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Introduction

This textbook comprehensively covers all of the material in the syllabus
for the two-year Mathematics Standard Level course in the International
Baccalaureate (IB) Diploma Programme. A new syllabus for each of the
IB mathematics courses was issued in early 2012 for which students will
first take exams in May 2014. This second edition is specifically designed
for the 2014 Standard Level syllabus. Students will first be taught the
course with this syllabus in the autumn of 2012.

Content

As you will see When you look at the table of contents, the 'six syllabus O T —
topics (see margin) are fully covered, though some are split over different ~ Level

chapters in order to group the information as logically as possible. The Syllabus topics
textbook has been designed so that the chapters proceed in a manner that 1 Algebra

supports effective learning of the necessary concepts and skills. Thus — 2 Functions and equations
although not absolutely necessary — it is recommended that you read and 3 Circular functions and
study the chapters in numerical order. It is particularly important that all trigonometry

of the content in the first chapter, Fundamentals, is thoroughly reviewed 4 Vectors

and understood before studying any of the other chapters. It covers most 5 Statistics and probability
of the presumed knowledge for the course including the terminology, 6 Calculus

notation and techniques that are essential for successful completion of the
Mathematics Standard Level course.

The previous syllabus for Mathematics Standard Level contained a topic
on matrices. This topic is not in the 2014 syllabus, resulting in most of the
content on matrices being removed. Matrices is an interesting and practical
area of mathematics — so we decided to keep the chapter Matrix Algebra
(Chapter 5) from the first edition. However, you could skip Chapter 5 and
still cover the entire syllabus.

Other than the final three chapters, each chapter has a set of exercises at the
end of each section. Also, at the end of each of these chapters (except for
Chapter 1) there is a set of practice questions, which are designed to give
students practice with exam-like questions. Many of these end-of-chapter
practice questions are taken from past IB exam papers. Near the end of the
book, just before the index, you will find answers to all of the exercises and
practice questions that appear in this textbook.

There are numerous worked examples throughout the textbook, showing
you how to apply the concepts and skills you are studying.
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Example 9
This example appears in . . .
Section 2 of Chapter 7 Triangle Find the sine, cosine and tangent of the obtuse angle that measures 150°.
Trigonometry.
Solution
Vi The terminal side of the angle forms a 30° angle with the x-axis. The sine
values for 150° and 30° will be exactly the same, and the cosine and tangent
(xy (% )7 values will be the same but of opposite sign. We know that
300’/1_5N,"i;,00 sin30° = %, c0s30° = g and tan 30° = g
= o —>—> )
X X x Therefore, sin 150° = %, cos 150° = —? and tan 150° = —?.

Chapter 17 contains two full-length Paper 1 and Paper 2 sample exams.
Solution keys for these exams are available from the authors’ website.

Finally, you will find a Theory of Knowledge chapter, which should
stimulate you to think more deeply and critically about the nature of
knowledge in mathematics and the relationship between mathematics and
other subject areas.

Website support

At www.pearsonbacconline.com you will find a selection of free

online learning resources supporting the material in this book. More
comprehensive support for teachers who adopt the textbook will be
available at the authors’ website: www.wazir-garry-math.org, which will be
regularly updated. You will be required to register before gaining access to
materials on the authors’ website.

The following will be available from the authors’ website:
Further practice/mock exams and mark schemes
Additional exercises with solutions
Internal Assessment (‘Mathematical Exploration’) notes and guidance

1
2
3
4 Graphing calculators and other technology
5 Instructional activities for students

6

Chapter tests and quizzes.

Worked solutions

Worked solutions for all exercises and practice questions can be accessed
from the online e-book for this textbook (more on the e-book on the next

page).




Online e-book

Included with this textbook is an e-book that contains a digital copy of the
textbook. To access the e-book, please follow the instructions on the inside
front cover of this book. The textbook on the e-book offers far more than
just another copy of the textbook. There are many interactive features on
the e-book that can be accessed by clicking on active links embedded in the
digital version of the textbook. These features include:

Additional explanations and examples
Practice quizzes for each chapter

Dynamic demonstrations of key concepts

1
2
3
4 Audio-video graphing calculator support with activities and tips
5 Worked solutions for all exercises and practice questions

6

Software illustrations and simulations.

