 	

43	 2145		152  44	 35a3  45	 96		096

46	 243n	5	2	810n	4m	1	1080n	3m	2	2	720n	2m	3	1	240nm	4	2	32m	5

47	 7		838		208

48	 d	5	5,	n 5 20
49	 a)	 Nick:	20	
	 	 Charlotte:	17.6
	 b)	 Nick:	390
	 	 Charlotte:	381.3
	 c)	 Charlotte	will	exceed	the	40	hours	during	week	14.
	 d)	 	In	week	12	Charlotte	will	catch	up	with	Nick	and	exceed	

him.
50	 a)	 Loss	for	the	second	month	5	1060		g
	 	 Loss	for	the	third	month	5	1123.6		g
	 b)	 Plan	A	loss	5	1880		g
	 	 Plan	B	loss	5	1898.3		g
	 c)	 (i)	 Loss	due	to	plan	A	in	all	12	months	5	17		280		g
	 	 (ii)	 Loss	due	to	Plan	B	in	all	12	months	5	16		869.9		g
51	 a)	 €895.42	 b)	 €6985.82
52	 a)	 142.5
	 b)	 19		003.5

53	 a)	 On	the	37th	day
	 b)	 407		km

54	 a)	 1.5
	 b)	 207		595
	 c)	 2009
	 d)	 619		583
	 e)	 Market	saturation

55	 24,	3006

56	 a)	 	√
_____

			1	__	4			1			1	__	4					5				
√

__
	2			___	

2
	 		 b)	 		1	__	

2
		

	 c)	 (i)	 		1	__	4				 	 (ii)	 		1	__	
2

			 d)	 (i)	 		 1	___	
512

			 	 (ii)	 2

57	 a)	 1220	 b)	 36		920

58	 a)	 Area	A	5	1,	Area	B	5			1	_	9		
	 b)	 		1	__	81		

	 c)	 1	1			8	_	9		,	1	1			8	_	9			1		( 		8	_	9			)	
2

	 d)	 0

59	 a)	 	Neither,	geometric	converging,	arithmetic,	geometric	
diverging

	 b)	 6

60	 a)	 (i)	 Kell:	18		400,	18		800;	YBO:	18		190,	19		463.3
	 	 (ii)	 Kell:	198		000;	YBO:	234		879.62
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Answers

	 	 (iii)	 Kell:	21		600;	YBO:	31		253.81
	 b)	 (i)	 After	the	second	year
	 	 (ii)	 4th	year

61	 a)	 62	 b)	 936

62	 a)	 7000(1	1	0.0525)t

	 b)	 7	years
	 c)	 Yes,	since	10		084.7	.	10		015.0

63	 a)	 11	 b)	 2	 c)	 15

Chapter 4
Exercise 4.1 and 4.2
  1

	

x

y

f (x) � 3x � 4

�10

10

0

20

30

40

50

60

70

80

90

100

�2�3�4 �1 1

	 domain:	x	[	R
	 range:	y	.	0
	 y-intercept:	(0,	81)
  horizontal	asymptote:	y	5	0	(x-axis)
  2

	

x

y

g(x) � �2x � 8

�2

�4

�6

�8

�10

2

0

4

6

8

10

�2�3 �1 2 3 4 51

	 domain:	x	[	R
	 range:	y	,	8
  y-intercept:	(0,	7)
	 horizontal	asymptote:	y	5	8

  3

	

x

y

h(x) � 4�x � 1

�2

0

2

4

6

8

10

�2 �1 1 2 3

	 domain:	x	[	R
	 range:	y	.	21
  y-intercept:	(0,	0)
	 horizontal	asymptote:	y	5	21

  4	 Domain:	x	[	R
	 range:	if	a	,	0	⇒	y	.	d,	if	a	,	0	⇒	y	,	d
  y-intercept:	(0,	ab2c	1	d)
	 horizontal	asymptote:	y	5	d
	 5

.	 x

y
y � 2�x

y � 4�x

y � 8�x

y � 2x

y � 4x

y � 8x

1

2

3

4

�2 �1 10 2

  6	 a)	 y	5		( 		1	_	2			)	
x
	 b)	 y	5		( 		1	_	4			)	

x
	 c)	 	( 		1	_	8			)	

x

  7	 y	5	bx	is	steeper
  8	 P(t)	5	100		000(3	)			

t
 __	25			,	where	t	is	number	of	years

	 a)	 900		000	 b)	 2		167		402	 c)	 8		100		000
  9	 N(t)	5	104(2	)			

t
 _	3			

	 a)	 20		000	 b)	 80		000
	 c)	 5		120		000	 d)	 10		485		760		000
10	 a)	 $17		204.28	 b)	 $29		598.74	 c)	 $50		922.51

11	 a)	 A(t)	5	5000	( 1	1			0.09	____	
12

	 		)	
12t

	 b)

	 	

A

t0

10 000

20 000

30 000

40 000

50 000

5 10 15 20 25



609

	 c)	 Minimum	number	of	years	is	16.

	 	

A

t0

10 000

20 000

30 000

40 000

50 000

5 10

(15.46, 20 000)

15 20 25

12	 a)	 $16		850.58	 b)	 $17		289.16
	 c)	 $17		331.09	 d)	 $17		332.47	
13	 a)	 $2	 b)	 $2.61	 c)	 $2.71	 d)	 $2.72	 e)	 $2.72
14	 a)	 240		310	 b)	 192		759
15	 8.90%
16	 0.0992A0	(or	9.92%	of	A0	remains)
17	 b	.	0	because	if	b	5	0	then	the	result	is	always	zero,	and	if	

b	,	0	then	b x	gives	a	positive	result	when	x	is	an	even	integer	
and	a	negative	result	when	x	is	an	odd	integer.

18	 Payment	plan	II	gives	the	largest	salary.
	 You	will	get	paid	$10		737		418.23	after	30	days.

Exercise 4.3
  1	 As	x	→	,		( 1	1			1	__	x   ) x	→	e	<	2.718		281		828…;	y	5		( x	1			1	__	x   ) 

x

	 will	never	intersect	y	5	2.72
  2	 Bank	A:	earn	113.71	euros	in	interest.
	 Bank	B:	earn	114.07	euros	in	interest.
	 Bank	B	account	earns	0.36	euros	more	in	interest.
  3	 Blue	Star	has	the	greater	total	of	$1358.42,	which	is	$11.93	

more	than	the	Red	Star.
  4	 a)	 0.976		kg	 b)	 0.787		kg	 c)	 0.0916		kg
	 d)	 0.002		54		kg
  5	 a)	 5		kg	 b)	 70.7%	
	 c)

	 	

A

t0

1

2

3

4

5

10 20 30 40 50

	 d)	 20	days

  6	 8		1	_	2		%	compounded	semi-annually	is	the	better	investment.

Exercise 4.4
  1	 24 5 16    2	 e	0	5	1    3	 102	5	100

  4	 1022	5	0.01    5	 73	5	343    6	 e	21	5			1	__	e  
  7	 10y	5	50    8	 e	12	5	x    9	 e	3	5	x	1	2
10	 log2	1024	5	10  11	 log10	0.0001	5	24

12	 log4	( 		1	_	2			)		5	2		1	_	2		  13	 log3	81	5	4  14	 log10	1	5	0
15	 ln	5	5	x  16	 log2	0.125	5	23  17	 ln	y	5	4
18	 log10	y	5	x	1	1  19	 6  20	 3
21	 23  22	 5  23	 0
24	 6  25	 23  26	 	√

__
	2		

27	 3  28	 		1	_	2		  29	 22

30	 23  31	 		1	_	2		  32	 18
33	 		1	_	3		  34	 p  35	 1.6990
36	 0.2386  37	 3.912	 38	 0.5493
39	 1.398	 40	 0.2090	 41	 4.605
42	 13.82	 43	 x	.	2	 44	 x	[	R,	x		0
45	 x	.	0	 46	 f	(x)	5	log4	x	 47	 f	(x)	5	log2	x
48	 f	(x)	5	log10	x	 49	 f	(x)	5	log3	x
50	 log2	2	1	log2	m	5	1	1	log2	m	 51	 log	9	2	log	x

52    1	_	5			ln	x	 53	 log	a	1	3	log	b

54	 log	10x	1	log(1	1	r)t	5	log	10	1	log	x	1	t		log(1	1	r)
55	 3	ln	m	2	ln	n	 56	 log	x	 57	 log3	72

58	 ln	( 			y	4
	__	4			)		 59	 logb	4	 60	 log			( 		p __ qr   ) 

61	 ln		( 		36	___	e    ) 	 62	 9.97	 63	 25.32
64	 2.06	 65	 20.179	 66	 4.32

67	 1.86	 68	 logb		a	5			
loga		a

 _____	
loga		b

  	5			 1	_____	
loga  b

  

69	 log		e	5			 ln		e ____	
ln		10

			5			 1	____	
ln		10

		

70	 dB	5	10		log	( 		 I _____	
10216			)		5	10(log		I	2	log		10216)	5	10(log		I	1	16)

	 	 		5	10		log		I	1	160
	 10		log		1024	1	160	5	10(24)	1	160	5	120	decibels

Exercise 4.5
  1	 0.699    2	 2.5    3	 7.99
  4	 3.64    5	 21.92    6	 2.71
  7	 0.434    8	 2.12    9	 4.42
10	 0.225  11	 0.642  12	 22.0
13	 a)	 $6248.58	 b)	 9		1	_	4			years
14	 12.9	years  15	 20	hours	(<19.93)
16	 a)	 24	years	(<23.45)	 b)	 12	years	(<11.9)
	 c)	 9	years	(<8.04)
17	 6	years
18	 a)	 99.7%	 b)	 139		000	years
19	 a)	 37	dogs	 b)	 9	years
20	 a)	 458	litres	 b)	 8.89	minutes	<	8	minutes	53	seconds
	 c)	 39	minutes
21	 a)	 5		kg	 b)	 17.7	days

22	 x	5			20	___	
3

		  23	 x	5	104  24	 x	5			1	__	
e	3

		

25	 x	5	4  26	 x	5	98
27	 x	5	6	e 8

28	 x	5	2	or	x	5	4  29	 x	5	9  30	 x	5			13	___	5		
31	 x	5	3  32	 x	5	1	or	x	5	100
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Answers

Practice questions
  1	 a)	 x	5	2	 b)	 x	5	3	 c)	 x	5			1	_	2			 d)	 x	5	3
  2	 a)	 x	<	2.58	 b)	 x	<	1.17	 c)	 x	5	2	 d)	 x	<	0.304

  3	 a)	 log2(9x)	 b)	 ln	( 		3	√ 
_____

	x	2	4	 
 _______ x    ) 

  4	 a)	 1.89	 b)	 4.85
  5	 a)	 2597	euros	 b)	 11	years	 c)	 7.18%
  6	 2x	2	2y	2	6z
  7	 a)	 $1474.47	 b)	 5.7%
  8	 a)	 1	 b)	 		3	_	2			 c)	 36
  9	 a)	 604	 b)	 13	years
10	 95.8%
11	 a)	 88%	 b)	 $11		610	 c)	 2011
12	 a)	 Domain:	x	[	R,	range:	y	.	0

	 b)  y-intercept:		( 0,			1	__	
e	2

			)	;	asymptote:	y	5	0	(x-axis)

	 c)	 f	21(x)	5	2	1	ln	x
	 d)	 domain:	x	.	0,	range:	y	[	R
13	 a)	 631	 b)	 1270
	 c)	 (i)	A0	5	500  (ii)	b	5	1.06
	 d)	 k	5	ln		1.06	<	0.058		27
14	 a)	 Domain:	x	,	0,	x	.	2	 b)	 domain:	x	.	2

	 c)	 x	5	2			2	___	
99

			 d)	 no	solution

15	 a)	 C	5	5000,	k	<	0.0556	 b)	 140		753

Chapter 5
Exercise 5.1 and 5.2
  1	 a)	 (i)	 	( 		x	2	1												y	1	3			 		x	2	3													y	1	1			)		 (ii)	 	( 		2x	2	7																3y	2	7			 		3x	1	3															11	2	y   ) 

	 b)	 x	5	23,	y	5	5	 c)	 x	5	3,	y	5	23

	 d)	 AB	5		( 		 2x	2	2																																	xy	2	x	1	y	1	11			 		
xy	2	2x	1	6

																								
23	 		)	;

	 	 BA	5		( 		22x	2	3y	1	1
																													

y	2	2	3y	2	6
	 		 		x	2	1	x	2	9																								4x	1	3y	2	6			)	

  2	 a)	 x	5	2,	y	5	210
	 b)	 p	5	2,	q	5	24
  3	 a)	 	 b)

	 	

0 1 0 0 1 2 0
1 0 1 1 1 1 0
0 1 0 2 0 0 2
0 1 2 0 1 0 0
1 1 0 1 0 1 0
2 1 0 0 1 0 0
0 0 2 0 0 0 0 	 	

6 3 1 2 3 2 0
3 5 2 3 3 3 2
1 2 9 1 3 1 0
2 3 1 6 1 2 4
3 3 3 1 4 3 0
2 3 1 2 3 6 0
0 2 0 4 0 0 4

	 Matrix	signifies	the	number	of	routes	between	each	pair	that	
go	via	one	other	city.

  4	 a)	 A	1	C	5		( 		 x	1	1
	

				
	0						

2x	1	y	1	7
		 		

10
	

			
	2x	2	3					

x	2	3y
  	 		

y	1	1
	

					
	y	1	3								

2x	1	2y	2	1
		)	

	 b)	 	( 	17m	1	2
	

				
	4	2	9m 					

7m	2	2
			 		

26
	

		
	9				

217
		)	

	 c)	 Not	possible	 d)	 x	5	3,	y	5	1
	 e)	 Not	possible	 f)	 m	5	3
  5	 a	5	23,	b	5	3,	c	5	2
  6	 x	5	4,	y	5	23
  7	 m	5	2,	n	5	3

  8	 Shop	A:	€18.77

  9	 a)	 	( 		 2				
22		 		 4			12		)		 b)	 associative

	 c)	 	( 	222				60		 		 16				
27		)		 d)	 associative

10	 AB	5	[88		142],	which	represents	total	profit.
11	 r	=	3,	s	=	–2

12	 a)	 (i)	 	( 		1					0			 		2					1			)		 (ii)	 	( 		1					0			 		3					1			)	

	 	 (iii)	 	( 		1					0			 		4					1			)		 (iv)	 	( 		1					0			 		n 				1			)	

	 b)	 (i)	 	( 	9			0		 	18			9		)		 (ii)	 	( 	27			0		 		81							27			)	

	 	 (iii)	 	( 	81			0		 	324				81		)		 (iv)	 Bn	5		( 	3n
 		0	 		 	n	3n

 			3n    ) 

Exercise 5.3

  1	 a)	 	( 	29	 27						4	 3		)		 b)	 M	5		( 	29	 27						4	 3		)		( 	2	 1				3	 5		)	

	 c)		 	( 	239	 244						17	 19		)	

	 d)	 (i)	 N	5		( 	2	 1				3	 5		)		( 	29	 27						4	 3		)			 (ii)	 N	5		( 	214	 211						
27	 	 26		)	

	 e)	 	If	AB	5	C	then	B	5	A21C,	while	if	BA	5	C,	then	B	5	
CA21.	Also,	A21C		CA21.

  2	 	( 		1	 2		3	_	5		
															0	 1	 		)	

  3  a)	 |A| 5	25		0	 b)	 	

		9	_	5		 		11
	__	5		2  8	_	

5
		

		6	_	5		 		9	_	5		 2  7	_	
5
		

1 1 21

	 c)	 	

		1	_	2		

21

		1	_	5		

  4	 a)	
		
	√

__
	3		
	___	

2
	 	 		1	__	

2
		

2  1	__	
2

		 		
	√

__
	3		
	___	

2
	 	

  b) 
		3	__	a  	1	1 21

2a	2	2 a

  5	 x	5	2	or	x	5	3
  6	 n	5	0.5

  7	 a)	 X	5	
		1	__	
2

		 0

		3	__	4		 2  7	__	
6

		
		 b)	 Y 5	

1 		13	___	
12

		

21 2  5	__	
3

		

	 c)	 X		Y	2	not	commutative

  8	 a)	 PQ	5	
	 5 24 3
33 5 21
	 2 23 2		

,	QP	5	
4 25 28
8 0 24
7 		10 8

	;	

	 b)	 P21	5	

1 0 21

2  7	_	
5
		 		1	_	5		 		11

	__	5		

1 0 22

 ,	Q21	5	

0 1	_	
4
		 0

1 21 1

2 2  7	_	
4
		 1

P21Q21	5	

22 2 21

	 				23
	__	5		 2  22	__	

5
		 		12

	__	5		

24 15	__	
4
		 22

	

Q21P21	5	

2  7	__	
20

		 		1	__	20		 		11
	__	20		

	 				17
	__	5		 2  1	_	

5
		 2  26	__	

5
		

	 				109
	___	20		 2  7	__	

20
		 2  157	___	

20
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(PQ)21	5	

2  7	__	
20

		 		1	__	20		 		11
	__	20		

	 				17
	__	5		 2  1	_	

5
		 2  26	__	

5
		

	 				109
	___	20		 2  7	__	

20
		 2  157	___	

20
		

	

(QP)21	5	

22 2 21

	 				23
	__	5		 2  22	__	

5
		 		12

	__	5		

24 15	__	
4
		 22

	

Practice questions
  1	 a)	 (21,	4,	0)	 b)	 (1,	1,	2)

  2	 a)	
		1	___	
2a

   2  1	___	
2a

  

		1	___	
2a

   		1	___	
2a

  
	 b)	 singular	for	a	5	0,	

1 2			1	__	a  

2  2	__	
a

   		3	__	
a2	 

	 c)	 singular	for	a	5	0,			 1	_______	
e	4a	2	1

				( 			 e a    2e2a
 																								

2e22a  e3a   ) 

	 d)	 	( 		 sin		a	 cos		a  							
2cos		a	 sin		a

  ) 

  3	 x	5	2	or	x	5	2		1	_	3		

  4	 a)	 	( 		k	2	1	9															
3k	2	3

	   	 		3k	2	3	
                  

 10	   ) 	 b)  k	5	2	 c)	 x	5	2,	y	5	3

  5	 N	5		( 		1	 1											1	 1			)	

  6	 No	real	solutions	for	k.
  7	 a)	 m	5	1,	n	5	21	 b)	 (x,	y,	z)	5	(1,	21,	2)
  8	 m	5	1,	or	m	5	2
  9	 m	5	1,	n	5	6
10	 x	5	0,	or	x	5	2			1	_	2		

11	 m	5			13	___	
8

			;	n 5 			37	___	
8

			;	p	5	2			23	___	
8

			;	q	5	2			39	___	
8

		

12	 a)  	( 		 1          
23a       22               6a 1 1   ) 	 b)	  (   15								

28	 	   236											20	   ) 

13	 a)	 a	5	21	or	a	5			1	_	2		

	 b)	

2  6	_	
7
		 		4	_	7		 		5	_	7		

	 		5	_	7		 2  1	_	
7
		 2  3	_	

7
		

	 		2	_	7		 		1	_	7		 2  4	_	
7
		

	,	

2  6	_	
7
		 1 		2	_	7		

	 		1	_	2		 2  1	_	
4
		 0

	 		5	_	7		 2  1	_	
2
		 2  4	_	

7
		

	 c)	 (24,	26,	21)