These interactive resources are designed to support and enhance students’
understanding of essential concepts and skills throughout the course. We
are profoundly indebted to Peter Ashbourne, Paul Barclay, Peter Flynn,
Kevin Frederick and Mike Wakeford — the team of highly experienced
and gifted mathematics teachers who created these supplementary student
resources on the e-book.

Overview of syllabus changes

As a result of the IB’s cyclical curriculum review process, the IB
Mathematics SL syllabus for first exams in May 2014 differs from the
previous syllabus in some ways. The following is an overview of the most
important changes.

Topic 1 Algebra remains Topic 1 and has a minor change: calculation of
binomial coefficient (’;) by using calculator (GDC) and by using formula (in
formula booklet).

Topic 2 Functions and equations remains Topic 2 and now also includes:
calculation of correlation coefficient for linear correlation of bivariate data
(see statistics and probability topic).

Topic 3 Circular functions and trigonometry remains Topic 3 and is
unchanged.

Topic 4 Matrices has been removed.
Topic 5 Vectors is now Topic 4 and is unchanged.

Topic 6 Statistics and probability is now Topic 5 and has the following
additions: statistical outliers are explicitly defined; and a new section on
linear correlation of bivariate data (including Pearson’s product-moment
correlation coefficient r, scatter diagrams and lines of best fit, equation for
regression line of y on x and use of this equation for prediction purposes).

Topic 7 Calculus is now Topic 6 and has the following addition: integration
by substitution.
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Certainly, there is a great deal of useful mathematics that cannot ‘fit’ into
the syllabus. We have decided to include a few non-syllabus items in the
textbook and have clearly identified any such items as optional.

Internal assessment

This textbook, the online e-book, and the two supporting websites (from
Pearson and the authors) provide comprehensive support for the new Internal
Assessment component (Mathematical Exploration). There is a brief chapter
near the end of the textbook on Mathematical Exploration in the context

of the IA programme for Mathematics SL. Further in-depth information

and guidance for teachers adopting the textbook will be provided on the
authors’ website. We will be updating teacher support and advice for Internal
Assessment on our website regularly to address the latest developments, so
teachers are encouraged to check from time to time for updates.

Information boxes

Throughout the book you will see a number of coloured boxes interspersed
through each chapter. Each of these boxes provides different information
and stimulus as follows.

Assessment statements
3.6 Solution of triangles.
The cosine rule: ¢ = a% + b> —2abcos C.
a _ b _ c
sinA  sinB  sinC

Area of a triangle as % absinC.

The sine rule: =

You will find a box like the one above at the start of each section in each
chapter. The assessment statements outline the components of the SL
syllabus (including syllabus section and sub-section numbers) that will be
covered in that chapter.

Beige boxes, like the one below, contain interesting information which will
add to your wider knowledge but which does not fit within the main body
of the text.

O Radioactive carbon (carbon-14 or C-14), produced when nitrogen-14 is bombarded by
cosmic rays in the atmosphere, drifts down to Earth and is absorbed from the air by plants.
Animals eat the plants and take C-14 into their bodies. Humans in turn take C-14 into their
bodies by eating both plants and animals. When a living organism dies, it stops absorbing
C-14, and the C-14 that is already in the object begins to decay at a slow but steady rate,
reverting to nitrogen-14. The half-life of C-14 is 5730 years. Half of the original amount of
C-14 in the organic matter will have disintegrated after 5730 years; half of the remaining
C-14 will have been lost after another 5730 years, and so forth. By measuring the ratio of
C-14 to N-14, archaeologists are able to date organic materials. However, after about 50 000
years, the amount of C-14 remaining will be so small that the organic material cannot be
dated reliably.



Green boxes (like this from Chapter 8) contain facts that are drawn out " Cbreak ]
. ERT . . e process of ‘breaking-up’the
of the main text and are highlighted. This makes them useful for quick v TERLLp
3 . i a vector into its components, as
reference and they also enable you to identify the core learning points we did in the example, is called

within a section. resolving the vector into its
components. Notice that the
process of resolving a vector
is not unique. That is, you can
resolve a vector into several
pairs of directions.

Margin hints (like the one on the right) can be found alongside questions, e Hint: Notice here that P(8 or C)
exercises and worked examples and they provide insight into how to is not the sum of P(8) and P(C)
analyse and/or answer a question. They also identify common errors and because 8and Care not disjoint.

pitfalls when answering such questions and suggest approaches that IB
examiners like to see.

Blue boxes (like the one below) in the main body of the text have key facts,
definitions, rules and theorems.

Vertical translations of a function

Given k > 0, then:

. The graph of y = f(x) + kis obtained by translating up k units the graph of y = f(x).

II. The graph of y = f(x) — kis obtained by translating down k units the graph of y = f(x).

Approach

This textbook is designed to be read by you — the student. It is important
that you read this textbook carefully. Developing your ability to read and
understand mathematical explanations will prove to be valuable in your
long-term intellectual development, while also helping you to understand
the mathematics necessary to be successful in your Mathematics
Standard Level course. You should always read a section thoroughly before
attempting any of the exercises at the end of the section. In preparing this
textbook, we have endeavoured to write clear and thorough explanations
supported by suitable worked examples. Our primary goal was to present
sound mathematics with sufficient rigour and detail at a level appropriate
for a student of Standard Level Mathematics.

The positive feedback and constructive comments on the 1st edition,
which we received from numerous teachers and students, was very much
appreciated. Your comments assisted us greatly in being able to make
many improvements and corrections in this 2nd edition. Thank you. We
welcome your feedback with regard to any aspects of the textbook and the
e-book. We encourage teachers who adopt the textbook to register at our
authors’ website and make use of the materials available on it.

Email: info@wazir-garry-math.org
Website: www.wazir-garry-math.org

Ibrahim Wazir and Tim Garry




—undamentals
. Introduction

Mathematics is an exciting field of study, concerned with structure,
patterns and ideas. To fully appreciate and understand these core aspects
of mathematics, you need to be confident and skilled in the rules and
language of algebra. Although you have encountered some, perhaps most
or all, of the material in this chapter in a previous mathematics course,
the aim of this chapter is to ensure that you are familiar with fundamental
terminology, notation and algebraic techniques.

o The real numbers

The most fundamental building blocks in mathematics are numbers

and the operations that can be performed on them. Algebra, like i

arithmetic, involves performing operations such as addition, subtraction, The word algebra comes from
T .. . . .  the 9th-century Arabic book

multiplication and division on numbers. In arithmetic, we are performing

. . . Hisab al-Jabr wal-Mugabala,
operations on known, specific, numbers (e.g. 5 + 3 = 8). However, in written by al-Khowarizmi.

algebra we often deal with operations on unknown numbers represented The title refers to transposing

by variables — usually symbolized by a letter (e.g. a —ic— b_a + é) The use and combining ferms, two
processes used in solving

of variables gives us the power to write general statements indicating equations. In Latin translations,

relationships between numbers. But what types of numbers can variables the title was shortened to

represent? All of the mathematics in this course involves the real numbers At e Tl A TR g e

I . The author"
and subsets of the real numbers. word algebra. The authors
name made its way into the

A real number is any number that can be represented by a point on the real English language in the form of
. . . . the word algorithm.

number line (Figure 1.1). Each point on the real number line corresponds

to one and only one real number, and each real number corresponds to

one and only one point on the real number line. This kind of relationship

is called a one-to-one correspondence. The number associated with a

point on the real number line is called the coordinate of the point.

-258 —V¥3 —-0999 3 V2 Vio ¥ o« < Figure 1.1 The real number line.
M S T T A M

Subsets of the real numbers

The set of real numbers R contains some important subsets with which
you should be familiar.

When we first learn to count, we use the numbers 1, 2, 3, ... . These
numbers form the set of counting numbers or positive integers Z*.
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@ Hint: Do not be confused if you
see other textbooks indicate that
the set N (usually referred to as the
natural numbers) does not include
zero — and is defined as

N ={1,23,...}.Thereis
disagreement among
mathematicians whether zero should
be considered a natural number - i.e.
reflecting how we naturally count.
We normally do not start counting at
zero. However, zero does represent

a counting concept in that it is the
absence of any objects in a set.
Therefore, some mathematicians
(and the IB mathematics curriculum)
define the set N as the positive
integers and zero.

Figure 1.2 AVenn diagram | 2
representing the relationships
between the different subsets

of the real numbers. The rational
numbers combined with the

irrational numbers make up the

entire set of real numbers.