14	 x	5	27,	or	x	5	1

15	 a)	 	( 		a4	1	4															2a	2	2			 		2a	2	2															5	 		)		

	 b)	 a	5	21;		( 		x     y   ) 	5		( 		 1								
21			)	

16	 B	5		( 	1			4		 		 3			12		)	

17	 a	5			28	___	
33

		;	b	5			59	___	
33

		;	c	5			20	___	
33

		;	d	5			28	___	
33

		

18	 a)	 A21	5		( 				1	__	19		
							

		27
	__	19		
			 		

		2	__	19		
						

		5	__	19		
			)	

	 b)	 (i)	 X	5 (C	2	B)A21	 	 (ii)	 X	5		( 		 2				
24		 	23				1		)	

19	 a)	 A	1	B	5		( 		a	1	1													
c	1	d

  	 		b	1	2													1	1	c   ) 

  b)	 AB	5	 (   a	1	bd               
c	1	d

   	   2a	1	bc 															3c    ) 

20	 a)	 	( 	 0.1
	

		
	20.7				

21.2
		 	

0.4
	

		
	0.2				

0.2
		 	

0.1
	

		
	0.3				

0.8
		)		

	 b)	 x	5	1.2,	y	5	0.6,	z	5	1.6

21	 a)	 Q	5		( 		23								
1

			 		 2															
		14	2	a ______	

3
	 	

			)		

	 b)	 CD	5		( 	214				
22		 		24	1	4a 																	2	1	7a   ) 

	 c)	 D21	5	   1	______	
5a	1	2

	   (   a 				1	 	  22				5  ) 

Chapter 6
Exercise 6.1
  1	 		p __	

3
			 2	 		5p ___	

6
	 		 3	 2		3p ___	

2
	 		 4	 		p __	5		

  5	 		3p ___	4	 		 6	 		5p ___	
18

			 7	 2		p __	4			 8	 		20p ____	
9

	 	

  9	 2		8p ___	
3

	 	  10	 135°	 11	 2630°	 12	 115°

13	 210°	 14	 2143°	 15	 300°	 16	 15°
17	 89.95°	<	90°	 18	 480°  19	 390°,	2330°

20 		7p ___	
2

	 	,	2			p __	
2

			 21	 535°,	2185°  22	 		11p ____	
6

	 	,	2		13p ____	
6

	 	

23	 		11p ____	
3

	 	,	2		p __	
3

			 24	 3.25	1	2p	<	9.5,	3.25	2	2p	<	23.03

25	 12.6		cm	 26	 14.7		cm	
27	 1.5	radians,	or	approx.	85.9°	 28	 r	<	7.16
29	 area	<	13.96	<	14.0		cm2	 30	 area	<	131		cm2

31	 a	5	3	(radian	measure),	or	a	5	172°
32	 32		cm
33	 6.77		cm

Exercise 6.2
  1	 a)	 I	 b)	 	( 			√

__
	3		
	___	

2
	 	,			1	__	

2
			)	

  2	 a)	 IV	 b)	 	( 		1	__	
2

		,	2   √
__

	3			___	
2

	 		)	

  3	 a)	 IV	 b)	 	( 			√
__

	2			___	
2

	 	,	2   √
__

	2			___	
2

	 		)	

  4	 a)	 Negative	x-axis	 b)	 (0,	21)
  5	 a)	 II	 b)	 (20.416,	0.909)

  6	 a)	 I	 b)	 	( 			√
__

	2			___	
2

	 	,				
√

__
	2			___	

2
	 		)	

  7	 a)	 IV	 b)	 (0.540,	20.841)

  8	 a)	 II	 b)	 	( 2   √
__

	2			___	
2

	 	,				
√

__
	2			___	

2
	 		)	

  9	 a)	 III	 b)	 (20.929,	20.369)

10	 sin					p __	
3

			5			
	√

__
	3		
	___	

2
	 	,	cos					p __	

3
			5			1	__	

2
		,	tan					p __	

3
			5		√

__
	3		

11	 sin					5p ___	
6

	 		5			1	__	
2

		,	cos					5p ___	
6

	 		5	2   √
__

	3			___	
2

	 	,	tan					5p ___	
6

	 		5	2   √
__

	3			___	
3

	 	

12	 sin		( 2  3p ___	
4

	 		)		5	2				
√

__
	2			___	

2
	 	,	cos		( 2			3p ___	4	 		)		5	2				

√
__

	2			___	
2

	 	,	tan		( 2			3p ___	4	 		)		5	1

13	 sin				p __	
2

			5	1,	cos				p __	
2

			5	0,	tan				p __	
2

			is	undefined

14	 sin	( 2			4p ___	
3

	 		)		5			
	√

__
	3		
	___	

2
	 	,	cos	( 2			4p ___	

3
	 		)		5	2			1	__	

2
		,	tan	( 2			4p ___	

3
	 		)		5	2 √

__
	3		

15	 sin	3p	5	0,	cos	3p	5	21,	tan	3p	5	0

16	 sin				3p ___	
2

	 		5	21,	cos				3p ___	
2

	 		5	0,	tan				3p ___	
2

	 		is	undefined
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Answers

17	 sin	( 2  7p ___	
6

	 		)		5			1	__	
2

		,	cos	( 2  7p ___	
6

	 		)		5	2   √
__

	3			___	
2

	 	,	tan	( 2  7p ___	
6

	 		)		5	2   √
__

	3			___	
3

	 	

18	 sin(1.25p)	5	2   √
__

	2			___	
2

	 	,	cos(1.25p)	5	2   √
__

	2			___	
2

	 	,	tan(1.25p)	5	1

19	 sin				13p ____	
6

	 		5	sin				p __	
6

			5			1	__	
2

		;	cos				13p ____	
6

	 		5	cos				p __	
6

			5			
	√

__
	3		
	___	

2
	 	

20	 sin				10p ____	
3

	 		5	sin				4p ___	
3

	 		5	2   √
__

	3			___	
2

	 	;	cos				10p ____	
3

	 		5	cos				4p ___	
3

	 		5	2  1	__	
2

		

21	 sin				15p ____	4	 		5	sin				7p ___	4	 		5	2   √
__

	2			___	
2

	 	;	cos				15p ____	4	 		5	cos				7p ___	4	 		5	2   √
__

	2			___	
2

	 	

22	 sin				17p ____	
6

	 		5	sin				5p ___	
6

	 		5			1	__	
2

		;	cos				17p ____	
6

	 		5	cos				5p ___	
6

	 		5	2	  
 √

__
	3		
	___	

2
	 	

Exercise 6.3
	 1

	

x

y

�2

�1

1

0

2

�π � ππ
2 2π 3π3π

2
5π
2

	 2

	

x

y

�2

�3

�1
0�π � ππ

2 2π 3ππ
2

3π
2

5π
2

  3

	

x

y

�1

1

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

  4

	

x

y

�1

1

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

  5

	

x

y

�1

1

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

  6

	

x

y

�2

�1

�3

�4

2

1

3

4

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

  7

	

x

y

�1

1

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

  8

	

x

y

�2

�1

�3

�4

2

1

3

4

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2

	 9

	

x

y

�1

1

0�π � ππ
2 2π 3ππ

2
3π
2

5π
2



613

10	 a)

	 	

x

y

�1

�2

�3

0�π π 2π 3π 4π 5π

	 	 amplitude	5			1	_	2		,	period	5	2p

	 b)	 Domain:	x	[	R,	range:	23.5	<	y	<	22.5
11	 a)

	 	

x

y

�2

�4

�1

1

2

3

4

�3

0�π π 2π 3π 4π 5π

	 	 amplitude	5	3,	period	5			2p ___	
3

	 	

	 b)	 Domain:	x	[	R,	range:	23.5	<	y	<	2.5
12	 a)

	 	
x

y

1

2

3

4

5

�π π0 2π 3π 4π 5π

	 	 amplitude	1.2,	period	5	4p
	 b)	 Domain:	x	[	R,	range:	3.1	<	y	<	5.5
13	 A	5	3,	B	5	7
14	 A	5	2.7,	B	5	5.9
15	 A	5	1.9,	B	5	4.3
16	 a)	 p	5	8	 b)	 q	5	6

Exercise 6.4

  1	 x	5			p __	
3

		,			5p ___	
3

	 	    2	 x	5			7p ___	
6

	 	,			11p ____	
6

	 	

  3	 x	5			p __	4		,			5p ___	4	 	    4	 x	5			p __	
3

		,			2p ___	
3

	 	

  5	 x	5			p __	4		,			3p ___	4	 	,			5p ___	4	 	,			7p ___	4	 	    6	 x	5			p __	
6

		,			5p ___	
6

	 	,			7p ___	
6

	 	,			11p ____	
6

	 	

  7	 x	5			p __	4		,			3p ___	4	 	,			5p ___	4	 	,			7p ___	4	 	    8	 x	5			p __	
3

		,			2p ___	
3

	 	,			4p ___	
3

	 	,			5p ___	
3

	 	

  9	 x	5	0,			3p ___	4	 	,	p,			7p ___	4	 	,	2p  10	 x	5	0,			p __	
2

		,	p,			3p ___	
2

	 	,	2p

11	 x	<	0.412,	2.73  12	 x	<	1.91,	4.37
13	 x	<	1.11,	4.25  14	 x	<	0.508,	1.06,	3.65,	4.20

15	 x	<	0.961,	3.32 
16	 x	<	1.28,	4.42

17	 2		5p ___	
2

	 	,	2		3p ___	
2

	 	,	2		p __	
2

		,			p __	
2

		,			3p ___	
2

	 	,			5p ___	
2

	 	

18	 	2		11p ____	
6

	 	,			p __	
6

		

19	 		7p ___	
12

		,			19p ____	
12

	 	

20	 0,			p __	4		,			p __	
2

		,			3p ___	4	 	,	p,			5p ___	4	 	,			3p ___	
2

	 	,			7p ___	4	 	,	2p

21	 x	5			5p ___	
6

	 	,			3p ___	
2

	 	

22	 x	5			p __	4		,			5p ___	4	 	

23	 x	5			p __	
6

		,			p __	
3

		,			7p ___	
6

	 	,			4p ___	
3

	 	

24	 x	5			p __	
6

		,			5p ___	
6

	 	,			7p ___	
6

	 	,			11p ____	
6

	 	

25	 t	<	1.5	hours
26	 a)	 	80th	day	(March	21)	and	approximately	263rd		day	

(September	20)
	 b)	 	105th	day	(April	15)	and	approximately	238th	day	

(August	26)
	 c)	 94	days	–	from	125th	day	to	218th	day

27	 x	5			p __	
2

		,			2p ___	
3

	 	,			4p ___	
3

	 	,			3p ___	
2

	 	

28	 x	5			p __	
2

		,			7p ___	
6

	 	,			11p ____	
6

	 	

29	 x	5			p __	
2

		,	2		p __	
2

		

30	 x	<	0.375,	2.77
31	 x	<	20.785,	1.11

32	 x	5			p __	4		,			3p ___	4	 	

33	 x	5	0,			p __	
3

		,			5p ___	
3

	 	,	2p

34	 x	<	0.983,	4.12

35	 a)	 cos	x	5			4	__	5			 b)	 cos	2x	5			7	___	
25

			 c)	 sin	2x	5			24	___	
25

		

36	 a)	 sin	x	5			
	√

__
	5		
	___	

3
	 		 b)	 sin	2x	5	2  

4	√
__

	5		
	____	

9
	 		 c)	 cos	2x	5	2		1	__	

9
		

Practice questions
  1	 a)	 135		cm	 b)	 85		cm
	 c)	 t	5	0.5	sec.	 d)	 1	sec.

  2	 x	5			p __	
3

		,			p __	
2

		,			5p ___	
3

	 	

  3	 u	<	2.28	(radian	measure)
  4	 a)	 (i)  21    (ii)  4p
	 b)	 Four
  5	 a)	 p	5	35	 b)	 q	5	29	 c)	 m	5			1	_	2		
  6	 x	<	0.483,	0.571,	2.42,	2.86

  7	 a)	 x	5			2p ___	
3

	 	,			4p ___	
3

	 		 b)	 x	5			p __	
6

		,			p __	
2

		,			5p ___	
6

	 	,			3p ___	
2

	 	

  8	 a)	 sin	x	5			1	__	
3

			 b)	 cos	2x	5			7	__	
9

			 c)	 sin	2x	5	2  
4	√

__
	2			____	

9
	 	

  9	 a)	 1.6	sin	( 		2p ___	
11

			( x	2			9	__	4			)		)		1	4.2

	 b)	 Approximately	3.15	metres
	 c)	 Approximately	12:27	p.m.	to	7:33	p.m.
10	 x	<	0.785,	1.89
11	 a)	 15		cm	 b)	 area	<	239		cm2

12	 k	.	2.5,	k	,	22.5
13	 k	5	1,	a	5	22
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Answers

Chapter 7
Exercise 7.1

  1	 		 5	____	
	√

___
	89		
			5			

5	√
___

	89		
	_____	

89
	 		 	 2	 		 8	____	

	√
___

	89		
			5			

8	√
___

	89		
	_____	

89
	 		 	 3	 		5	__	

8
		

  4	 		 8	____	
	√

___
	89		
			5			

8	√
___

	89		
	_____	

89
	 		 	 5	 		 5	____	

	√
___

	89		
			5			

5	√
___

	89		
	_____	

89
	 		 	 6	 		8	__	5		

  7	 BÂC	<	32.0°,	AB̂C	<	58.0°

  8	 cosu	5			4	__	5		,	tanu	5			3	__	4			

	 9	 sinu	5			
	√

___
	39		
	____	

8
	 	,	tanu	5			

	√
___

	39		
	____	5	 	

10	 sinu	5			 2	___	
	√

__
	5		
			5			

2	√
__

	5		
	____	5	 	,	cosu	5			 1	___	

	√
__

	5		
			5			

	√
__

	5		
	___	5	 	

11	 sinu	5			
	√

___
	51		
	____	

10
	 	,	tanu	5			

	√
___

	51		
	____	7	 	

12	 sinu	5			 1	____	
	√

___
	10		
			5			

	√
___

	10		
	____	

10
	 	,	cosu	5			 3	____	

	√
___

	10		
			5			

3	√
___

	10		
	_____	

10
	 	

13	 sinu	5			3	__	4		,	tanu	5			 3	___	
	√

__
	7		
			5			

3	√
__

	7		
	____	7	 	

14	 			
√

__
	2			___	

2
	 		 15	 		

	√
__

	3		
	___	

2
	 		 16	 1

17	 		
	√

__
	3		
	___	

2
	 		 18	 		

	√
__

	3		
	___	

3
	 		 19	 		1	__	

2
		

20	 60°,				p __	
3

			 21	 45°,				p __	4			 22	 60°,				p __	
3

		

23	 60°,				p __	
3

			 24	 45°,				p __	4			 25	 30°,				p __	
6

		

26	 46.5°,	0.812	 27	 43.5°,	0.759	 28	 52.3°,	0.913
29	 80.6°,	1.41	 30	 28.2°,	0.492	 31	 33.1°,	0.577
32	 x	<	86.6	 33	 x	<	8.60	 34	 x	<	20.6
35	 x	<	374	 36	 x	5	18	 37	 x	5	200
38  QP̂R	5	75°,	r	<	5.36,	q	<	20.7
39  BÂC	<	22.6°,	AB̂C	<	67.4°
40	 114	metres
41	 67.4°
42	 4.05	metres
43	 5.71	metres
44	 44.0°
45	 572	metres

Exercise 7.2
  1	 sinu	5			3	__	5		,	cosu	5			4	__	5		,	tanu	5			3	__	4		

	 2  sinu	5			5	___	
13

		,	cosu	5	2		12	___	
13

		,	tanu	5	2		5	___	
12

		

  3	 sinu	5			2   1	___	
	√

__
	2		
			5	2  

 √
__

	2			___	
2

	 	,	cosu	5			 1	___	
	√

__
	2		
			5				

√
__

	2			___	
2

	 	,	tanu	5	21

  4	 sinu	5			2		1	__	
2

		,	cosu	5	2    
√

__
	3			___	

2
	 	,	tanu	5			 1	___	

	√
__

	3		
			5			

	√
__

	3		
	___	

3
	 	

  5	 sinu	5			 3	____	
	√

___
	10		
			5			

3	√
___

	10		
	_____	

10
	 	,	cosu	5			 1	____	

	√
___

	10		
			5			

	√
___

	10		
	____	

10
	 	,	tanu	5	3

  6	 sinu	5 2		 1	___	
	√

__
	2		
			5	2  

 √
__

	2			___	
2

	 	,	cosu	5	2   1	___	
	√

__
	2		
			5	2  

 √
__

	2			___	
2

	 	,	tanu	5	1

  7	 a)	 sin	120°	5			
	√

__
	3		
	___	

2
	 	,	cos	120°	5	2		1	__	

2
		,	tan	120°	5 2	√

__
	3		

	 b)	 sin	135°	5				
√

__
	2			___	

2
	 	,	cos	135°	5	2  

 √
__

	2			___	
2

	 	,	tan	135°	5	21

	 c)	 sin	150°	5			1	__	
2

		,	cos	150°	5	2  
 √

__
	3			___	

2
	 	,	tan	120°	5	2  

 √
__

	3			___	
3

	 	

  8	 a)	 sin	225°	5	2  
 √

__
	2			___	

2
	 	,	cos	225°	5	2  

 √
__

	2			___	
2

	 	,	tan	225°	5	1

	 b)	 sin	330°	5	2		1	__	
2

		,	cos	330°	5			
	√

__
	3		
	___	

2
	 	,	tan	330°	5	2  

 √
__

	3			___	
3

	 	

	 c)	 sin				7p ___	
6

	 		5	2			1	__	
2

		,	cos				7p ___	
6

	 		5	2  
 √

__
	3			___	

2
	 	,	tan				7p ___	

6
	 		5			

	√
__

	3		
	___	

3
	 	

	 d)	 sin(260°)	5	2  
 √

__
	3			___	

2
	 	,	cos(260°)	5			1	__	

2
		,	tan(260°)	5	2 √

__
	3		

	 e)	 sin	270°	5	21,	cos	270°	5	0,	tan	270°	is	undefined

	 f)	 sin			5p ___	
3

	 		5 2  
 √

__
	3			___	

2
	 	,	cos				5p ___	

3
	 		5			1	__	

2
		,	tan				5p ___	

3
	 		5	2 √

__
	3		

	 g)	 sin(2120°)	5	2  
 √

__
	3			___	

2
	 	,	cos(2120°)	5	2		1	__	

2
		,	tan(2120°)	5		√

__
	3		

	 h)	 sin	( 2		p __	4			)		5	2  
 √

__
	2			___	

2
	 	,	cos	( 2		p __	4			)		5				

√
__

	2			___	
2

	 	,	tan	( 2		
p

	__	4			)		5	21

	 i)	 sin	p	5	0,	cos	p	5	21,	tan	p	5	0

  9	 sinu	5	2		4	_	5		,	tanu	5	2		4	_	3		

10	 cosu	5	2		15
	__	17		,	tanu	5	2		8	__	15		

11	 sinu	5	2		12
	__	13		,	cosu	5			5	__	13		

12	 cosu	5	21,	tanu	5	0
13	 a)	 (i)	 30°	 	 	 (ii)	 85°
	 b)	 (i)	 45°	 	 	 (ii)	 7°
	 c)	 (i)	 60°	 	 	 (ii)	 20°
14	 a)	 6	√ 