Table 1.1 A summary of the | 4
subsets of the real numbers R and
their symbols.

Adding zero to the positive integers (0, 1, 2, 3, ...) forms the set referred to
as the set N in IB notation.

The set of integers consists of the counting numbers with their
corresponding negative values and zero (... =3, —2,—1,0,1,2,3,...) and
is denoted by Z (from the German word Zahl for number).

We construct the rational numbers Q) by taking ratios of integers. Thus, a
real number is rational if it can be written as the ratio q of any two integers,
where g # 0. The decimal representation of a rational number either
repeats or terminates. For example,% =0.714285714285... = 0.714 285

(the block of six digits repeats) or% = 0.375 (the decimal terminates at 5,
or, alternatively, has a repeating zero after the 5).

A real number that cannot be written as the ratio of two integers, such as 7
and v2, is called irrational. Irrational numbers have infinite non-repeating
decimal representations. For example, V2 =~ 1.414 213 5623... and

7=~ 3.141 592 653 59.... There is no special symbol for the set of irrational
numbers.

Q

rational

real numbers
numbers

irrational
numbers

1445
7

Positive integers

Positive integersand zero | N =1{0,1,2,3,...}

Integers Z={.-3-2-10123..13

Q = any number that can be written as the ratiog of

Rational numbers g
any two integers, where g # 0

Sets and intervals

If every element of a set Cis also an element of a set D, then Cis a subset
of set D, and is written symbolically as C C D. If two sets are equal (i.e. they
have identical elements), they satisfy the definition of a subset and each
would be a subset of the other. For example, if C = {2, 4, 6} and D = {2, 4,
6}, then C C Dand D C C. What is more common is that a subset is a set
that is contained in a larger set and does not contain at least one element
of the larger set. Such a subset is called a proper subset and is denoted
with the symbol C. For example, if D = {2, 4, 6} and E = {2, 4}, then E

is a proper subset of D and is written E C D. All of the subsets of the real
numbers discussed earlier in this section are proper subsets of the real
numbers, for example, NCR and ZCR.



The symbol € indicates that a number, or a number assigned to a variable,
belongs to (is an element of) a set. We can write 6 € Z, which is read ‘6

is an element of the set of integers’. Some sets can be described by listing
their elements within brackets. For example, the set A that contains all of
the integers between —2 and 2 inclusive can be writtenas A = {—2, —1, 0,
1, 2}. We can also use set-builder notation to indicate that the elements of
set A are the values that can be assigned to a particular variable. For example,
the notation A = {x| —2, —1,0,1,2} or A = {xEZ| —2 < x < 2} indicates
that ‘A is the set of all x such that x is an integer greater than or equal to
—2 and less than or equal to positive 2’. Set-builder notation is particularly
useful for representing sets for which it would be difficult or impossible to
list all of the elements. For example, to indicate the set of positive integers
n greater than 5, we could write {n € Z| n > 5} or {n|n>5,n€ Z}.

The intersection of A and B (Figure 1.3), denoted by A N Band read ‘A
intersection B, is the set of all elements that are in both set A and set B.
The union of two sets A and B (Figure 1.4), denoted by A U B and read ‘A
union B is the set of all elements that are in set A or in set B (or in both).
The set that contains no elements is called the empty set (or null set) and

is denoted by &.

A A
Figure 1.3 Intersection of sets A and B. Figure 1.4 Union of sets A and B.
ANB AUB

Some subsets of the real numbers are a portion, or an interval, of the real
number line and correspond geometrically to a line segment or a ray. They
can be represented either by an inequality or by interval notation. For
example, the set of all real numbers x between 2 and 5, including 2 and 5,
can be expressed by the inequality 2 << x < 5 or by the interval notation

X € [2, 5]. This is an example of a closed interval (i.e. both endpoints are
included in the set) and corresponds to the line segment with endpoints of
x=2and x=5.

< T T T ‘ T T . T T >
-1 0 1 2 3 4 5 6 7

An example of an open interval is —3 < x <1 or x& | —3, 1[, where
both endpoints are not included in the set. This set corresponds to a line
segment with ‘open dots’ on the endpoints indicating they are excluded.

- " {} .
- T T bl I 1 T d T T i

=5 —4 -3 -2 -1 0 1 2 3

If an interval, such as —4 < x < 2 or x&[—4, 2, includes one endpoint
but not the other, it is referred to as a half-open interval.

s & ; 2 . : . O
-5 —4 -3 -2 =1 0 1 2

Y

e Hint: Unless indicated otherwise,
if interval notation is used, we
assume that it indicates a subset of
the real numbers. For example, the
expression x € [—3, 3] is read ‘x is
any real number between —3 and 3
inclusive!
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e Hint: The symbols = (positive The three examples of intervals on the real number line given above are

infinity) and —o° (negative infinity) all considered bounded intervals in that they are line segments with two

donot represent real numbers. They endpoints (regardless of whether included or excluded). The set of all real

are simply symbols used to indicate . . ..

that an interval extends indefinitely numbers greater than 2 is an open interval because the one endpoint is

in the positive or negative direction. excluded and can be expressed by the inequality x > 2, or xE€ (2, ). This is
also an example of an unbounded interval and corresponds to a portion of

the real number line that is a ray.

DT S T S T N
Table 1.2 The nine possible types P> Interval notation Inequality | Interval type Graph
of intervals — both bounded and
unbounded. For all of the examples x€Ela, bl asx<b closed < { } >
given, we assume that a < b. bounded a b
xE€]la, bl a<x<b open P ] [ -
bounded a b
x€la, bl asx<b half-open il -
bounded g %3
x€la, b a<x<b half-open sl | E—
bounded 3 lJa
x € [a, o[ x=q half-open > [ s
unbounded g
x€E€Ja, o x>a open | 5
unbounded j
XE]—,b] x<b half-open - /| -
unbounded lJa
xE€]—0, bl x<b open % [ 5
unbounded Il_a
X E]—00, 00 real number line < 5

Absolute value (modulus)

The absolute value (or modulus) of a number 4, denoted by |a], is the
distance from a to 0 on the real number line. Since a distance must be
positive or zero, the absolute value of a number is never negative. Note that
if a is a negative number then —a will be positive.

Definition of absolute value
If a is a real number, the absolute value of a is

a ifa=0
|al =

—a ifa<o

Here are four useful properties of absolute value:

Given that a and b are real numbers, then:

a |a
1. |a|=0 2. |—a|=lal 3. |ab|=|d||b] 4 |Z’ =|7|,b¢0




Absolute value is used to define the distance between two numbers on the
real number line.

Distance between two points on the real number line

Given that a and b are real numbers, the distance between the points with coordinates a
and b on the real number line is |b—a|, which is equivalent to |[a—b].

Absolute value expressions can appear in inequalities, as shown in the table

below.
4 Table 1.3 Properties of absolute
Inequality | Equivalent form Graph value inequalities.
|x|<a —a<x<a «~———
—a 0 a
|x| <a —a<x<a «—O0———F—O0—
—a 0 a
|x|=a X< —gorx=qg| =@ ——0>
—a 0 a
|x| >a x<-—-gorx>qg| **O0O——F—0O>>
—a 0 a

Properties of real numbers

There are four arithmetic operations with real numbers: addition,
multiplication, subtraction and division. Since subtraction can be written

as addition (a — b= a + (—b)), and division can be written as

ST a_ (1
multiplication ( b a( b

are defined in terms of addition and multiplication only. In these definitions,
—ais the additive inverse (or opposite) of a, and ; is the multiplicative

), b#0 ), then the properties of the real numbers

Table 1.4 Properties of real

inverse (or reciprocal) of a. numbers.
v
Property Rule Example
commutative property of addition: at+b=b+a 23+ y=y+2x%3
commutative property of multiplication: ab=ba (x — 2)3x2 =3x(x—2)
associative property of addition: (@+b)+c=a+b+0 (M1+x)—5x=1+(x—5x)
associative property of multiplication: (ab)c = a(bc) (3x - Sy)G) = (3x)(5y ;,—)
distributive property: alb + o) =ab+ ac X(x—2)=x>x+ x> (=2
additive identity property: at+0=a 4y +0=4y
multiplicative identity property: lra=a 2=1.2=2.2-2%
additive inverse property: a+(—a) =0 6y° + (—6y%) =0
multiplicative inverse property: a-1—a =1,a#0 (y—3) (ﬁ ): 1

Note: These properties can be applied in either direction as shown in the
‘rules’ above.
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In questions 1-6, plot the two real numbers on the real number line, and then find
the distance between their coordinates.