__
	3			units2	 b)	 88.9	units2	 c)	 675	√

__
	2			units2

15	 a)	 75p	<	236		cm2	 b)	 		
225	√

__
	3		
	______	4	 		<	97.4		cm2

16	 a)	 		50p ____	
3

	 		2	25	√
__

	3			<	9.06		cm2	 b)	 54p	2	36	√
__

	2			<	119		cm2

17	 121.4		cm2

Exercise 7.3 and 7.4
  1	 Infinite	triangles    2	 One	triangle

  3	 One	triangle    4	 One	triangle

  5	 Two	triangles    6	 One	triangle

  7	 BC	<	17.9,	AC	<	27.0,	AĈB	5	115°

  8	 AB	<	18.1,	BC	<	22.5,	BÂC	5	65°

  9	 AB	<	3.91,	BC	<	1.56,	AB̂C	5	111°

10	 AB	<	326,	AC	<	149,	BÂC	5	43°

11	 AB	<	74.1,	BÂC	<	60.2°,	AB̂C	<	48.8°

12	 BÂC	<	75.5°,	AB̂C	<	57.9°,	AĈB	<	46.6°

13	 BÂC	<	81.6°,	AB̂C	<	60.6°,	AĈB	<	37.8°

14	 	Two	possible	triangles:

	 (1)	BÂC	<	55.9°,	AĈB	<	81.1°,	AB	<	40.6

	 (2)	BÂC	<	124.1°,	AĈB	<	12.9°,	AB	<	9.17

15	 Two	possible	triangles:

	 (1)	AB̂C	<	72.2°,	AĈB	<	45.8°,	AB	<	0.414

	 (2)	AB̂C	<	107.8°,	AĈB	<	10.2°,	AB	<	0.102

16	 10.8		cm	and	30.4		cm

17	 51.3°,	51.3°,	77.4°

18	 25.8	metres

19	 71.6°	or	22.4°

20	 Distance	<	743	metres

21	 20.7°

22	 Area	<	151.2		cm2

23	 a)	 BC	5	5	sin	36°	or	BC	>	5

	 b)	 5	sin	36°	,	BC	,	5



615

	 c)	 BC	,	5	sin	36°

24	 a)	 BC	5	5	√
__

	3			or	BC	>	10

	 b)	 5	√
__

	3			,	BC	,	10

	 c)	 BC	,	5	√
__

	3		

25	 x	<	64.9		m,	y	<	56.9		m

Exercise 7.5
  1	 a)	 tan	70°	<	2.75	 b)	 y	5	x  tan	70°
  2	 a)	 tan(220°)	<	20.364	 b)	 y	5	x		tan(220°)
  3	 a)	 21	 b)	 y	5	2x	1	2
  4	 a)	 tan	22°	<	0.404	 b)	 y	5	x 	tan	22°	2			3	_	2		
  5	 45°	 	 6	 33.7°	 	 7	 60.3°
  8	 71.6°    9	 45°
10	 a)	 y	5			

	√
__

	3		
	___	

3
	 		x	 b)	 56.6°

11	 AB	<	19.3		cm
12	 PR̂O	<	71.8°,	SR̂O	<	51.3°,	area	<	20.9		cm2

13	 4104	metres  14	 406.1	metres  15	 2.70	metres
16	 a)	 1291.8		km	 b)	 42.8°
17	 59.5		cm
18	 ABC	5	72		cm2,	ABD	5	24	√

__
	3			<	41.6		cm2,	

BCD	<	34.6		cm2,	ACD	<	69.3		cm2

19	 DÊF	<	41.9°  20	 43.0	metres

Practice questions

  1	 sin	AÔB	5			24	___	
25

		

  2	 sin	2u	5			21	___	
29

		,	cos	2u	5			20	___	
29

		
  3	 101.5°

  4	 sin	2A	5	2		120	___	
169

		

  5	 a)	 29.1		m	 b)	 41.9		m
  6	 CÂB	<	86.4°
  7	 a)	 38.2°	 b)	 17.3		cm2

  8	 a)	 AĈB	<	116°	 b)	 155		cm2

  9	 78.5		km  10	 JK̂L	<	31°
11	 a)	 3.26		cm	 b)	 7.07		cm2

12	 70.5°
13	 a)	 91		m	 b)	 1690	√

__
	3		

	 c)	 (ii)	 A2	5	26x	 (iii)	 x	5	40	√
__

	3		
	 d)	 (i)	 Supplementary	angles	have	equal	sines.

Chapter 8
Exercise 8.1 and 8.2
  1

	

2u

2u

2u�v

�v

�v

	

�2u

�2u

v

v

v�2u

u�v

v

u

u

  2	 a)	 	√
___

	41			 b)	 u	5	(4,	25)

	 c)	 v	5		( 		 4	____	
	√

___
	41		
		,			25	____	

	√
___

	41		
			)		 d)	 1

  3	 a)	 	√
___

	53			 b)	 u	5	(7,	22)

	 c)	 v	5		( 		 7	____	
	√

___
	53		
		,			22	____	

	√
___

	53		
			)		 d)	 1

  4	 a)	 	
	___

	
›
	PQ 	5	(5,	26)	 b)	 	√

___
	61			 d)	 (4,	25)

  5	 a)	 	
	___

	
›
	PQ 	5	(4,	6)	 b)	 2	√

___
	13			 d)	 (3,	7)

  6	 a)	 	
	___

	
›
	PQ 	5	(5,	5)	 b)	 5	√

__
	2			 d)	 (4,	6)

  7	 a)	 	
	___

	
›
	PQ 	5	(4,	6)	 b)	 2	√

___
	13			 d)	 (3,	7)

  8	 (1,	21)    9	 (8,	21)
10	 (4,	8)  11	 (25,	25)
12	 a)	 	u	1	v	5	2i	1	2j,	u	2	v	5	4i	2	4j,	2u	1	3v	5	3i	1	7j,	

2u	2	3v	5	9i	2	11j
	 b)	 	|u	1	v| 5	2	√

__
	2		,	|u	2	v| 5 4	√

__
	2		, |u|	1	|v| 5 2	√

___
	10		,	

|u|	2	|v|	5	0
	 c)	 	|2u	1	3v|	5		√

___
	58		,	|2u	2	3v|5 	√

____
	202		, 2|u|	1	3|v|5 5	√

___
	10		,

2|u|	2	3|v|	5	2 √
___

	10		

13	 	( 		11	___	
8

		,	2		1	__	4			)	

14	 u	5			8	_	5			i	2			7	_	5			j;	v	5	2		1	_	5			i	1			4	_	5			j

15	 	√
___

	13		,		√
___

	17		
16	 a)	 v	1	u  b)	 v	1	0.5u  c)	 v	2	u  d)	 0.5(v	2	u)

Exercise 8.3
  1	 a)	 0°	 b)	 90°	 c)	 180°	 d)	 56.31°	 e)	 135°
  2	 a)	 	√

___
	13		,	33.69°	 b)	 		√

___
	13		,	213.69°

	 c)	 2	√
___

	13		,	33.69°	 d)	 3	√
___

	13		,	213.69°
	 e)	 5	√

___
	13		,	213.69°	 f)	 	√

___
	13		,	33.69°

  3	 a)	 (145.54,	273.71)	 b)	 (40.70,	14.49)

  4	 a)	 	( 		3	__	5		,			4	__	5			)		 b)	 			 2	____	
	√

___
	29		
		i	2			 5	____	

	√
___

	29		
			j

  5	 		21	___	5		i	2			28	___	5			j

  6	 a)	 	
	_

	
›
	P  	 5	(840	cos	80°,	2840	sin	80°);	

	 	 	
	__

	
›
	W 		5	(60	cos	30°,	260	sin	30°)

	 b)	 	
	__

	
›
	V 	5	(840	cos	80°	1	60	cos	30°,	2840	sin	80°	2	60	sin	30°)	

	 	 5	(197.83,	2857.24)
	 c)	 Speed	5	879.77		km/h,	bearing	167°

  7	 a)	 	
	_

	
›
	P  	5	(520	cos	110)	

	_
	
›
	i  	1	(520	sin	110)	

	_
	
›
	j  	

	 	 5	2177.85	
	_

	
›
	i  	1	488.64	

	_
	
›
	j  

	 	
	__

	
›
	W 	5	(64	cos	160)	

	_
	
›
	i  	1	(64	sin	160)	

	_
	
›
	j  	5	260.14	

	_
	
›
	i  	1	21.89	

	_
	
›
	j  	

	 b)	 	
	__

	
›
	V 	5	(2177.85	2	60.14)	

	_
	
›
	i  	1	(488.64	1	21.89)	

	_
	
›
	j  	

	 	 5	2237.99	
	_

	
›
	i  	1	510.53	

	_
	
›
	j  

	 c)	 Speed	5	563.28		km/h,	bearing	335.01°
  8	 24.15,	6.47
  9	 200		m	east	of	the	initial	point.
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Answers

10	 Force	5	8176.158	N	at	an	angle	of	2	10.85°	to	the	x-axis.
11	 Water	5	12.36,	boat	5	38.04
12	 T	5	35.89,	S	5	41.57
13	 35.4		km/h	at	N	12.88°	W
14	 At	N	11.54°	W

Exercise 8.4
  1	 a)	 0,	90°	 b)	 13,	54°
	 c)	 11,	42°	 d)	 2	√

__
	3		,	30°

  2	 a)	 21	 b)	 21	 c)	 (57,	238)
	 d)	 (212,	215)	 e)	 26	 f)	 3
	 g)	 	Scalar	multiplication	is	distributive	over	addition	of	

vectors.	Multiplication	is	not	associative.
  3	 a)	 2000	 b)	 6450

  4	 a)	 26.6,	63.4,	90	 b)	 41.4,	74.5,	64.1

	 c)	 41.6,	116.6,	21.8

  5	 a)	 (5t,	23t)	 b)	 (3t,	2t)

  6	 a)	 (x	2 1)(x	2 3)	1 (y	2 2)(y	2 4)	5	0

	 b)	 (x	2 3)(x	1 1)	1 (y	2 4)(y	1 7)	5	0

  7	 No

  8	 t	5			21	___	5		

  9	 b	5		√
__

	6			or	b	5	2 √
__

	6			

10	 	( 		4	√
__

	3			1	3
	_______	

10
	 	,			

4	2	3	√
__

	3		
	_______	

10
	 		)	

11	 t	5	0
12	 Sides	of	rhombus:		

	_
	
›
	a  	and		

	_
	
›
	b  	with	|	

	_
	
›
	a  |	5	|	

	_
	
›
	b  |,	diagonals	are		

	_
	
›
	a  	1		

	_
	
›
	b  	

	 and		
	_

	
›
	a  	2		

	_
	
›
	b  	⇒	(	

	_
	
›
	a  	1		

	_
	
›
	b  )(	

	_
	
›
	a  	2		

	_
	
›
	b  )	5	(	

	_
	
›
	a  )2	2		

	_
	
›
	a  	
	_

	
›
	b  	1		

	_
	
›
	a  	
	_

	
›
	b  	2	(	

	_
	
›
	b  )2	5	0

Practice questions
  1	 a)	 v 2 u
	 b)	 (		1	_	2		)(v-u)

	 c)	 (		1	_	2		)(u1v)

	 d)	 (		3	_	2		)v 2	(		1	_	2		)u

  2	 a)	 (6,	21)	 b)	 		 6	____	
	√

___
	37		
		(6,	21)

  3	 a)	 OR	5	15	 b)	 	( 		25										
5	√

__
	5		
			)		 c)	 		 1	___	

	√
__

	6		
			 d)	 75	√

__
	5		

  4	 a)	 	
	___

	
›
	MR 	5		( 	11			4		)		 b)	 		

	___
	
›
	AC 	5		( 	23				6		)	

	 c)	 83.4°;	u	5			1	_	2				
	___

	
›
	MR 	,	v	5	2		1	_	2				

	___
	
›
	MR 	⇒	u	||	v	and	|u|	5	| v |

  5	 m	5			63	___	
46

		,	n	5			37	___	
46

		

  6	 a)	 15		km/h,	19.7		km/h

	 b)	 	( 	4.5				6 		);		( 		 9				
24		)	

	 c)	 11.4		km
	 d)	 At	8	a.m.
	 e)	 12.2		km
	 f)	 54	minutes

  7	 a)

	 	

x

y

0

T

R

I

	 b)	 	
	__

	
›
	IR 	5		( 		 5				

2		25
	__	6		
		)	

  8	 a)	 	( 		 745				1000		)		 b)	 600		km/h	 c)	 at	1.5	hrs

	 d)	 	( 	325				940		)		 e)	 451		km

  9	 2n2	2	n	112	5	0	does	not	have	real	solutions,	so	it	is	not	
possible.

Chapter 9
Exercise 9.1
  1	 a)	 	Student,	all	students	in	a	community,	random	sample	of	

few	students,	qualitative

	 b)	 	Exam,	10th-grade	students	in	a	country,	a	sample	from	a	
few	schools,	quantitative

	 c)	 	Newborns,	heights	of	newborns	in	a	city,	sample	from	a	
few	hospitals,	quantitative

	 d)	 	Children,	eye	colour	of	children	in	a	city,	sample	of	
children	at	schools,	qualitative

	 e)	 	Working	persons,	commuters	in	a	city,	sample	of	few	
districts,	quantitative

	 f)	 Country	leaders,	sample	of	few	presidents,	qualitative

	 g)	 	Students,	origin	countries	of	a	group	of	international	
school	students,	qualitative

  2	 Answers	are	not	unique!

	 a)	 Skewed	to	the	right	as	few	players	score	very	high

	 b)	 Symmetric

	 c)	 Skewed	to	the	right

	 d)	 Unimodal,	or	bi-modal,	symmetric	or	skewed,	etc.

  3	 a)	b)	 Quantitative

	 c)	d)	 Qualitative

  4	 a)	 Discrete	 b)	 Continuous

	 c)	 Continuous	 d)	 Discrete

	 e)	 Continuous	 f)	 Discrete	(debatable!)
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  5

	

2

0

4

6

Fr
eq

ue
nc

y 8

10

12

2.0 2.4 2.8
GPA

3.2

	

5

0

10

15

Pe
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en
ta

ge

20

25

2.0 2.4 2.8
GPA

3.2

	

10

0

20

30

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

40

50

2.0 2.4 2.8
GPA

3.2

	 Relatively	symmetric.	No	outliers.
  6

	

1

0

2

3

Fr
eq

ue
nc

y

4

5

6

7

8

9

60 70 80
Grades

90

	 The	grades	appear	to	be	divided	into	two	groups,	one	with	
mode	around	65	and	the	other	around	85.	No	outliers	are	
detected.

  7  a) 

	 	

2

0

4

6

Fr
eq

ue
nc

y

8

10

12

14

0 8 16
Months

24 32

	 b)	 The	data	is	skewed	to	the	right.	

	 c)

	 	

10
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y

40

50

�8 0 8
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	 	 	Apparently,	more	than	35	out	of	the	50	will	lose	the	
licence,	about	70%.

	 8	 a)

	 	

5

0

10

15

Pe
rc

en
ta

ge 20

25

30

35

0.0 1.2 2.4
Time

3.6 4.8

	 b)

	 	

10
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m
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at
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fr
eq

ue
nc

y

40

50

60

0.0 1.2 2.4

2

Time
3.6 4.8

	 	 	Apparently,	about	10	customers	have	to	wait	more	than	2	
minutes.

  9	 a)	 	Skewed	to	the	right,	there	is	a	mode	at	about	7	days	stay,	
and	a	few	extremes	that	stayed	more	than	20	days.	A	good	
proportion	stayed	for	about	3	days.

	 b)

	 	

1000

0

2000

3000

4000

5000

6000

10 20
Days

30 40

	 c)	 Approximately	35%	of	the	patients
10	 a)	 40	minutes
	 b)	 Approximately	30%
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	 c)

	 	

50

0

100

150

200

250

18 20 22 24 26 28
Minutes

30 32 34 36 38 40

Exercise 9.2 and 9.3
  1	 a)	 6	 b)	 6
	 c)	 	It	appears	to	be	symmetric	as	the	mean	and	median	are	

the	same.	A	histogram	supports	this	view.

  2	 a)	 7.8	 b)	 7.5	 c)	 7	or	8

  3	 Average	5	1.16,	median	5	1.	Median	is	more	appropriate	as	
the	data	is	skewed	to	the	right.

  4	 Mean	5	7494.7,	median	5	837.5.	There	are	extreme	values	
and	hence	the	median	is	more	appropriate.

  5	 Mean	5	median	5	430.	It	appears	to	be	symmetric	and	
hence	either	measure	would	be	fine.

  6	 a)	 49.56	 b)	 49.93

  7	 a)

	 	

x	<	10 x	<	20 x	<	30 x	<	40 x	<	50

15 65 165 335 595

x	<	60 x	<	70 x	<	80 x	<	90 x	<	100

815 905 950 980 1000

	 b)

	 	

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

Seats

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90 100

	 c)	 (i)	 Around	50

	 	 (ii)	 Q1	5	40,	Q3	5	60,	IQR	5	20

	 	 (iii)	 About	170	days

	 	 (iv)	 Approximately	70	seats

  8	 2.05

  9	 a)	 	Q1	5	165.1,	median	5	167.64,	Q3	5	177.8,	
minimum	5	152,	maximum	5	193

	 b)

	 	150 160 170 180
Height

190 200

	 	

0

5

Pe
rc

en
ta

ge

10

15

20

150 160 170
Height

180 190

	 c)	 Mean	5	170.5,	standard	deviation	5	9.61

	 d)	 	The	heights	are	widely	spread	from	very	short	to	very	tall	
players.	Heights	are	slightly	skewed	to	the	right,	bimodal	
at	165	and	170,	no	apparent	outliers.	The	heights	
between	the	first	quartile	and	the	median	are	closer	
together	than	the	rest	of	the	data.

	 e)

	 	

0

40

80

120
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100

140

15
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16
5

16
8
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0
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3

18
5

18
8

19
1

19
3

	 	 Approx.	183		cm	tall

	 f)	 171.3

Exercise 9.4A
  1	  

	 	 0 5 10 15 20
6

8

10

12

14

16

7

9

11

13

15

A response variable y against an explanatory variable x

y

x

	 It	appears	that	the	data	have	a	positive	linear	relationship.	It	
is	relatively	strong	except	for	an	outlier	apparently	at		
(11,	15).