153 2 -2-1 3 1346
s 32 5. _
47 -2 5 —3m 6 —2;

In questions 7-12, write an inequality to represent the given interval and state
whether the interval is closed, open or half-open. Also, state whether the interval is
bounded or unbounded.

7 [-5,3] 8 1-10,—2] 9 [1,0[
10 ]—, 4] 11 [0, 27 12 [a, b]

In questions 13-18, use interval notation to represent the subset of real numbers
that is indicated by the inequality.

13 x>6 14 x< —8 15 2<x<9
16 0=x<12 17 x> -5 18 3=x=<3

In questions 19-22, use inequality and interval notation to represent the given
subset of real numbers.

19 xis at least 6.

20 xis greater than or equal to 4 and less than 10.
21 xis negative.

22 xis any positive number less than 25.

In questions 23-28, state the indicated set given that A = {1, 2,3,4,5,6,7, 8},
B=1{1,3,579%and C=1{2 4,6}

23 ANB 24 AUB 25 BNC
26 AUC 27 ANC 28 AUBUC

In questions 29-32, use the symbol C to write a correct statement involving the two
sets.

29 Zand R 30 Nand @ 31 ZandN 32 QandZ

In questions 33-36, express the inequality, or inequalities, using absolute value.
33 6<x<6 34 x=—4orx=4

35 ~m=x=m 36 x<—lorx>1

In questions 37-42, evaluate each absolute value expression.
37 |13 38 [7-11] 39 —5/-5|

40 |-3| — |—§| a1 |V3 -3 42 =
In questions 43-46, find all values of x that make the equation true.

43 [x| =5 44 |x—3| =4
45 |6 —x| =10 46 |3x+5| =1




@ Roots and radicals (surds)

Roots

If a number can be expressed as the product of two equal factors, that
factor is called the square root of the number. For example, 7 is the square
root of 49 because 7 X 7 = 49. Now, 49 is also equal to —7 X —7,s0 —7
is also a square root of 49. Every positive real number will have two real
number square roots — one positive and one negative. However, there

are many instances where we want only the positive square root. The
symbol v (sometimes called the root or radical symbol) indicates only
the positive square root — often referred to as the principal square root. In
words, the square roots of 16 are 4 and —4; but, symbolically, V16 = 4. The
negative square root of 16 is written as —'16, and when both square roots
are wanted we write =v/16.

When a number can be expressed as the product of three equal factors,
then that factor is called the cube root of the number. For example, —
is the cube root of —64 because (—4)(—4)(—4) = —64. This is written
symbolically as vV —64 = —4.

In general, if a number a can be expressed as the product of #n equal factors
then that factor is called the nth root of a and is written as V/a. n is called
the index and if no index is written it is assumed to be a 2, thereby
indicating a square root. If # is an even number (e.g. square root, fourth
root, etc.) then the principal nth root is positive. For example, since (—2)
(—2)(—2)(—2) = 16, then —2 is a fourth root of 16. However, the
principal fourth root of 16, written V16, is equal to +2.

Y 4

- X
Radicals (surds) 3 - B
Some roots are rational and some are irrational. Consider 4 .
the two right triangles in Figure 1.5. By applying Pythagoras’ 34 a2 gy g
theorem, we find the length of the hypotenuse for triangle X2 =9+16 v =16+ 64
A to be exactly 5 (an integer and rational number) and the \/ﬁ =25 y? =80
hypotenuse for triangle B to be exactly v/80 (an irrational XX _ \/% W2 = %
number). An irrational root — e.g. V80,V3,v10,V4 —is x=5 Y
called a radical or surd. The only way to express irrational A
roots exactly is in radical, or surd, form. Figure 1.5

It is not immediately obvious that the following expressions are o Hint: The solution for the hypotenuse of

all equivalent. triangle A in Figure 1.5 involves the equation
x? = 25. Because x represents a length that
16f 10\/_ - o
V80,22 L 2V2V10 ,4/5,5 must be positive, we want only the positive
V1 square root when taking the square root

of both sides of the equation —i.e. v25.
However, if there were no constraints on the
value of x, we must remember that a positive

Square roots occur frequently in several of the topics in this course,
so it will be useful for us to be able to simplify radicals and recognise

equivalent radicals. Two useful rules for manipulating expressions number will have two square roots and we
with radicals are given below. would write Vx? = +v25 = x = +5,
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Simplifying radicals
Fora=0,b=0and n& Z", the following rules can be applied:

n n n n\/a a
1 VaXxXvb=vVab 2 —="1/—
Vb b

Note: Each rule can be applied in either direction.