	 The	correlation	coefficient	is	0.756,	which	confirms	the	
strength	of	the	relationship.		If	we	remove	the	outlier,	the	
correlation	climbs	up	to	0.922,	which	explains	the	influence	
of	the	outlier	on	the	relationship.
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  2  a) 
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Scatter plot of fuel consumption (km/L) vs speed (km/h)
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)
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	 b)	 	We	chose	the	speed	as	the	explanatory	variable	because	
the	car	must	first	run	to	cause	any	fuel	consumption.	
Hence,	the	speed	helps	explain	the	fuel	consumption.	The	
relationship	appears	to	be	negatively	sloped	because	the	
consumption	is	measure	by	the	distance	travelled	per	litre	
of	fuel.	

	 c)	 	The	relationship	appears	to	be	a	relatively	strong	negative	
one	without	any	apparent	outliers.	The	correlation	
coefficient	is	–0.986,	which	is	very	close	to	–1.	This	is	a	
very	strong	relationship.

  3  a)   

	 	

PP
P

GNI/Cap

Scatter plot of PPP vs GNI/Cap

40000 50000 60000 70000 80000 90000
30000

35000

40000

45000

50000

55000

60000

	 b)	 	The	relationship	appears	to	be	a	positive	one,	except	for	
an	outlier,	which	can	be	traced	to	be	Singapore.	We	chose	
the	explanatory	variable	to	be	the	income	because	the	
income	level	dictates	how	willing	are	people	to	pay	for	
goods.

	 c)	 	The	relationship	is	relatively	strong	(weakened	by	
Singapore’s	numbers).	The	correlation	coefficient	is	
0.621.	If	we	remove	Singapore’s	data,	then	it	becomes	
0.886.

  4  a)	

	 	

Co
ns

um
pt

io
n

visitors

Scatter plot of consumption vs visitors

200 250 300 350 400 450 500 550
200

250

300

350

400

450

	 b)	 	There	is	obviously	a	positive	relationship	between	the	
number	of	visitors	and	consumption.	As	the	number	of	
visitors	increases	the	consumption	will	also	increase.

	 c)	 	The	relationship	seems	to	be	strong	and	there	is	an	
absence	of	outliers.	The	correlation	coefficient	is	0.978,	
which	is	very	close	to	1.	

Exercise 9.4B
  1  Ex	9.4A question	1:	 The	regression	equation	is:	

y	=	3.58	+	0.594	x.	For	every	change	of	1	unit	in	the	x-values,	
the	y-values	will	change,	on	average,	by	0.594.

	 Ex	9.4A question	2:	 The	regression	equation	is:	Fuel	
consumption	(km/L)	=	24.0	–	0.116	Speed	(km/h).	For	
every	increase	of	1	km/h	in	speed,	the	average	number	of	km	
per	litre	will	decrease	by	0.116	km/L.	i.e.	consumption	will	
increase.

	 Ex	9.4A question	3:	 The	regression	equation	is:	
PPP	=	24383	+	0.351	GNI/Cap.	For	every	increase	of	$1	in	
GNI/cap,	the	PPP	will	increase,	on	average,	by	$0.351.

	 Ex	9.4A question	4:	 The	regression	equation	is:	
consumption	=	40.0	+	0.777	visitors.	For	every	increase	of	1	
visitor,	we	expect,	on	average,	that	consumption	will	increase	
by	0.777.

2	

	 	

Scatter plot of after vs before
A

ft
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	 The	scatter	plot	shows	a	strong	positive	relationship.	That	is	
the	higher	the	‘Before’	score	the	higher	is	the	‘After’	score.

	 The	regression	equation	is:	After	=	20.2	+	1.03	Before

	 This	means	that,	on	average,	for	every	change	of	1	mark	
on	the	‘Before’	test,	the	‘After’	test	is	expected	to	change	by	
1.03.	The	correlation	coefficient	is	0.97,	indicating	a	very	
strong	linear	relationship.	For	a	student	with	60	score	on	the	
‘Before’	test,	the	model	predicts,	on	average,	a	score	of	81.90	
on	the	‘After’	test.

3  a)	

	 	
10 20 30 40 50 60 70 80 90
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	 b)	 The	regression	equation	is:	Cost	=	1066	+	47.1	units

	 c)	 	For	every	increase	of	1000	units	in	production,	the	cost,	
on	average,	will	increase	by	47	100	euros.	The	correlation	
coefficient	is	0.999,	which	is	almost	perfect	association.	
This	is	a	strong	linear	relationship.	

	 d)	 The	number	of	units	will	be	18	400	units.

4  a)	 	r	=	0.493.	This	is	a	relatively	weak	correlation	between	
the	two	scores.

	 b)	 The	regression	equation	is:	Maths	=	2.07	+	0.649	Physics

	 c)	 4.7	(which	can	be	rounded	up	to	5)

5  a)	

	 	
20 30 40 50 60 70 80 90 100 110

0

2000
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Scatter plot of price (euros) vs points

Pr
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e 
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Points

	 	 Appears	to	be	a	positively	sloped	trend.

	 b)	 	The	regression	equation	is:		
Price	(euros)	=	–2689	+	154	Points

	 c)	 	The	intercept	is	meaningless	as	zero	is	not	in	the	domain	
of	the	explanatory	variable.	On	average,	for	every	increase	
of	1	point,	we	expect	the	price	to	increase	by	154	euros.

	 d)	 	r	=	0.93,	indicating	a	strong	association	between	points	
and	price.

	 e)	 	The	average	price	of	a	63-point	diamond	is	predicted	to	
be	7024	euros.

	 f)	 	Residual	=	2093

Practice questions
  1	 a)	 12	 b)	 	√

_____
	30.83		

	 2	 4

  3	 a)

	 	

Time 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6

Frequency 2 2 6 4 11 10 5 5 3 2 0

	 	

2

0

4

6

Fr
eq

ue
nc

y

8

10

12

14

1.6
Time

2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6

	 b)	 86%	 c)	 approx.	4	 d)	 3.86,	1.1

	 e)
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y 40

50

60

1.6
Time

2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6

	 f)	 	Minimum	5 1.6,	Q1	5 3,	median	5	4,	Q3	5	4.5,	
maximum	5 6.2

  4	 a)	 Median	and	IQR	as	the	data	is	skewed	with	outliers.
	 b)	 Mean	5	682.6,	standard	deviation	5	536.2
	 c)
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	 d)	 Q1	5	300,	median	5	500,	Q3	5	800,	IQR	5	500
	 e)	 	There	are	a	few	outliers	on	the	right	side.	Outliers	lie	

above	Q3	1	1.5IQR	5	1550.	
	 f)	 	Data	is	skewed	to	the	right,	with	several	outliers	from	

1600	onwards.	It	is	bimodal	at	300–400.

  5	 a)	 Spain,	Spain	 b)	 France
	 c)	 	On	average,	it	appears	that	France	produces	the	more	

expensive	wines	as	50%	of	its	wines	are	more	expensive	
than	most	of	the	wines	from	the	other	countries.	Italy’s	
prices	seem	to	be	symmetric	while	France’s	prices	are	
skewed	to	the	left.	Spain	has	the	widest	range	of	prices.

  6	 a)	 Mean	5	52.65,	standard	deviation	5	7.66
	 b)	 Median	5	51.34,	IQR	5	2.65
	 c)	 	Apparently,	the	data	is	skewed	to	the	right	with	a	clear	

outlier	of	112.72!	This	outlier	pulled	the	value	of	the	mean	
to	the	right	and	increased	the	spread	of	the	data.	The	
median	and	IQR	are	not	influenced	by	the	extreme	value.

  7	 a)	 	The	distribution	does	not	appear	to	be	symmetric	as	the	
mean	is	less	than	the	median,	the	lower	whisker	is	longer	
than	the	upper	one	and	the	distance	between	Q1	and	the	
median	is	larger	than	the	distance	between	the	median	
and	Q3.	Left	skewed.

	 b)	 There	are	no	outliers	as	Q1	2	1.5IQR	5	37	,	42	and	
	 Q3	1	1.5IQR	5	99	.	86.

	 c)

	 	 40

42 86
60.25 70 75.75

50 60 70 80 90

	 d)	 See	a)
  8	 a)	 225
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	 b)	 Q15205,	Q3	5	255,	90th	percentile5300,	
	 10th	percentile	5	190

	 c)	 	IQR	5	50,	since	Q1	2	1.5IQR	5	130	.	minimum	and	
Q3	1	1.5IQR	5	330	,	400	then	there	are	outliers	on	
both	sides.

	 d)

	 	 100 150 200 250

227.5

300 350 400

	 e)	 	The	distribution	has	many	outliers.	Apparently	skewed	to	
the	right	with	more	outliers	there.	The	middle	50%	seem	
to	be	very	close	together	while	the	whiskers	appear	to	be	
quite	spread.

  9	 a)

	 	

Speed Frequency

26–30 	 8

31–34 15

35–38 31

39–42 24

43–46 10

47–50 10

51–54 	 2

	 b)
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Speed

	 	 	Data	is	relatively	symmetric	with	possible	outlier	at	55.	
The	mode	is	approximately	37.

	 	 Histogram	created	from	table:
	 	

0
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20
25
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eq
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y

Speed
28.5 32.5 36.5 40.5 44.5 48.5 52.5

	 c)	 Mean	5	38.2,	standard	deviation	5	5.7
	 d)	 Speed Cu.	frequency

26–30 	 	 8

31–34 	 23

35–38 	 54

39–42 	 78

43–46 	 88

47–50 	 98

51–54 100

	 	 e)	Median	5	37.6,	Q1	5	34.5,	Q3	5	41.3,	IQR	5	6.8
	 f)	 There	are	outliers	on	the	right	since		

	 Q3	1	1.5IQR	5	51.5	,	maximum	5 54.

	 	 25 30 35 40 45 50 55

10	 a)	 	Mean	5	1846.9,	median	5	1898.6,	
standard	deviation	5	233.8,	
Q1	5 1711.8,	Q3	5 2031.3,	IQR	5 319.5

	 b)	 	Q1	2 1.5IQR	5	1232.55	.	minimum,	so	there	is	an	
outlier	on	the	left.

	 c)

	 	 1000 1200 1400 1600 1800 2000 2200 2400

	 d)	 ]1613,	2081[
	 e)	 	The	mean	and	standard	deviation	will	get	larger.	The	rest	

will	not	change	much.
11	 a)	 49.6	minutes	 b)	 48.9	minutes
12	 a)

	 	

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100

30 130 330 670 1190 1630 1810 1900 1960 2000

	 b)

	 	
0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

	 c)	 (i)	 47	 	 (ii)	 About	500	 	 (iii)	 Above	60
13	 1.74

14	 a)	 m	5	12	 b)	 Standard	deviation	5	5
15	 a)	 97.2
	 b)

	 	

30 60 90 120 150 180 210 240

5 20 53 	 74 	 85 	 92 	 97 100

	 c)	

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240
	 	 d)	Median	5	88
	 	 Q15	66
	 	 Q35	124

16	 a)	 (i)	 10	 	 (ii)	 24	
	 b)	 Mean	5	63,	standard	deviation	5	20.5
	 c)	 Skew	to	the	left	 d)	 65
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Answers

17	 a)	 7.41
	 b)

	

Weight Numberof	packets

w	<	85 5

w	<	90 15

w	<	95 30

w	<	100 56

w	<	105 69

w	<	110 76

w	<	115 80

	 c)	 (i)	 Median	5	97	 (ii)	 Q3	5	101	 d)	 0	 e)	 0.282
18	 a)	 98.2
	 b)	 (i)	 a	5	165,	b	5	275
	 	 (ii)

	 	 	
0

50

100

150

200

250

300

350

60 70 80 90 100 110 120 130 140

	 c)	 (i)	 34%	 (ii)	 115

19	 a)	 (i)	 24	 (ii)	 158	 b)	 40	 c)	 7%
20	 a	5	3
21	 a)

	 	
0

20

40

60

80

100

120

100 200 300 400 500

	 b)	 IQR	5	110	 c)	 a	5	7,	b	5	6
	 d)	 199	 e)	 (i)	 9	 (ii)	 		15	___	

28
		

22	 a)	 (i)	 20	 (ii)	 24	 b)	 10
23	 a)

Mark [0,	20[ [20,	40[ [40,	60[ [60,	80[ [80,	100[

Number	of	
students

22 50 66 42 20

	 b)	 Pass	mark	5	43%
24	 a)	 183	 b)	 14
25	 a	5	3,	b	5	7,	c	5	11,	d	5	11
26	 a)	 100	 b)	 a	5	55,	b	5	75

Chapter 10
Exercise 10.1 and 10.2
  1	 a)	 {left-handed,	right-handed}
	 b)	 All	real	numbers	from	(say)	50		cm	to	210		cm.
	 c)	 All	real	numbers	from	0	to	720	(say).
  2	 {(1,	h),	(2,	h),	…,	(1,	t),	…,	(6,	t)}
  3	 a)	 {(1,	hearts),	…,	(king,	hearts),	(1,	spades),	…}
	 b)	 {[(1,	hearts),	(king,	diamonds)],	…,[(1,	spades),		

	 (10,	diamonds)],…}
	 c)	 a:	52,	b:	1326
  4	 a)	 0.47	 b)	 Anywhere	from	0	to	20
	 c)	 10		000
  5	 a)	 {(1,	1),	(1,	2),	…,	(4,	4)}	 b)	 {3,	4,	…,	9}
  6	 a)	 {(b,	b),	(b,	g),	(b,	y),	(g,	b),	(g,	g),	(g,	y),	(y,	b),	(y,	g),	(y,	y)}
	 b)	 {(y,	y),	(y,	b),	(y,	g)}
	 c)	 {(b,	b),	(g,	g),	(y,	y)}
  7	 a)	 {(b,	g),	(b,	y),	(g,	b),	(g,	y),	(y,	b),	(y,	g)}
	 b)	 {(y,	b),	(y,	g)}	 c)	 [
  8	 a)	 	{(t,	t,	t),	(t,	t,	h),	(t,	h,	t),	(h,	t,	t),	(h,	t,	h),	(h,	h,	t),	(t,	h,	h),	

(h,	h,	h)}
	 b)	 {(h,	t,	h),	(h,	h,	t),	(t,	h,	h),	(h,	h,	h)}
  9	 {(I,	fly),	(I,	dr),	(I,	tr),	(H,	dr),	(H,	b)}
	 {(I,	fly)}
10	 a)	 {(1,	g),	(1,	f),	…,	(0,	c)}
	 b)	 {(0,	c),	(0,	s)}
	 c)	 {(1,	g),	(1,	f),	(0,	g),	(0,	f)}
	 d)	 {(1,	g),	(1,	f),	(1,	s),	(1,	c)}

Exercise 10.3
  1	 a)	 		3	__	10			 b)	 		3	_	4		

  2	 a)	 0.63	 b)	 1

  3	 a)	 (i)	 		1	__	52			 (ii)	 		7	__	26			 (iii)	 		4	__	13			 (iv)	 		10
	__	13		

	 b)	 (i)	 		1	__	51			 (ii)	 		13
	__	17		

	 c)	 (i)	 		1	__	52			 (ii)	 		10
	__	13		

  4	 a)	 		4	_	5			 b)	 		11
	__	30			 c)	 1

  5	 a)	 		1	_	2			 b)	 		1	__	12		

  6	 a)	 		1	_	7			 b)	 		4	_	7		
  7	 a)	 (i)	 {(1,	1),	(1,	2),	…,	(6,	6)}
	 	 (ii)	 		1	_	6			 (iii)	 		2	_	9			 (iv)	 		5	_	6		

	 b)	 (i)	 0	 (ii)	 		1	_	9			 (iii)	 		5	__	36			 (iv)	 0
  8	 a)	 0.04	 b)	 0.55	 c)	 0.1548
	 d)	 0.060		372	 e)	 0.104		022
  9	 a)	 Yes	 b)	 no	 c)	 no
10	 a)	 0.06	 b)	 0.42	 c)	 0.3364	 d)	 0.412
11	 a)	 0.183	 b)	 0.69

Exercise 10.4
  1	 		7	__	20		

  2	 a)	 		5	__	10			 b)	 		4	__	10				 c)	 		2	__	10			 d)	 		1	__	10			 e)	 		2	_	3		

  3	 a)	 92%
	 b)	 (i)	0.64%	 (ii)	 15.36%	 (iii)	 14.72%
	 c)	 48.68%
  4	 a)	 10		000	 b)	 		9	__	10			 c)	 0.3439	 d)	 		1000

	___	3439		

  5	 a)	 		15
	__	16			 b)	 		4	_	5			 c)	 		1	_	5		

  6	 a)	 {(1,	1),	(1,	2),	…,	(6,	6)}
	 b)

	

x 2 3 4 5 6 7 8 9 10 11 12

P(x) 		1	__	36		 		1	__	18		 		1	__	12		 		1	_	9		 		5	__	36		 		1	_	6		 		5	__	36		 		1	_	9		 		1	__	12		 		1	__	18		 		1	__	36		

	 c)	 		11
	__	36			 d)	 		11

	__	12			 e)	 		1	_	3			 f)	 		2	_	3		

  7	 a)	 		7	__	15			 b)	 		11
	__	75			 c)	 		9	__	35		

	 d)	 		46
	__	75			 e)	 		11

	__	20		
	 f)	 No:	P(female)		P(female/grade	12)	2	for	example
  8	 a)	 (i)	0.56	 (ii)	 0.15
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	 b)	 		15
	__	56			 c)	 no

  9

	

P(A) P(B)
Conditions	for	
events	A	and	B

P(AB) P(A		B) P(A|B)

0.3 0.4 Mutually	exclusive 0.00 	 0.7 0.00

0.3 0.4 Independent 0.12 0.58 0.30

0.1 0.5 Mutually	exclusive 0.00 0.60 0.00

0.2 0.5 Independent 0.10 0.60 0.20

10	 a)	 0.30	 b)	 yes
11	 a)	 65%	 b)	 35%	 c)	 52%

Practice questions
  1	 a)	 0.30	 b)	 0.72	 c)	 0.70
  2	 a)	 0.0004	 b)	 0.9996	 c)	 0.0004
  3	 0.999		98
  4	 a)	 (i)	 0.85	 (ii)	0.80	 (iii)	 0.15	 b)	 0.083
  5	 a)	 (i)	 0.3405	 (ii)	0.0108	 (iii)	 0.9622	 (iv)	 0.30
	 b)	 Yes
  6	 a)	 0.63	 b)	 0.971
  7	 a)	 0.60	 b)	 yes,	P(B |A)	5	P(B)	5	0.60	 c)	 0.42
  8	 a)

	 	

Boys Girls

Passed	the	ski	test 32 16

Failed	the	ski	test 14 12

Training,	but	did	not	take	the	test	yet 20 16

Too	young	to	take	the	test   4   6

	 b)	 (i)	 0.6167	 (ii)	 0.56	 (iii)	 0.1463

  9	 a)	 		3	__	32			 b)	 		3	_	4			 c)	 		5	__	32		
10	 a)	 0.02	 b)	 0.64
11	 a)	 0.4	 b)	 0.6
12	 a)	 0.38	 b)	 0.283
13	 b)	 		11

	__	36		

	

6

Not 6

1
6 Not 6

Not 6

6

65
6

5
6

1
6

5
6

1
36

Outcomes

5
36

5
36

1
36

1
6

14	 a)

	 	

A B
U

	 b)	 (i)	 2	 	 (ii)	 		1	__	18			 c)	 n(A	 B)		0

15	 a)

	 	

Male Female Total

Unemployed 	 20 40 	 60

Employed  90 50 140

Total 110 90 200

	 b)	 (i)	 		1	_	5			 	 (ii)	 		9	__	14		

16	 		44
	__	65		

17	 a)

	 	

A B
U

	 b)	 35	 c)	 0.35
18	 a)

	 	

C

C�

B�

B�

B

B

0.4

0.6

0.4

0.5

0.5

0.6

	 b)	 0.54	 c)	 0.444

19	 a)	 		7	__	12			 b)	 		11
	__	36			 c)	 		1	_	3		

20	 a)	 		1	__	11			 b)	 		12
	___	121		

21	 a)	 Independent	 b)	 M	 c)	 N

22	 a)	 a 5 21,	b 5 11,	c 5	17

  b)	 (i)	 		1	_	8			 (ii)	 		21
	__	32		

	 c)	 (i)	 0.253	 (ii)	 0.747

23	 		31
	__	66		

24	 a)

	 	

W

W�

L�

L�

L

L

7
8

1
8

2
3

3
5

3
4

1
4

	 b)	 		47
	___	160			 c)	 		35

	__	47		

25	 a)	 		1	_	3			 b)	 		7	__	12			 c)	 		3	_	7		

26	 a)

	 	

Red

Yellow

Does not Grow

Does not Grow

Grows

Grows

0.4

0.9

0.1

0.8

0.2

0.6

	 b)	 (i)	 0.36	 (ii)	 0.84	 (iii)	 0.429

27	 a)	 		1	_	6			 b)	 		1	__	12			 c)	 		2	_	9		

28	 a)	 (i)	 		8	__	21			 (ii)	 		1	_	6			 (iii)	 no,	P(A		B)		P(A)P(B)

	 b)	 		10
	__	17			 c)	 		200

	___	399		

Chapter 11
Exercise 11.1
  1	 	4

	 2	 3x	2

	 3	 2x

	 4	 6



624

Answers

  5	 0

	 6	 		5	_	2		

	 7	 d.n.e.	(increases	without	bound)

  8	 		lim				
c		→		

			( 1	1			1	__	c   ) 
c
	5	e

  9	 		lim				
x		→		

		f	(x)	5		 lim				
x	→2

		f	(x)	5	3

10	 As	x	→	a,	g(x)	→	1

11	 a)	 Horizontal:	y	5	3;	vertical:	x	5 21
	 b)	 Horizontal:	y	5	0	(x-axis);	vertical:	x	5	2
	 c)	 Horizontal:	y	5	b;	vertical:	x	5	a

Exercise 11.2
  1	 f	9(x)	5	22x

  2	 g9(x)	5	3x	2

  3	 h9(x)	5			 1	____	
2	√

__
	x  
  

  4	 r9(x)	5 2		2	__	
x	3

		

  5	 (i)

	 	 	

x

y

�4

�5

�6

�3

�2

�1

1

0

2

3

�2�3 �1 1 2 3

	 	 	 slope	5	22

	 	(ii)

	 	 	

x

y

�20

�15

�10

�5

5

0

10

15

20

25

�2�3 �1 1 2 3

	 	 	 slope	5	3

	 	(iii)	

	 	 	 x

y

10

20

30

40

�1 10 2 3 4 5

	 	 	 slope	5			1	_	2		

	 	(iv)

	 	 	

x

y

�1

0

1

2

3

�2�3 �1 2 41 3 5

	 	 	 slope	5	22

  6	 a)	 y9	5	6x	2	4	 b)	 24

  7	 a)	 y9	5	22x	2	6	 b)	 0

  8	 a)	 y9	5 2		6	__	
x	4

			 b)	 26

  9	 a)	 y9	5	5x 4	2	3x	2	2	1	 b)	 1

10	 a)	 y9	5	2x	2	4	 b)	 0

11	 a)	 y9	5	2	2		1	__	
x	2

			1			9	__	
x	4

			 b)	 10

12	 a)	 y9	5	1	2			2	__	
x	3

			 b)	 3

13	 a	5	25,	b	5	2  14	 (0,	0)

15	 (2,	8)	and	(22,	28)  16	 	( 		5	__	
2

		,	2		21	___	4			)	

17	 (1,	22)

18	 a)	 Between	A	and	B	
	 b)	 Rate	of	change	is	positive	at	A,	B	and	F.
	 	 Rate	of	change	is	negative	at	D	and	E.
	 	 Rate	of	change	is	zero	at	C.
	 c)	 Pair	B	and	D,	and	pair	E	and	F.

19	 a	5	1,	b	5	5

20	 a	5	1

21	 (3,	6)

22	 a)	 12.61	 b)	 12

23	 f	9(x)	5	2ax	1	b

24	 a)	 4.	
_

	6		degrees	Celsius	per	hour

	 b)	 C9(t)	5	3	√
_
	t  

	 c)	 t	5			196	___	
81

			<	2.42	hours
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Exercise 11.3
  1	 (1,	27)

	 2	 	( 2		3	__	
2

		,	8	)	

	 3	 (3,	2)

  4	 a)	 y9	5	2x	2	5

	 b)	 increasing	for	x	.			5	__	
2

		

	 c)	 decreasing	for	x	,			5	__	
2

		

  5	 a)	 y9	5	26x	2	4

	 b)	 increasing	for	x	,	2		2	__	
3

		

	 c)	 decreasing	for	x	.	2		2	__	
3

		

  6	 a)	 y9	5	x 2	2	1
	 b)	 increasing	for	x	.	1,	x	,	21
	 c)	 decreasing	for	21	,	x	,	1

  7	 a)	 y9	5	4x 3	2	12x 2

	 b)	 increasing	for	x	.	3
	 c)	 decreasing	for	x	, 0,	0	,	x	,	3

  8	 a)	 (3,	2130),	(24,	213)
	 b)	 	(3,	2130)	minimum	because	2nd	derivative	is	positive	at	

x	5	3
	 	 	(24,	213)	maximum	because	2nd	derivative	is	negative	at	

x	5 24
	 c)

	 	

x

y

�100

�150

�50
0

100

200

50

150

250

�2�3�4�5�6�7 �1 2 4

(3, �130)

(�4, 213)

1 3 5 6

  9	 a)	 (0,	25)
	 b)	 	Stationary	point	is	neither	a	maximum	nor	minimum	

because	1st	derivative	is	always	positive.
	 c)

	 	

x

y

�4

�6

�8

�10

�12

�2
0

4

2

�2�3�4 �1 2 4

(0, �5)

1 3

10	 a)	 (1,	4),	(3,	0)
	 b)	 (1,	4)	maximum	because	2nd	derivative	is	negative	at	x	5	1
	 	 (3,	0)	minimum	because	2nd	derivative	is	positive	at	x	5	3

	 c)

	 	

x

y

�2

�3

�4

�5

�6

�1
0

2

3

4

5

6

7

8

1

�1�2 2 4

(3, 0)

(1, 4)

51 3

11	 a)	 (21,	4),	(0,	6),		( 		5	__	
2

		,	2		279	___	
16

			)	

	 b)	 (21,	4)	minimum	because	2nd	derivative	is	positive	at	
	 x	5	21

	 	 (0,	6)	maximum	because	2nd	derivative	is	negative	at	x	5	0

	 	 	( 		5	__	
2

		,	2		279	___	
16

			)		minimum	because	2nd	derivative	is	positive	

	 	 at	x	5			5	__	
2

		

	 c)

	 	

x

y

�10

�15

�20

�5
0

10

15

5

�1�2 2 41 3

(0, 6)

(�1, 4)

5
2(            ), �279

16

12	 a)	 (21,	14),		( 			7	__	
3

		,	2		122	___	
27

			)	

	 b)	 	(21,	14)	maximum	because	2nd	derivative	is	negative	at	
x	5	21

	 	 	( 			7	__	
3

		,	2		122	___	
27

			)		minimum	because	2nd	derivative	is	positive	

	 	 at	x	5			7	__	
3

		

	 c)

	 	

x

y

�5

0

5

10

15

�4 �3 �2 �1 1 2 3 4 5

7
3(            ), �122

27

(�1, 14)

13	 a)	 	( 		1	_	4		,	2		1	_	4			)	

	 b)	 	( 		1	_	4		,	2		1	_	4			)		minimum	because	2nd	derivative	is	positive	at	

	 	 x	5			1	_	4		
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Answers

	 c)

	 	

x

y

�1

0

1

2

�1 1 2 3
1
4(          ),� 1

4

14	 a)	 v(t)	5	3t	2	2	8t	1	1;	a(t)	5	6t	2	8

	 b)

	 	

t

s

�4

�5

�6

�7

�3

�2

�1

1

0�1 1 2 3

Displacement function:
s(t) � t 3 � 4t 2 � t

	 	

t

v

�6

�4

�2

2

0

4

6

8

10

12

�1 1 2 3

Velocity function:
v(t) � 3t 2 � 8t  � 1

	 	

t

a

�5

�10

�15

0

5

10

�1 1 2 3

Acceleration function:
a(t) � 6t  � 8

	 c)	 t	<	0.131,	displacement	<	0.0646
	 d)	 t	5	1.	

_
	3	,	velocity	5	24.	

_
	3	

	 e)	 	Object	moves	right	at	a	decreasing	velocity,	then	turns	
left	with	increasing	velocity,	then	slowing	down	and	
turning	right	with	increasing	velocity.

15	 Relative	maximum	at	(22,	16);	relative	minimum	at	(2,	16);	
inflexion	point	at	(0,	0).

16	 Absolute	minima	at	(22,	24)	and	(2,	24);	relative	maximum

	 at	(0,	0);	inflexion	points	at		( 2	  
2	√

__

	3		
	____	

3
	 	,	2	  20	___	

9
			)		and		( 		2	√

__
	3		
	____	

3
	 	,	2		20	___	

9
			)		.

17	 Relative	maximum	at	(22,	24);	relative	minimum	at	(2,	4);	
no	inflexion	points.

18	 Relative	minimum	at			( 2	   
3
	√

__
	4			___	

2
	 	,			3	

3
	√

__
	2			____	

2
	 		)	;	inflexion	point	at	(1,	0).

19	 Relative	minimum	at	(21,	22);	relative	maximum	at	(1,	2);

	 inflexion	points	at		( 2	   
√

__
	2			___	

2
	 	,	2	  7	√

__
	2			____	

8
	 		)	,	(0,	0)	and		( 			√

__
	2			___	

2
	 	,			7	√

__
	2			____	

8
	 		)	.

20	 Relative	minimum	at	(21,	0);	absolute	minimum	at	(2,	227);	
relative	maximum	at	(0,	5);	inflexion	points	at	(1.22,	213.4)	
and	(20.549,	2.32).

21	 a)	 v (0)	5	27		m		s21,	a(0)	5	266		m		s22

	 b)	 v (3)	5	45		m		s21,	a(3)	5	78		m		s22

	 c)	 	t	5			1	_	2			and	t	5	2		1	_	4		;	where	displacement	has	a	relative	
maximum	or	minimum

	 d)	 t	5			11
	__	8			5	1.375;	where	acceleration	is	zero

22	 x	<	5.77	tonnes;	D	<	34.6	($34	600);	this	cost	is	a	minimum	
because	cost	decreases	to	this	value	then	increases.

23	 a	2	3,	b	5	4,	c	5	22

	

x

y

�10

�6

�8

�4

�2

2

0

4

�2�3 �1 1 2

24	 Relative	maximum	at		( 22,	2		15	___	4			)	,	stationary	inflexion	point	
at	(1,	3).

	 f	(x)	→	x	as	x	→	6

	

x

y

y � x

�8

�6

�4

�2

2

0

4

6

�4�5 �3 �2 �1 1 2 3 4 5

y � x3 � 3x � 1
x2

Exercise 11.4
  1	 a)	 y	5	24x	2	8	 b)	 y	5			4	__	27		

	 c)	 y	5	2x	1	1	 d)	 y	5	22x	1	4

  2	 a)	 y	5			1	_	4			x	1			19
	__	4			 b)	 x	5	2		2	_	3		

	 c)	 y	5	x	1	1	 d)	 y	5			1	_	2			x	1			11
	__	4		
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  3	 At	(0,	0);	y	5	2x;	at	(1,	0);	y	5	2x	1	1;	at	(2,	0);	y	5	2x	2	4
  4	 y	5	22x
  5	 a)	 x	5	1
	 b)	 For	y	5	x	2	2	6x	1	20,	tangent	is	y	5	24x	1	19
	 	 For	y	5	x	3	2	3x 2	2	x,	tangent	is	y	5	24x	1	1

  6	 Normal:	y	5			1	_	2			x	2			7	_	2		;	intersection	pt:		( 2		1	_	2		,	2		15
	__	4			)	

  7	 Tangent:	y	5	23x	1	3;	normal:	y	5			1	_	3			x	2			1	_	3		
  8	 a	5	24,	b	5	1
  9	 a)	 y	5	2x	1			5	_	2			 b)	 	( 		2	_	3		,			41

	__	27			)	

10	 Tangent:	y	5	2		3	_	4		x	1	1;	normal:	y	5			4	_	3			x	2			22
	__	3		

Practice questions
  1	 a)	 Gradient	5	3	 b)	 y	5	3x	2			9	_	4		
	 c)

	 	

x

y

�4

�2

2

0

4

6

8

�3 �2 �1 1 2 3 4

3
2(        ), 9

4

	 d)	 Q  ( 		3	_	4		,	0	)	,	R ( 0,	2			9	_	4			)	
	 f)	 y	5	2ax	2	a	2

	 g)	 T		( 		a __	
2

		,	0	)	,	U(0,	2a	2)

	 h)	 x-coord.:			a	1	0	_____	
2

	 		5			a __	
2

		;	y-coord.:			a	2	2	a	2	_______	
2

	 		5	0

  2	 A	5	1,	B	5	2,	C	5	1

  3	 a)	 4x	2	15x	4	 b)	 2		1	__	
x	2

		

  4	 a)	 x	5	2	or	22;	f	9(1)	5	26	,	0	(decreasing)	and
	 f	9(3)	5			10

	__	9			.	0	(increasing)		f	(2)	is	a	turning	point
	 b)	 Vertical	asymptote:	x	5	0	(y-axis);	oblique	asymptote:	

	 y	5	2x

  5	 	( 		1	_	2		,	3	)	 
  6	 a	5	1

  7	 a)	 y	5	5x	2	7	 b)	 y	5	2		1	_	5		x	1			17
	__	5		

  8	 a)	 x	5	1	 b)	 23	,	x	,	22,	1	,	x	,	3
	 c)	 x	5	2		1	_	2		

	 d)

	 	

x

y

�1

�2

�3

0

11
2

2

 maximum at x � 1

 minimum at x � �2

    in�exion pt at
x � �

�3 �2 �1 1 2 3

  9	 b	5	2,	c	5	3

10

	

function diagram

f1 d

f2 e

f3 b

f4 a

11	 a)	 (i)	 x	5	0	(y-axis)	 	 (ii)	 y	5	3

	 b)	 		
dy

 ___ 
dx

  	5			2	__	
x	2

		

	 c)	 Increasing	on	x	,	0,	x	.	0;	nowhere	decreasing

		 d)	 None;			
dy

 ___ 
dx

  		0

12	 Maximum	at	(21,	1),	minimum	at	(0,	0),	maximum	at	(1,	1)
13	 a	5			8	_	3		,	b	5			16

	__	5		
14	 a)	 10	m		s21	 b)	 10	seconds	 c)	 50	metres
15	 a)	 v	5	14	2	9.8t, a 5 29.8
	 b)	 t	<	1.43	seconds,	h	5	10
	 c)	 Velocity	5 0,	acceleration	5	29.8		m		s22

Chapter 12
Exercise 12.1
  1	 a)	 	( 		5	_	2		,	22,	0	)	

	 b)	 	( 3,	2	√
__

	3		,	0	)	

	 c)	 (21,	2,	22)

	 d)	 (a,	24a,	2a)
  2	 a)	 Q ( 2		1	_	2		,	23,	2	)	

	 b)	 P		( 		5	_	2		,	22,	0	)	

	 c)	 Q(0,	24a,	3a)
  3	 a)	 (x,	y,	z)	5 (t,	t,	5	2	5t),	or	(x,	y,	z)	5 (1	1 t,	1	1 t,	2	5t)
	 b)	 (x,	y,	z)	5	(21	1 4t,	5t,	1	2	3t)
	 c)	 (x,	y,	z)	5	(2	2	4t,	3	2	6t,	4	1 t)
  4	 a)	 C(7,	28,	21)

	 b)	 C(21,			11
	__	2		,			29

	__	3		)

	 c)	 C(2	2 a,	4	2	2a,	2b 2 2)

  5	 a)	 (2		1	_	3		,	1,			1	_	3		)

	 b)	 (1,	2		5	_	3		,	21)

	 c)	 	( 		a	1	b	1	c ________	
3

	 	,			2a	1	2b	1	2c ___________	
3

	 	,	a	1	b	1	c ) 

	 6	 a)	 D (21,	1,	26)
	 b)	 D ( 22	√

__
	2		,	2	√

__
	3		,	1	2 4	√

__
	5			)	

	 c)	 D  ( 		5	_	2		,	2		2	_	3		,	24	)	
  7	 m	5	5,	n	5	1

  8	 a)	 v	5			2	_	3			i	1			2	_	3			j	2			1	_	3			k

	 b)	 v	5			 3	____	
	√

___
	14			
		i	2			 2	____	

	√
___

	14			
		j	1			 1	____	

	√
___

	14		
			k

	 c)	 v	5			2	_	3			i	2			1	_	3			j	2			2	_	3			k

  9	 a)	 |u	1	v|	5		√
___

	29		
	 b)	 |u|	1	|v|	5		√

___
	14			1		√

__
	5		

	 c)	 |23u|	1	|3v|	5	3	√
___

	14			1	3	√
__

	5		

	 d)	 		1	___	
|u|

   u	5			 i ____	
	√

___
	14		
			1			

3j
 ____	

	√
___

	14		
			2			 2k ____	

	√
___

	14		
		

	 e)	 |		1	___	
|u|

   u|	5	1

10	 a)	 (3,	4,	25)	 b)	 (0,	22,	5)
11	 a)	 (1,	2		4	_	3		)	 b)	 	√

__
	6		(4i	1	2j	2	2k)	 c)	 2		2	_	3			i	1			8	_	3			j	2	2k

12	 0
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Answers

Exercise 12.2
  1	 a)	 216,	117.65°	 b)	 220,	64.68°	 c)	 13,	40.24°
	 d)	 215,	151.74°	 e)	 6,	60°	 f)	 26,	120°
  2	 a)	 Orthogonal	 b)	 acute	 c)	 orthogonal

  3  a)	 v    u 5	0	5	wu  b)  		 3	____	
	√

___
	13		
		 i	1			 2	____	

	√
___

	13		
			j,			23	____	

	√
___

	13		
			i	2			 2	____	

	√
___

	13		
			j

  4	 a)	 (i)	cos	a	5			 2	____	
	√

___
	14		
		,	cos	b	5			23	____	

	√
___

	14		
		,	cos	g	5			 1	____	

	√
___

	14		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5			2
2
	___	

14
			1			

(23)2

	_____	
14

	 		1			1
2
	___	

14
			5	1

	 	 (iii)	a	<	58°,	b	<	143°,	g	<	74°

	 b)	 (i)	cos	a	5			 1	___	
	√

__
	6		
		,	cos	b	5			22	___	

	√
__

	6		
		,	cos	g	5			 1	___	

	√
__

	6		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5	  1
2
	__	

6
	 	1	  2

2
	__	

6
	 	1	  1

2
	__	

6
	 	5	1

	 	 (iii)	a	<	66°,	b	<	145°,	g	<	66°

	 c)	 (i)	cos	a	5			 3	____	
	√

___
	14		
		,	cos	b	5			22	____	

	√
___

	14		
		,	cos g	5			 1	____	

	√
___

	14		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5	  3
2
	___	

14
	 	1	  

(22)2

	_____	
14

	  	1	  1
2
	___	

14
	 	5	1

	 	 (iii)	a	<	37°,	b	<	122°,	g	<	74°

	 d)	 (i)	cos	a	5			3	__	5		,	cos	b	5	0,	cos	g	5			24	___	5	 	

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5	  3
2
	___	

25
	 	1	  0

2
	___	

25
	 	1	  4

2
	___	

25
	 	5	1

	 (iii)	a	<	53°,	b	<	90°,	g	<	143°

  5	 a)	 m	5	2		9	_	8			 b)	 m	5	1	or	2		1	_	4		
  6	 m	5	214
  7	 a)	 127°	 b)	 63°	 c)	 73°
  8	 a)	 m 5 		1	_	3			 b)	 m 5 2  

1
	

_
	4		

  9	 mA:	r	5	(4,	22,	21)	1	m(21,	0,			3	_	2		);	mB:	r	5	(3,	25,	21)	
	 1	n(		1	_	2		,			9	_	2		,			3	_	2		)

	 mC:	r	5	(3,	1,	2)	1	k(		1	_	2		,	2		9	_	2		,	23);	centroid	(		10
	__	3		,	22,	0)

10	 90,	90,	82,	74,	60,	54,	53,	52,	47,	43,	38,	37
11	 68.22
12	 103.3°,	133.5°,	46.5°
13	 0
14	 k	5	2
15	 x 5 220,	y	5 214
16	 x 5 5

17	 117°,			
	___

	
›
	AC 	5		( 	0	

	
	6			

3
		)		,	33°

18	 a)	 b	5 2		1	_	2		
	 b)	 b	5			1	_	2		
20	 (2140.8,	140.8,	18)

Exercise 12.3

  1	 a)	 r	5	
21
0
2

	1t	
1
5

24

	
x
y
z

	5	
21	1	t

5t
2	2	4t

	 b)	 r	5	
3

21
2

	1t	
2
5

21

	
x
y
z

	5	
3	1	2t

21	1	5t
2	2	t

	 c)	 r	5	
1

22
6

	1t	
3
5

211

	
x
y
z

	5	
1	1	3t

22	1	5t
6	2	11t

  2	 a)	 r	5	
21
4
2

	1t	
8
1

22

	 b)	 r	5	
4
2

23

	1t	
24
24
4

	 c)	 r	5	
1
3

23

	1t	
4

22
5

  3	 a)	 r	5	
3

22
	1t	

2
3

	 b)	 r	5	
0

22
	1t	

5
2

  4	 2x	1	3y	5	7
  5	 r	5	2i	2	3j	1	l(4i	2	3j)
  6	 r	5	(22,	1,	4)	1	t(3,	24,	7)
  7	 a)	 (1,	21,	2)	 b)	 (217,	21,	1)
	 c)	 No	 d)	 No

  8	 a)	 r	5	(2,	21)	1	t (1,	3)	
x
y 	5	 2	1	t

21	1	3t

	 b)	 r	5	(2,	21)	1	t (23,	7)	
x
y 	5	 2	2	3t

21	1	7t

	 c)	 r 5 (2,	21) 1 t (7,	3)	
x
y 	5	 2	1	7t

21	1	3t

	 d)	 r	5	(0,	2)	1	t (2,	24)	
x
y 	5	

2t
2	2	4t

  9	 a)	 t	5			3	_	2			 b)	 no	 c)	 m	5			7	_	2		
10	 a)	 (i)	 (3,	24)	 (ii)	 (7,	24)	 (iii)	 25
	 b)	 (i)	 (23,	1)	 (ii)	 (5,	212)	 (iii)	 13
	 c)	 (i)	 (5,	22)	 (ii)	 (24,	27)	 (iii)	 25

11	 a)	 (296,	128)	 b)	 	( 		2040
	___	13	 	,	2			850

	___	13			)	
12	 a)	 (24,	18)
	 b)	 r	5	(3,	2)	1	t (24,	18)
	 c)	 In	10	minutes
13	 a)	 a	5	23,	b	5	25

	 b)	 2   √
___

	21			____	
6

	 	

	 c)	 		
	√

___
	15		
	____	

6
	 	,			

	√
___

	35		
	____	

2
	 	

14	 a)	 146.8°	 b)	 3.87
	 c)	 (i)	 L1:	r	5	(2,	21,	0)	1	t(0,	1,	2);	L 2:	r	5	(21,	1,	1)	

	 	 							1	t  (1,	23,	22)
15	 a)	 (x,	y,	z)	5	(1	1	t,	3	2	2t,	217	1	5t)
	 b)	 (4,	23,	22)

Practice questions

  1	 a)	 	
	___

	
›
	OD 	2		

	___
	
›
	OC 	 b)	 		1	_	2				( 	

	___
	
›
	OD 	2		

	___
	
›
	OC  ) 	 c)	 		1	_	2				( 	

	___
	
›
	OD 	1		

	___
	
›
	OC  ) 

  2	 a)	 5i	1	12j	 b)	 10i	1	24j

  3	 a)	 |		
	___

	
›
	OA  |	5	|		

	___
	
›
	OB  |	5	|		

	___
	
›
	OC  |	5	6

	 b)	 		
	___

	
›
	AC   5  (   21	         

 √
___

 11	 
   ) 	 c)	 		 1	____	

	√
___

	12		
			 d)	 6	√

___
	11		

  4	 a)	 (10,	5)	 b)	 (23,	6);	90°
  5	 a	5	2,	b	5	8
  6	 r	5	(3,	21)	1	t(4,	25)
  7	 a)	 39.4	 b)	 (i)	 (9,	12),	(18,	28)	 (ii)	 	√ 

____
	481		

	 c)	 7	a.m.	 d)	 24.4		km	 e)	 54	minutes
  8	 r	5	t(2i	1	3j)
  9	 b)	 (2,	3.25)
10	 c)	 90°
	 d)	 (i)	 12x 2	5y	5	301	 (ii)	 (28,	7)
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11	 117°
12	 2x	1	3y	5	5
13	 a)	 (6,	20)	 b)	 (i)	 (6,	28)	 	 (ii)	 10
	 c)	 4x	1	3y	5	84	 d)	 collide	at	15:00
	 f)	 26		km
14	 72°
15	 a)	 3.94		m	 b)	 1.22	m/s
	 c)	 x	2	0.7y	5	2	 d)	 	( 		170

	___	29		,			160
	___	29			)	

	 e)	 speed	5	1.24	m/s

16	
x
y

	5	
1
3

	1t	
5
2

	

17	 2x 2	1	7x	2	15	5	0,	x	5			3	_	2		,	x	5	25
18	 a)	 (ii)	(288,	84)		(iii)	50	minutes	 b)	 20.6°
	 c)	 (i)	(99,	168)		(iii)	XY	5	75	 d)	 180		km
19	 3x	1	2y	5	7

20	 a)	 	
	___

	
›
	ST 	5	

9
9 ,	V(24,	6)	 b)	 r	5(24,	6)	1	l(1,	1)

	 c)	 l	5	5	 d)	 (i)	 a	5	5	 (ii)	 157°
21	 81.9°
22	 a)	 13	 b)	 		1	_	5		(3i	1	4j)	 c)	 		56

	__	65		
23	 (2,	3)
24	 a)	 (3,	22)	 c)	 (iii)	 23	square	units

25	 a)	 	
	___

	
›
	OB 	5	

21
7

;		
	___

	
›
	OC 	5	

8
9 		 b)	 d	5	11

	 c)	 	
	___

	
›
	BD 	5	

12
23

		 d)	 (i)	
x
y

	5	
21
7

	1t	
12
23

		 (ii)	 t	5	0

26	 a)	 (i)	 	
	___

	
›
	AB 	5	

25
1

		 (ii)	 AB	5		√
___

	26			 b)	 	
	___

	
›
	AD 	5	

d	2 2
25

	

	 c)	 (ii)	 	
	___

	
›
	OD 	5	

7
23

	 d)	 	
	___

	
›
	OC 	5	

2
24

	 e)	 130

27	 a)	 (i)	 	
	___

	
›
	BC 	5	26i	2	2j	 (ii)	 	

	___
	
›
	OD 	5	22i	 b)	 82.9°

	 c)	 r	5	i	2	3j	1	t (2i	1	7j)	 d)	 15i	1	46j
28	 a)	 (5,	5,	25)	 b)	 (25,	0,	5)	 c)	 (5,	5,	25)
29	 b)	 (i)	 (49,	32,	0)	 (ii)	 54		km/h	
	 c)	 (i)	 		5	_	6			hours	 (ii)	 (9,	12,	5)

30	 a)	 (i)	 	
	___

	
›
	AB 	5	

800
600

			

	 b)	 (ii)	
2400
250

		(iii)	at	16:00	hours

	 c)	 27.8		km

Chapter 13
Exercise 13.1
  1	 a)	 y	9	5	cos	x	1	sin		x	 b)	 y	9	5	2e x

	 c)	 y	9	5	1	1			1	__	x    [ or			x	1	1	_____	x    ] 	 d)	 y	9	5			2e x ___	5	 	

	 e)	 y	9	5	3x	2	22	sin		x	 f)	 y	9	5			2e __	x  

  2	 a)	 y	5			1	__	
2

		x	1			
3	√ 

__
	3			2	p
 ________	

6
	 		 b)	 y	5	2x	1	1

	 c)	 y	5			x __	
2e

  

  3	 a)	 x	5			p __	
6

		,	x	5			5p ___	
6

	 		

	 b)	 Maximum	at			p __	
6

		,	minimum	at			5p ___	
6

	 	;	g	0 ( 			p __	
6

			)		,	0,	g	0 ( 		5p ___	
6

	 			)	>	0

  4	 (0,	21)	is	an	absolute	maximum;	y	0(0)	,	0

  5	 		
d	2y

 ___ 
dx 2

			5			1	__	
x	2

				0		no	points	of	inflexion

  6	 x	5			p __	
2

		

  7	 a)	 f	9(x)	5	e x	2	3x	2;	f 	0(x)	5	e x	2	6x
	 b)	 x	<	3.73	or	x	<	0.910	or	x	<	20.459
	 c)	 Decreasing	on	(2,	20.459)	and	(0.910,	3.73)
	 	 Increasing	on	(20.459,	0.910)	and	(3.73,	)
	 d)	 x	<	20.459	(minimum);	x	<	0.910	(maximum);	

	 x	<	3.73	(minimum)
	 e)	 x	<	0.204	or	x	<	2.83
	 f)	 	Concave	up	on	(2,	0.204)	and	(2.83,	);	concave	down	

on	(0.204,	2.83)
  8	 		1	__	e  

  9	 		d ___ 
dx

  	[logb	x]	5			 1	_____	
x		ln	b

  

Exercise 13.2
  1	 	a)	y	9	5	12(3x	2	8)3	 b)	 y	9	5	2	   1	_______	

2	√
_____

	1	2	x  
  

	 c)	 y	9	5			2	__	x  	 d)	 y	9	5	cos	( 			x __	
2

			)	

	 e)	 y	9	5	2		 4x ________	
(x	2	1	4)3			 f)	 y	9	5	23e23x

	 g)	 y	9	5	2	   1	__________	
2	√

_______

	(x	1	2)3		
				 or	2	   1	_____________		

(2x	1	4)	√
_____

	x	1	2		
		

	 h)	 y	9	5	22		sin		x		cos		x	 i)	 y	9	5	2xe x 2

	 j)	 y	9	5			 26x	1	5	_____________		
(3x	2	2	5x	1	7)2		

	 k)	 y	9	5			 2	___________	
3	

3
	√
________

	(2x	1	5)2		
			 l)	 y	9	5			 2x ______	

x	2	2	9
		

  2	 a)	 y	5	212x	2	11	 b)	 y	5			9	__	5			x	2			2	__	5		
	 c)	 y	5	2x	2	2p

  3	 a)	 v (t)	5	22t		sin(t	2	2	1)	 b)	 velocity	5	0

	 c)	 t	5		√
______

	p	1	1			<	2.04,	t	5	1
d)	 Accelerating	to	the	right	then	slowing	down,	turning	around,	

accelerating	to	the	left,	slowing	down,	turning	around	again,	
and	then	accelerating	to	the	right.

  4	 a)	 		
dy

 ___ 
dx

  	5	21	for	x	,	21,			
dy

 ___ 
dx

  	5	1	for	x	.	21

	 b)	 		
dy

 ___ 
dx

  	5	2			cos		x _____	
sin2		x

  	 c)	 		
dy

 ___ 
dx

  	5	(1	1		√
__

	x		)2	 3x	1			
3	√

__
	x  
 ____	

2
	 	

	 d)	 		
dy

 ___ 
dx

  	5	(2sin		x)e cos		x	 e)	 		
dy

 ___ 
dx

  	5			2	ln	x _____ x   

	 f)	 		
dy

 ___ 
dx

  	5	2			 3	__________	
	√

________

	(2x	1	1)3		
				or	2			 3	______________		

(2x	1	1)	√
______

	2x	1	1		
		

  5	 a)	 y	5	212x	1	38	
	 b)	 y	5			1	__	12			x	1			7	_	4		

  6	 a)	 y	5			2	_	3			x	1			5	_	3		
	 b)	 y	5	2		3	_	2			x	1	6

  7	 a)	 y	5		4x	2	4
	 b)	 y	5		2		1	_	4			x	1			1	_	4		

  8	 a)	 f	9(x)	5	(ln		2)2x	or	2x	ln		2
	 b)	 y	5	x 	ln	2	1	1
	 c)	 f	9(x)	5	2x		ln	2		0	for	any	x

  9	 a)	 		
dy

 ___ 
dx

  	5	2		cos	( 2x 2	  p __	
2

	  ) ;			
d	2y

 ___ 
dx	2

			5	24		sin		( 2x 2	  p __	
2

	  ) 

	 b)	   p __	4		,	0 	and	 		3p ___	4	 	,	0
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Answers

Exercise 13.3
  1	 a)	 y	9	5	x	2e x	1	2xe x	
	 b)	 y	9	5		√

_____
	1	2	x  	2			 x _______	

2	√
_____

	1	2	x  
  		or			 2	2	3x _______	

2	√
_____

	1	2	x  
  

	 c)	 y	9	5	1	1	ln	x	 d)	 y	9	5	cos2		x	2	sin2	x	or	2		cos2	x	2	1

	 e)	 		
y	9	5	xe x	2	ex

 ___________ 
x	2

	 		 f)	 y	9	5	2			 2	_______	
(x	2	1)2		

	 g)	 y	9	5	2(2x	2	1)2(7x	4	2	2x	3	1	3)

	 h)	 y	9	5			x		cos	x	2	sin	x  ____________ 
x	2

	 	

	 i)	 y	9	5			2xe x	1	e x	2	1		____________	
(e x	2	1)2	 		 j)	 y	9	5			 33	________	

(3x	1	2)2		

		 k)	 y	9	5	2x		ln(3x)	1			x	2	2	1	______	x   	or	  
2x	2		ln(3x)	1	x	2	2	1

		_________________ x   
	 l)	 y	9	5	0

  2	 a)	 y	5	2			1	_	2			x	1	2	 b)	 y	5			1	_	2			x	1			1	_	2			 c)	 y	5	5x	2	3

  3	 a)	 (21,	22e)	and	 3,			6	__	
e	3

		

	 b)	 (21,	22e)	is	a	minimum,	 3,			6	__	
e	3

		 	is	a	maximum

	 c)	 (i)	 h(x)	→	0	as	x	→	0	 	 (ii)	 h(x)	→		as	x	→	2
	 d)	 Horizontal	asymptote:	y	5	0	(x-axis)

	 e)

	 	

x

y

�4

�5

�6

�3

�2

�1

1

0

2

3

4

�2 �1 1 2 3

(�   3, 0)

(�1, �2e)

3,(         )6
e3

(   3, 0)

4

  4	 		d ___ 
dx

  (c				f	(x))	5			d ___ 
dx

  (c)	f	(x)	1	c					d ___ 
dx

  (f	(x))	5	0		f	(x)	1	c				d ___ 
dx

  (f	(x))

	 	 5	c						d ___ 
dx

  (f	(x))

  5	 a)	 (i)	(0,	0)	and	(4,	0)	 	 (ii)	 		4	__	
3

		,			256	___	
27

		 	 	 (iii)	 		8	__	
3

		,			128	___	
27

		

	 b)

	 	

x

y

�3

�2

�1

1

0

2

3

4

5

6

7

8

9

10

�1 1 2 3 (4, 0)(0, 0) 4 5 6

8
3 ,(             )128

27

(             )4
3 , 256

27

  6	 c)	 g 0(3.8)	5	0	and	g	0(3)	5			1	__	
3

			.	0,	g	0(4)	5	2			 2	___	
625

			,	0,	

	 therefore	graph	of	g	changes	concavity	from	up	to	down	at	
	 x	5	3.8,	verifying	that	graph	of	g	does	have	an	inflexion		

point	at	x	5	3.8

Exercise 13.4

  1	 	√
__

	2			by				
√

__
	2			___	

2
	 	

  2	 13		1	_	3				cm	by	6		2	_	3				cm

  3	 b)	 S	5	4x	2	1			3000	____	x   	 c)	 7.21		cm	3	14.4		cm	3	9.61		cm

  4	 x	5	5	√
___

	2p  	<	12.5		cm
  5	 x	<	3.62		m
  6	 Longest	ladder	<	7.02	m
  7	 d	<	2.64		km

Exercise 13.5
  1	 y	9	5	7(x	2	1)6

  2	 y	9	5	2			 1	___	
5x	2

		

  3	 y	9	5	2(3x	1	4)3(15x	1	4)

  4	 y	9	5			sin		x	1	sin		x	cos2		x  ________________	
cos2		x

   

  5	 y	9	5	6e	6x

  6	 y	9	5	3x	2	ln	x	1	x	2

  7	 y	9	5	4		cos		( 4x	2			p __	4			)	

  8	 y	9	5	22xe2x2

  9	 y	9	5			
3(ln	x)2

	______	x   

10	 y	9	5			1	2	2x	2	_______	
	√

______

	1	2	x	2		
		

11	 y	9	5	3x		ln	3

12	 y	9	5			2x	2	1	6x	1	2	___________	
(2x	1	3)2	 	

13	 y	9	5			2x 	sin		x	cos		x	1	x	2		________________	
cos2		x

   

14	 y	9	5			e x	cos		x	1	e x	sin		x  _______________	
cos2		x

   

15	 y	9	5			 2x	1	2	______________		
3	

3
	√
____________

		(x	2	1	2x	2	4)		
		

16	 y	9	5	22		sin(2x)	cos	(cos(2x))
17	 y	9	5	22e1	2	2x

18	 y	9	5	e x		ln(x	2)	1			2e x ___ x   

19	 y	9	5			e x	2	2	_______	
e x	2	2x

  

20	 y	9	5			3	_	2			(ln	2)8x

21	 a)

	 	 t

C

5

0

10

15

20

25

30

5 10 15 20 25

	 b)	 1°C/hr
	 c)	 C9(t)	5			p __	

2
				sin	( 		p ___	

12
		t	2			p __	

6
			)	

	 d)	 		p √
__

	2			____	4	 		<	1.11°C/hr

	 e)	 t	5	14	hrs,	C	5	31°
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22	 	( 			√
__

	6		
	___	

2
	 	,			5	__	

2
			)		and		( 2			

	√
__

	6		
	___	

2
	 	,	2			5	__	

2
			)	

23	 y	5	2		1	_	2		x	2			3	_	2		;	P(23,	0),	Q ( 0,	2			3	_	2			)	

24	 34.6		km/hr
25	 a)	 a	5	16	 b)	 a	5	254
	 c)	 If	x	.	0,	then	for	f	9(x)	5	0,	a	.	0	and	if	both	x	.	0	and	

	 	 a	.	0	then			
d 	2y

 ___ 
dx	2

			5			2a ___	
x	3

			1	2	is	always	positive;	hence,	graph	

	 	 of	f 	is	always	concave	up	–	and	no	maximum	is	possible.	
	 	 If	x	,	0,	then	for	f	9(x)	5	0,	a	,	0	and	if	both	x	,	0	and	

	 	 a	,	0	then			
d 	2y

 ___ 
dx	2

			5			2a ___	
x	3

			1	2	is	always	positive	–	and	again	

	 	 no	maximum	is	possible.
26	 y	5	2		2	_	3		x	1	4
27	 a)	 Stationary	pt:		( 0,			 1	____	

	√
___

	2p  
   ) ,	inflexion	pts:		( 1,			 1	_____	

	√
____

	2ep  
   ) 	and

	 	 		( 21,			 1	_____	
	√

____
	2ep  
   ) 	

	 b)	 As	x	→	6,	f	(x)	→	0;	horizontal	asymptote:	y	5	0	(x-axis)

	 c)

	 	
x

y

0

0.1

0.2

0.3

0.4

1�1�2�3 2 3

1,(             )1
2eπ

0,(            )1
2π

�1,(                )1
2eπ

28	 Tangent:	y	5		( 		p	1	2	_____	
2

	 		)		x	2			p	2	___	
8

	 		;	

	 normal:	y	5		( 2		 2	_____	
p	1	2

			)		x	1			p	2	1	4p ________	
4p	1	8

	 	

29	 		 8	_____	
p	1	4			metres	by			 4	_____	

p	1	4			metres	(or	1.26		m	by	0.56		m)

30	 a)	 4	metres
	 b)	 t	<	0.644	seconds,	s	5	5		m
	 c)	 t	<	3.79	seconds,	s	5	25		m
	 d)	 v (t)	5	3	cos	t	2	4	sin	t,	a(t)	5	23	sin	t	2	4	cos	t
	 e)	 t	<	5.36	seconds,	v	5	5	ms21

	 f)	 t	<	2.21	seconds,	s	5	0		m	and	v	5	25		ms21

Practice questions

  1

	

x

y

0

  2	 a)	(i)	 (25,	0)	and	(0,	0)	 (ii)	 	( 2		5	__	
3

		,			500	___	
27

			)		 (iii)	 	( 2		10	___	
3

		,			250	___	
27

			)	

	 b)

	 	

x

y

�15

�20

�10

�5

�

5

0
(0, 0)(�5, 0)

10

15

20

�1�2�3�4�5�6�7 1

(                )10
3 , 250

27

�(                )5
3 , 500

27

  3	 	( 		1	_	3		,	1	)	

  4	 y	5	3x	1	1
  5	 a)	 (i)	 a	5	24	 (ii)	 b	5	2
	 b)	 (i)	 f	9(x)	5	23x	2	2	4x	1	8

	 	 (ii)	 		
22	1	2	√

__
	7		
	_________	

3
	 	,			

22	2	2	√
__

	7		
	_________	

3
	 		 (iii)	 f	(1)	5	5.05

	 c)	 (i)	 y	5	8x	 (ii)	 x	5	22
  6	 a)	 (i)	 v	(0)	5	0	 (ii)	 v	(10)	<	51.3
	 b)	 (i)	 a	(t)	5	9.9e20.15t	 (ii)	 a	(0)	5	9.9
	 c)	 (i)	 66	 (ii)	 0
	 	 (iii)	 as	object	falls	it	approaches	terminal	velocity

  7	 a)	 	( 2		2	__	
3

		,	2		149	___	
27

			)		is	a	minimum,	(24,	13)	is	a	maximum

	 b)	 	( 2		7	__	
3

		,			101	___	
27

			)		is	an	inflexion	point

  8	 a)	 (i)	 g	9(x)	5	2		3	___	
e	3x  

	 	 (ii)	 	e	3x	.	0	for	all	x ;	hence,	2		3	___	
e	3x  	for	all	x	–	therefore,	

f	(x)	is	decreasing	for	all	x
	 b)	 (i)	 e	1	2	 	 (ii)	 g	9 ( 2			1	_	3			)		5	2	3e
	 c)	 y	5	2	3ex	1	2

  9	 b)	 f	9(3)	5	0	and	f		0(3)	.	0	⇒	stationary	point	at	x	5	3	and	
graph	of	f 	is	concave	up	at	x	5	3,	so	f	(3)	is	a	minimum

	 c)	 (4,	0)
10	 a)	 2		 4	________	

(2x	1	3)3			 b)	 5	cos	(5x)e	sin(5x)

11	 A	5	1,	B	5	2,	C	5	1

12	 a)	 (i)	 		1	__	x  	 (ii)	 2		1	__	
x	2

		

	 b)	 (ii)	 When	x	5	e,			
dy

 ___ 
dx

  	5	0,			
d	2y

 ___ 
dx	2

			5	2		1	__	
e	3

			,	0	and	f	(e)	5			1	__	e  ;	

	 	 	 therefore,	the	curve	has	a	maximum	value	of			1	__	e  	at	
	 	 	 x	5	e
	 c)	 x	5	4	or	x	5	2
	 	

x

y

�0.5

�1

0

0.5

2 4 6 8 10

	

13	 a)	 		x 	4	1	3x	2	________	
(x	2	1	1)2			 b)	 2e x	cos(2x)	1	e x	sin(2x)
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Answers

14	 a	5	1
15	 a)	 	x	5	3;	sign	of	h	0(x)	changes	from	negative	(concave	

down)	to	positive	(concave	up)	at	x	5	3
	 b)	 	x	5	1;	h	9(x)	changes	from	positive	(h	increasing)	to	

negative	(h	decreasing)	at	x	5	1
	 c)	

0

y

x

2

�2

�4

�6

4

6

1�1�2 2 3 4 5 6 7 8

16	 y	5	2ex	2	e
17	 h	5	8		cm,	r	5	4		cm
18	 Maximum	area	is	32	square	units;	dimensions	are	4	by	8
19	 a)	 E	 b)	 A	 c)	 C

20	 y	5	2		1	__	5			x	1			32	___	5		

Chapter 14
Exercise 14.1
  1	 		x	2	__	

2
			1	2x	1	c    2	 t	3	1	t	1	c

  3	 		x __	
3

			2			x	4	___	
14

			1	c    4	 		2t	3	___	
3

	 		1			t	
2
	__	

2
			2	3t	1	c

  5	 		5	u			
7
	_	5				___	7	 		2	u	4	1	c    6	 		

4x √
__

	x  
 _____	

3
	 		2	3	√ 

__
	x  	1	c

  7	 23	cos	u	1	4	sin	u	1	c    8	 t	3	1	2	cos	t	1	c

  9	 		
4x	2	√

__
	x  
 ______	5	 		2			

10x √
__

	x  
 ______	

3
	 		1	c  10	 3	sin	u	2	2	tan	u	1	c

11	 		1	__	
3

		e	3t	2	1	1	c  12	 2	ln|t|	1	c

13	 		1	__	
6

			ln	(3t	2	1	5)	1	c  14	 e	sin	u	1	c

15	 		
(2x	1	3)3

	________	
6

	 		1	c  16	 2		5x	4	___	4	 		1			2x	3	___	
3

	 		1	cx	1	k

17	 2  x	5	__	5			1			x	4	__	4			1			x	2	__	
2

			1	2x	2			11	___	
20

		  18	 		4t	3	___	
3

	 		1	sin	t	1	ct	1	k

19	 3x	4	2	4x	2	1	7x	1	3  20	 2	sin	u	1			1	__	
2

			cos	2u	1	c

21  e 	x	2	 +	c  22  		1	_	
3

		(x 3	–	7)6	+	c

23  		3	_	
2

		sin	x 2	+	c  24  		1	__	
15

		(3	sin	x	–	2)5	+	c

25  –2	cos		√
_

	x 		+	c  26  ln		| x 3	+	1	|	+	c

27  		1	_	
6

		(x 4	+	1	)			
3

	
_
	2				+	c  28  		1	_	

3
		(1	+	2	sin	x	)			

3
	

_
	2				+	c

29  sin(x 2	+	3x)	+	c  30  		1	__	p   cos(7	–	px)	+	c

Exercise 14.2
  1	 24    2	 40

  3	 		24	___	
25

		    4	 0

  5	 		
176	√

__
	7			2	44
	__________	5	 	    6	 0

  7	 2    8	 2268

  9	 		64	___	
3

		  10	 2

11	 ln	( 		11	___	
3

			)		 12	 		44	___	
3

			2	8	√
__

	3		

13	 3  14	 	√
__

	p  	1	1

15	 a)	 6	 b)	 6	 c)	 12

16  		1	__	
12

		

17  0.001234

18  0

19   0

20  –2

Exercise 14.3
  1	 		125	___	

6
	 	    2	 		9p	2	____	

8
	 		1	1

  3	 4	√
__

	3			   4	 		10
	__	3		

  5	 		8	__	21		    6	 		125
	___	24		

  7	 		13
	__	12		    8	 4p

  9	 		59
	__	12		

10	 Approx.	361.95	(4	points	of	intersection!)

11	 3		ln		2	2			63	___	
128

		 

12	 Between	2		p __	
6

			and			p __	
6

		,		√ 
__

	3				ln		( 		3	__	4			)		2	2	√ 
__

	3			1	4

Exercise 14.4

  1	 		127p _____	
27

	 	    2	 		64	√
__

	2		p
 ______	

15
	 	

  3	 		70p ____	
3

	 	    4	 6p

  5	 9p    6	 2p

  7	 	( 			√
__

	3		
	___	

2
	 		1	1	)	p    8	 		512p _____	

15
	 	

  9	 Approx.	5.937p  10	 		32p ____	
3

	 	

Exercise 14.5
  1	 		70

	__	3				m,	65		m 
  2	 8.5		m	to	the	left,	8.5		m
  3	 1		m,	1		m 
  4	 2		m,	2	√

__
	2				m

  5	 18		m,	28.67		m	

  6	 		4	__	p  		m,			4	__	p  	m

  7	 3t,	6		m,	6		m 

  8	 t	2	2	4t	1	3,	0,	2.67		m

  9	 1	2	cos	t,		( 			3p ___	
2

	 		1	1	)		m,		( 			3p ___	
2

	 		1	1	)		m

10	 4	2	2	√
_____

	t	1	1		,	2.43	m,	2.91		m

11	 3t	2	1			 1	________	
2(1	1	t)2			1			3	__	

2
		,	11.3		m,	11.3		m

Practice questions
  1	 a)	 p	5	3	 b)	 3	square	units

  2	 a)	 (0,	1)	 b)	 V	5		∫ 
		0

		
ln	2

		( 	e 			
x
 _	2				)		

2
dx

  3	 a	5	e	2

  4	 a)	 y	5			x __ e  
  5	 a)	 (i)	400		m	 (ii)	 v	5	100	2	8t,	60		m/s
	 	 (iii)	8		s	 (iv)	 1344	m
	 b)	 Distance	needed	625
  6	 b)	 2.31	 c)	 2p	cos	x	2			x	2	__	

2
			1	c;	0.944
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  7	 ln		3
  8	 a)	 (ii)	 (1.57,	0);	(1.1,	0.55);	(0,	0),	(2,	21.66)

	 b)	 x	5			p __	
2

			 c)	 (ii)	 	∫ 
		0

		
		p 
__	2		

	x	2				cos	x dx	 d)	 		p
2
	___	

2
			22

  9	 a)	 2p
	 b)	 Range:	{y |	20.4	,	y	,	0.4}
	 c)	 (i)	 23	sin	3	x	1	2	sin	x	 (iii)	 		

2	√
__

	3		
	____	

9
	 	

	 d)	 		p __	
2

		

	 e)	 (i)	 		1	_	3			sin	3	x	1	c	 (ii)	 		1	_	3		

	 f)	 arccos			
	√

__
	7		
	___	

3
	 		<	0.491

10	 c)	 3.696		72	 d)	 	∫ 
		0

		
p

	(p	1	x 	cos	x)dx 	 e)	 p	2	2	2	<	7.869		60

11	 a)	 (i)	 10x	1	1	2	e	2x	 (ii)	 		ln	5	___	
2

	 		<	0.805

	 b)	 (i)	 f	21(x)	5			
ln	(x	2	1)

	________	
2

	 		 c)	 v	5	p		∫ 
		0

		
ln	2

	(1	1	e	2x)2	dx 

Chapter 15
Exercise 15.1
  1	 a)	 Discrete	 b)	 Continuous	
	 c)	 Continuous	 d)	 Discrete	
	 e)	 Continuous	 f)	 Continuous
	 g)	 Discrete	 h)	 Continuous	
	 i)	 Continuous	 j)	 Discrete	
	 k)	 Continuous	 l)	 Continuous
	 m)	Discrete
  2	 a)	 0.4
	 b)

	 	
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

	 c)	 1.85,	1.19
  3	 a)	 0.26	 b)	 0.37	
	 c)	 0.77	 d)	 16.29	
	 e)	 8.126
  4	 a)	 0.969	 b)	 0.163	
	 c)	 3.5
  5	 k	5			1	__	30		

x 12 14 16 18

P(X 5 x) 6k 7k 8k 9k

  6	 a)	 k	5			1	__	10			 b)	 		37
	__	60			 c)	 		19

	__	30		
	 d)	 E(x)	5	16,	SD	5	7
  7	 a)	 		1	__	50		

	 b)	

	 	
0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4

	 c)	 		17
	__	25		

	 d)	 m	5	1.2;	var.	5	1.08
  8	 a)	 P(x 5 18)	5	0.2,	P(x 5 19)	5	0.1,	symmetric	distribution
	 b)	 m	5	17,	var.	5	1.2
  9	 a)	 m	5	1.9,	SD	5	1.34	
	 b)	 between	0	and	5
10	 k	5	0.667,	E(x)	5	5.44
11	 a)	 k	50.3	or	0.7	
	 b)	 For	k	5	0.3:	E(x)	5	2.18;	for	k	5	0.7:	E(x)	5	1.78

12	 a)

	 	

y 0 1 2 3

P(Y	5	y) 		1	__	27		 		2	_	9		 		4	_	9		 		8	__	27		

	 b)	 2
13	 a)	 k	5			1	__	10			 b)	 		1	_	2		

14	 a	=			1	_	
3

			
	 With	this	value	the	table	is	as	follows:

	

x 1 2 3 4

P(x) 		2	_	3		 		1	_	9		 		1	__	18		 		1	_	6		

	 E(x)	=			31	__	
18

		

15	 a)	 k	=			1	_	
9

		

	 b)	 E(x)	=			11	__	
3

		

	 c)	 Var(x)	=			14	__	
9

		

Exercise 15.2
  1	 a)

	 	

x 0 1 2 3 4 5

P(X	5	x) 0.010		24 0.0768 0.2304 0.3456 0.2592 0.077		76

	 b)

	 	
0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5

	 c)	 (i)	 Mean	5	3,	SD5	1.095
	 	 (ii)	 Mean	5	3,	SD5	1.095

	 d)	 Between	2	and	4,	and	between	1	and	5

	 e)	 0.8352,	0.990.	Slightly	more	than	the	empirical	rule.
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Answers

  2	 a)	 0.001		294		494	 b)	 0.000		000		011

	 c)	 0.999		999		99	 d)	 0.999		999		66

	 e)	 Mean	5	12,	SD	5	2.19

  3	 a)

	 	

k P(x	<	k)

0 0.117		65

1 0.420		17

2 0.744		31

3 0.929		53

4 0.989		07

5 0.999		27

6 1

	 b)	

Number	of	
successes	x

List	the	
values	

of	x

Write	the	
probability	
statement

Explain	it,	if	
needed

Find	the	
required	

probability

At	most	3 0,	1,	2,	3 P(x		<	3) P(x	<	3) 0.929		53

At	least	3 3,	4,	5,	6 P(x	>	3) 12	P(x	<	2) 0.255		69

More	
than	3

4,	5,	6 P(x	.	3) 1	2	P(x	<	3) 0.070		47

Fewer	
than	3

0,	1,	2 P(x	<	2) P(x	<	2) 0.744		31

Between	
3	and	5	
(inclusive)

3,	4,	5 P(3	<	x	<	5)
P(x	<	5)2	
P(x	<	2)

0.254		96

Exactly	3 3 P(x	5	3) P(x	5	3) 0.185		22

  4	 a)	 k P(x	<	k)

0 0.027		99

1 0.158		63

2 0.419		90

3 0.710		21

4 0.903		74

5 0.981		16

6 0.998		36	

7 1

b)	

Number	of	
successes	x

List	the	
values	of	x

Write	the	
probability	
statement

Explain	it,	if	
needed

Find	the	
required	

probability

At	most	3 0,	1,	2,	3 P(x	<	3) P(x	<	3) 0.710		21

At	least	3 3,	4,	5,	6,	7	 P(x	>	3) 1	2	P(x	<	2) 0.580		10

More	
than	3

4,	5,	6,	7 P(x	.	3) 1	2	P(x	<	3) 0.289		79

Fewer	
than	3

0,	1,	2 P(x	<	2) P(x	<	2) 0.419		90

Between	
3	and	5	
(inclusive)

3,	4,	5 P(3	< x	< 5)
P(x	<	5)	2	
P(x	<	2)

0.561		26

Exactly	3 3 P(x	5	3) P(x	5	3) 0.290		304

  5	 a)	 p	is	not	constant,	trials	are	not	independent
	 b)	 p	becomes	constant
	 c)	 n	5	3,	p	5			5	_	8		

y 0 1 2 3

P(Y	5	y) 0.052		73 0.263		672 0.439		453 0.244		141

	 d)	 0.755		86	 e)	 1.875	 f)	 0.703		125	 g)	 0.947		27

  6	 a)	 0.107		374	 b)	 0.993		63	 c)	 0.892		63	 d)	 2

  7	 a)	 0.817		073	 b)	 1	 c)	 0.016		1776

  8	 a)	 0.033		833	 b)	 0.024		486	 c)	 0.782		722

  9	 a)	 0.75	 b)	 0.032		5112	 c)	 0.172		678

10	 a)	 0.043		1745	 b)	 0.997		614	 c)	 0.011		2531
	 d)	 0.130		567	 e)	 0.956		826	 f)	 10
	 g)	 3	 h)	 4,	16
11	 a)	 3	 b)	 0.101		308	 c)	 0.000		214		925
12	 a)

x 0 1 2 3 4 5

P(x) 0.031		25 0.156		25 0.312		50 0.312		50 0.156		25 0.031		25

	 b)	 0.031		25	 c)	 0.031		25
	 d)	 0.968		75	 e)	 0.968		75
	 f)	 a)

x 0 1 2 3 4 5

P(x) 0.327		68 0.409		60 0.204		80 0.051		20 0.006		40 0.000		32

	 	 b)	 0.327		68	 c)	 0.000		32
	 	 d)	 0.672		32	 e)	 0.999		68

Exercise 15.3
(Some	answers	are	rounded)
  1	 a)	 0.5	 b)	 0.499		571	 c)	 0.158		655
	 d)	 0.682		690	 e)	 0.022		750	 f)	 0
  2	 a)	 0.769		86	 b)	 0.161		514	 c)	 0.656		947
	 d)	 0.343		053
  3	 a)	 0.008		634	 b)	 0.982		732
  4	 1.28
  5	 1.96
  6	 a)	 0.066		807	 b)	 0.682		69	 c)	 678.16
	 d)	 134.898
  7	 a)	 1.8%	 b)	 509.975	 c)	 5.71
  8	 a)	 0.9696	 b)	 0.546		746
  9	 a)	 1	day	 b)	 29	days	 c)	 112	days
10	 1.56
11	 30.81
12	 m	5	21.037,	s	5	4.252
13	 m	5	18.988,	s	5	0.615
14	 a)	 0.655		422	 b)	 0.008		198	 c)	 82	bottles
15	 a)	 0.227		319	 b)	 0.55%	 c)	 29.678
	 d)	 229.182
16	 a)	 Not	likely:	chance	is	0.14%	 b)	 15.87%
	 c)	 68.27%	 d)	 5396	 e)	 43		785
17	 a)	 6.817	 b)	 3.4315
	 c)	 m	5	64.14,	s	5	7.545
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Practice questions
  1	 	a)	 34.5%	 b)	 0.416	 c)	 3325
  2	 a)	 (i)	 0.393	 (ii)	 0.656
	 b)	 50
  3	 a)	 0.1	 b)	 10	 d)	 0.739

  4	 a)	 		35
	___	128			 b)	 		7	__	32			 c)	 		91

	___	128		

  5	 a)	 a	5	20.455,	b	5	0.682
	 b)	 (i)	 0.675	 (ii)	 0.428

	 c)	 y

xt � 57
4.4

90%

	 	 (ii)	 t	5	62.6
  6	 a)	 m	5	50	2	10(0.522		44)	<	44.8
	 b)	 H1:	the	mean	speed	has	been	affected	by	the	campaign.
	 c)	 One-tailed	test,	as	we	are	interested	in	a	decrease	in	the	

	 mean	only	(not	also	an	increase).
  7	 a)	 70.1%	 b)	 0.002		26	 c)	 p-value	5	5.48%
  8	 a)	 0.0808	
	 c)	 m	5	25.5,	s	5	0.255
	 d)	 12		500
  9	 a)	 (i)	 0.345	 (ii)	 0.115	 (iii)	 0.540
	 b)	 0.119	 c)	 737
10	 a)	 15.9%	 b)	 227		cm
11	 a)	 0.0912	 b)	 a	5	251,	b	5	369

12	 a)	 a 5 21,	b 5 0.5	
	 b)	 (i)	 0.841	 (ii)	 0.533
	 c)	 (i)	 y

xc � 0.76
0.06

3%

	 	 (ii)	 0.647
13	 a)	 2	
	 b)	 0.182	
	 c)	 0.597
14	 m	5	66.6,	s	5	22.6
15	 a)	 0.8
	 b)	 (i)	

R

G

R

G

R

G

2
3

1
3

4
5

3
5

1
5

3
5

4
15

1
15

4
15

2
5

	 	 (ii)

	 	 	

X 0 1 2

P(X	5	x) 		1	__	15		 		8	__	15		 		2	_	5		

	 c)	 		3	__	10			 d)	 		1	_	9		

16	 a)	 0.129		886	 b)	 0.676		714	 c)	 2
17	 a)	 0.1829	 b)	 0.3664
18	 a)	 		1	_	5			 b)	 		7	_	5		
19	 a)	 (i)	 0.217%	 (ii)	 0.012%
	 b)	 84.13%
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Index

Page numbers in italics refer to information boxes and 
hint boxes.

A
absolute values 4–5
accelerations 396–401, 509, 513
actuaries 518
additive inverses 5
al-Khowarizmi 1
algebra 1
algebraic expressions 14–20
algebraic functions 18–20
amplitudes 185
angles 165, 208
  bearings 269
  complementary angles 212
  degrees 165–6, 166, 167–9
  depression 212–5
  elevation 212–5
  incidence 474
  radians 165–9, 370, 443, 476
  refraction 474
  vectors 270–1
anti-derivatives 484–6, 488, 496
arcs 166, 169–70
areas
  integration 492–5, 499–504
  sectors 225
  triangles 222–5
Aristotle 579
arithmetic 578
arithmetic means (see means)
arithmetic operations 5
arithmetic sequences 83–5
arithmetic series 93–4
asymptotes 38–9, 115, 370, 371
average velocities 394
axes of symmetry, parabolas 66
axioms 581, 582, 584, 585, 586
  completeness 586
  consistency 586

B
Babylonians 166
base vectors 260
bases (exponents) 131
bearings 269
Bernoulli, Bernoulli & Bernoulli 121
binomial coefficients 101–3
binomial distribution 534–8
binomial experiments 535–6
binomial probability model 537
binomial theorem 104–5
binomials 14, 100–1
Bolyai, Janos 385
bounded intervals 3
box plots 297–301
Briggs, Henry 126
Buffon, Count 338

C
calculus 368, 381
Cartesian coordinate system 33
categorical (qualitative) data 280
Cayley, Arthur 145
Celsius scale 32
chain reasoning 582
chain rule 452–8, 459, 488, 489
change of base formula 131–2
circular functions (see trigonometric functions)
closed intervals 2
column vectors 146
common logarithmic function 128
commutative property 150, 262
complementary angles 212
complements (events) 344
completeness, axioms 586
completing the square 66–9
components, vectors 257–8, 260, 261, 414
composite functions 41–4, 46–7
  derivative 452–8
  domains 44
  ranges 44

Index
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compound fractions 19–20
compound interest 87–90, 119–20, 122–3
concave graphs 399–400, 401
conditional probabilities 331–5
conjectures 582
conjugates 15
consistency, axioms 586
constants of integration 488
constructivism 581
continuous compound interest formula 123
continuous functions 389, 390
continuous random variables 519, 542–3
coordinate planes 23, 411
coordinates 1
cosine function 173–80, 193, 200–201, 209–12, 

218–22
  derivative 443–5
  domain 176
  graph 181–9
cosine rule (law of cosines) 233–37
critical points 390
critical values (optimization) 469
cube roots 7
cumulative frequency distributions 283–5, 304

D
data sets 279
definite integrals 494–8, 509, 511
degrees (angles) 165, 166, 167–9
degrees (polynomials) 65
denominators 8–9, 20
density functions (probability) 542–3
dependant variables 33
depression (angles) 212–5
derivatives 377–86
  chain rule 452–8, 459, 488, 489
  composite functions 452–8
  cosine function 443–5
  exponential functions 445–8, 458
  first derivative test 392–3, 476–7
  natural logarithmic function 448–51
  product rule 460–63
  quotient rule 463–7
  second derivative test 401–2, 477
  second derivatives 395–401

  sine function 442–3
  tangent function 445, 464–5
Descartes, René 33, 404
descriptive statistics 279
determinants 157
diagonal matrices 146
difference of two squares 15
difference quotients 375
differentiable functions 390
Dirac, Paul 587–8
directed line segments 255
direction angles, vectors 264–6, 420–21
discrete random variables 519, 521, 525, 534
disjoint events 344, 351
displacements 394, 396–8, 508–513
distance formula 25–6, 257, 263
distances 397, 508–513
distributive property 15, 528, 262
domains 34, 35–6, 37, 38
  composite functions 44
  exponential functions 115
  inverse functions 46, 47, 49–50
  logarithmic functions 126
  one-to-one functions 48–9
  trigonometric functions 176, 181
dot (scalar) products 270–4, 419–20
double angle identities 201

E
e (number) 121–4
Einstein 587
elevation (angles) 212–5
elimination 28–9
elliptical geometry 585
empty set 3
equally likely outcomes 346
equations 22
etymologies
  algebra 1
  quadratic 65
  secant 376
  tangent 376
  trigonometry 164
Euclid 582, 584
Euclid’s postulates 584–5
Euler, Leonard 38, 123



638

Index

evaluation theorem 497
even functions 183
events 340–41, 419–20
expansion (algebra) 15–16
expected values 524–5
explicit definitions, sequences 81
exponential equations 134–7
exponential functions 112–17, 445–6
  derivative 446–8, 458
  domain 115
  e (number) 121–4
  graph 115–117
  inverse function 126
  natural exponential function 124
  range 115
exponential models 117–20, 448
exponents 9–12
expressions (algebra) 14–20
extremes (functions) 391

F
factorization (algebra) 16–18
  quadratic functions 72
Fahrenheit scale 95
Fermat, Pierre 22, 468
Fibonacci sequence 595
finite sequence 81
first derivative test 370–71, 476–7
five number summaries 297
formalism 581, 592
formulae 22
frequency distribution tables 281–2
functions 34–40
  composite functions 41–44, 46–7
  continuous functions 389, 390
  differentiable functions 390
  domains 34, 35–6, 37, 38
  graphs 53–64
  identity function 48
  inverse functions 45–7, 48–52
  limits 371
  one-to-one functions 48–9
  ranges 34, 35–6, 37, 38
fundamental theorem of calculus 496–7

G
Galileo 587
geometric sequences 85–90
geometric series 94–100
geometry 578
Gibbs, J. Williard 255
Godel, Kurt 586
golden ratio 593–5
gradients (slopes) 23, 25, 239–41, 352–71
graphs 22–6, 53–64
  areas 492–5, 499–504
  cosine function 187–89
  exponential functions 115–17
  logarithmic functions 127–8, 129
  normal lines 406–7
  quadratic functions 66–8, 72–3
  reflections 57–85
  secant files 375, 385
  sine function 181–89
  slopes 23, 25, 239–41, 373–7
  stretches 59–64
  tangent function 189–91
  tangent lines 374–5, 403–6
  translations 54–7
grouped data 300–301

H
half-lives 118, 543–5
half-open intervals 2
haphazard events 339
health-adjusted life expectancies 377–8
Hersch, Reuben 591–3
Hilbert, David 586
histograms 282–3
horizontal stretches 60–3
horizontal translations 55–6
humanism 592
hyperbolic geometry 585
hypotenuses 208

I
identities 22
identity function 48
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identity matrices 149–50
incidence (angles) 474
indefinite integrals 486
independent events 351, 357–8
independent variables 33
indices (exponents) 7
infinite sequences 81
infinite sums (see series)
infinity symbol (∞) 38
inflexion points 399–401
instantaneous velocities 394
integers 2
integrands 486
integration 487–92
  areas 492–6, 500–504
  definite integrals 494–8, 509, 511
  substitution 489–92
  volumes 505–7
interest 87–9
interquartile ranges (IQRs) 296–7, 298
intersections (events) 350
intersections (lines) 426
intersections (sets) 3
intuition 589–91
intervals 2–3
invariants 578
inverse functions 45–52
  domains 46, 47, 48–52
  exponential functions 126
  ranges 46, 47
inverse matrices 155–9
inverse normal distribution 550–53
inverse operations (see also additive inverses, 

multiplicative inverses) 46
irrational numbers 2

J
Jorgensen, Palle 588

K
kinematics 508

L
Laplace, Pierre-Simon 126
law of cosines 233–7
law of sines 227–3, 242, 244

Leibniz, Gottfried 381, 460
Leibniz notation 367, 374
limits 369–72, 375–6
line segments 208
linear equations (see also systems of equations) 23, 

153–4
linear functions 65
linear regression 307–316
lines
  three-dimensional space 423–30
  two-dimensional space 23–5, 239–41
Lobachevsky, Nicolai 585
logarithmic functions 125–132
  common logarithmic function 128
  graph 127–8, 129
  natural logarithmic function 128

M
magnitudes (vectors) 255, 263, 412
mappings (see also functions) 579
matrices 144–8, 155–9
  addition 147
  determinants 157
  identity matrices 149–501
  multiplication 148–51
  multiplicative inverses 155–9
  subtraction 147
maxima 390–91, 392–3, 401–2, 468
mean value theorem 485–6
means 288, 289, 300, 302
medians 288, 299–300
midpoints 26
minima 390–91, 392–3, 401–2, 468, 471
modes 288, 290, 291
monomials 14
Monty Hall game 590–91
multiplication rule (probabilities) 351, 354
multiplicative inverses 5, 54
  matrices 155–9
mutually exclusive events 344, 350

N
Napier, John 126
natural exponential function 124
  derivative 446–8
natural logarithmic function 128
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Index

  derivative 448–50
natural numbers 2
negatively skewed distributions 292
Newton, Isaac 381
Newton notation 388, 395
Newton’s law of cooling 448
non-Euclidian geometries 585
non-rigid transformations 59
normal distribution 542–9
  inverse normal distribution 550–53
  standard normal distribution 545
normal lines 406–7
numerical (quantitative) data 280

O
odd functions 183
ogives 283, 298–9
one-to-one correspondence 1
one-to-one functions 48–9
open intervals 2
optimization 468–74
ordered pairs 23, 33
Oughtred, William 126
outliers 293, 298

P
parabolas 66, 389
parallel lines 425
parallel vectors 259, 271, 414, 423
parameters (algebra) 22, 154
parameters (statistics) 288, 289
parametric equations 423–4, 427
partial sums 91
Pascal’s triangle 101–2, 104
Pearson, Karl 338
percentiles 295–6
periodic functions 173, 442
perpendicular lines 25, 406
perpendicular vectors 271, 419
phase shifts 187
Plato 580–1
Platonism 581, 592, 593
polynomials 14–18
population growth 89–90, 448
populations (statistics) 278, 293
position vectors 257

positively skewed distributions 292
power functions 380
powers (see exponents)
primitive notions 579
principal square roots 7, 39
principal of least time 468, 474
probabilities 337–8, 344–6
  conditional probabilities 352–6
probability distributions 520–23
  binomial distribution 534–8
  density functions 541–2
  expected values 524–5
  normal distribution 542–53
  standard deviations 526–8
probability models 339
probability tables 347
product rule (derivatives) 460–63
projections 271
proofs 582–3
proper classes 580
proper subsets 2
Pythagoras’ theorem 22, 25, 209, 253, 257
Pythagorean identities 201

Q
quadratic equations 69–71
quadratic formula 68, 70
quadratic functions 65–73, 388
  factorization 72
  graph 66–8, 72–3
qualitative data 280
quantitative data 280
quartiles 296, 299, 550
quotient rule (derivatives) 463–7

R
radians 167, 443, 476
radicals 7–9
radioactive materials 118, 448, 521
random events 339
random variables 518–19
  continuous random variables 519, 542–3
  discrete random variables 519, 521, 525, 634
ranges (data) 292–3, 297
ranges (functions) 34, 35–6, 37, 38
  composite functions 44
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  exponential functions 115
  logarithmic functions 126
  inverse functions 46, 47
  one-to-one functions 48, 49
  trigonometric functions 176
rational functions 74–76
rational numbers 2
real number line 1, 176
real numbers 1–5
recursive definitions, sequences 82, 86
reflections 57–85
refractions (angles) 474
relations 33, 36
relative cumulative frequency distributions 283
relative frequency theory 343
resolving, vectors 266
right triangles 208–15, 243
rigid transformations 59
roots (see also solutions) 7
row vectors 146
Russell, Bertrand 579, 598
Russell’s paradox 580

S
sample spaces 339–40
samples 278, 293
scalar products 270–74, 419–20
scalars 148, 255, 258–9
scale factors 59
scientific notation 12–14
Searle, John 591
secant lines 375, 385
second derivative test 402–2, 477
second derivatives 395–400
sectors 170–1
self-inverse functions 48
semantic method 583
sequences 81–2
  arithmetic sequences 83–5
  geometric sequences 85–90
series 81–99
  arithmetic series 93–4
  geometric series 94–9
  sigma notation 91–3
sets, 2–3, 340, 579, 580
sexagesimal number system 164

shrinks (see stretches)
sigma notation 91–3
significant figures 13
similar triangles 209
simultaneous equations (see also system of 

equations) 27–30
sine function 173–90, 193, 200–201, 209–12, 214–18
  derivative 442–3
  domain 176, 181
  graph 188–9
sine rule (law of sines) 221–3, 242, 244
singular matrices 157
skew lines 424, 425
skewed distributions 291–2
slide rules 126
slopes 23, 25, 239–41, 373–7
Snell’s law 474
socially constructed facts 591
solids of revolution 506
solution sets 22, 23, 153
speeds 397, 509
square roots 7
standard deviations
  data 293–5, 300, 301, 302
  random variables 526–8
standard form (scientific notation) 12–14
standard normal distribution 545
stationary points 389–90, 391–2, 401–2
statistics 288, 289
stretches 59–64
submatrices 146
subsets 2
substitution (integration) 489–91
substitution (simultaneous equations) 29–30
surds (radicals) 7–9
surface area 246
symmetric distributions 291
syntactic method 583
systems of equations (see also simultaneous 

equations) 27–9, 158–9

T
tangent function 173–80, 193, 209–11, 219–21
  derivative 445, 464–5
  domain 176
  graph 189–91
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Index

tangent lines 374–5, 403–6
terminal velocities 573
Thales of Miletus 209
theorems 582
three-dimensional trigonometry 245–7
total change 496
Towers of Hanoi 568
transformations (see reflections, stretches and 

translations)
translations 54–7
tree diagrams 346–7
triangular matrices 147
triangular rule 413
trigonometric equations 193–200
trigonometric functions 173–80, 209–11, 218–22
  domain 176
  graphs 181–91
  range 176
trigonometric identities 200–204, 221
trigonometry 164–5
trinomials 14

U
unbounded intervals 3
unions (events) 350
unions (sets) 3
unit circle 167
unit vectors 260, 263, 415–17

V
variables (statistics) 296
variances
  data 293, 295, 300, 304
  random variables 525–7
vector equations 427–8
vectors 146, 254–62, 412–17
  addition 259–60
  base vectors 260
  components 257–8, 260, 261, 414
  direction angles 264–6, 420–21
  parallel vectors 259, 271, 414, 423
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