Example 1
Simplify each of the radicals.
\/E 3 3
a) \/§X\/§ b) \FZX\/W C)f d) \/EX\/%
Solution

a) V5 XV5=V55=V25=5
Note: A special case of the rule Va X Vb = Vab when n = 2isva X va = a.

b) V2 X /18 =v2-18 =V36 =6

VIS _ [ e
C) F— 3 \/E 4

d) V6 XV36 =V636 =216 =6

The radical v24 can be simplified because one of the factors of 24 is 4, and
the square root of 4 is rational (i.e. 4 is a perfect square).

V24 =46 =V/4/6 = 2V6
Rewriting 24 as the product of 3 and 8 (rather than 4 and 6) would not
help simplify V24 because neither 3 nor 8 are perfect squares.

Example 2

Express each in terms of the simplest possible radical.

a) VI8 b) V80 Q) 23—5 d) V1000
Solution

a) VI8 =v92 =V9V2 =3/2
b) V80 =165 =V16V5 = 4/5

Note: 4 is a factor of 80 and is a perfect square, but 16 is the largest factor that is a
perfect square.

R S
25 /25 5

d) V1000 = v100-10 = v100v10 = 10V/10

We prefer not to have radicals in the denominator of a fraction. Recall,
from Example 1a), the special case of the rule va X Vb = Vab when
n=21isva X va = a. The process of eliminating irrational numbers from
the denominator is called rationalising the denominator.



Example 3

Rationalise the denominator of each expression. a) 73 b) %
Solution
) - 2.V3_2/3
V3 V3 V33
b V7 _ /7 IO _ 70 _ 70
4/10 4/10 V1o 410 40

V28
18 2 = 3 V3 xV12
V7
4
3 3 64 15
4 /9 xV3 5 7z 6 \/;
7 V50 8 /63 9 /288
In questions 10-13, completely simplify the expression.
10 7V2 —3V2 11 V12 +8/3
12 V300 + 5/2 — V72 13 V75 + 224 — V48
In questions 14-19, rationalise the denominator, simplifying if possible.
1 3 2V3
14 — 15 — 16 —
V2 V5 V7
1 8 V12
17 — 18 — 19 —
V27 3V2 V18

@ Exponents (indices)

Repeated multiplication of identical numbers can be written more
efficiently by using exponential notation.

Exponential notation
If a is any real number (a € R) and n is a positive integer (n € Z*), then
a'=ag-a-a-...-a
n factors

where n is the exponent, g is the base and g” is called the nth power of a.
Note: n is also called the power or index (plural: indices).

Integer exponents

We now state seven laws of integer exponents (or indices) that you will
have learned in a previous mathematics course. Familiarity with these rules
is essential for work throughout this course.

Let a and b be real numbers (g, b € R) and let m and n be positive integers
(m, nE€ Z*). Assume that all denominators and bases are not equal to zero.
All of the laws can be applied in either direction.
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Table 1.5 Laws of exponents
(indices) for integer exponents.

e Hint: [t isimportant to recognise
the difference between exponential
expressions such as (—3)? and
—32.In the expression (—3)?, the
parentheses make it clear that —3'is
the base being raised to the power
of 2. However, in —32 the negative
sign is not considered to be a part of
the base with the expression being
the same as —(3)? so that 3 is the
base being raised to the power of 2.
Hence, (—3)> = 9and —3? = —9.

4

Property Example Description
TIom=bmtn | x2x> = x/ multiplying like bases
O pn |20 _ 2w dina i
2. b b w3 dividing like bases
3.0 (M =pmm (3%2 = 32* = (3)* = 9* | a power raised to a power

4. | (ab)" = a"b" (4k)® = 4°k3 = 64k° the power of a product

a\n _g" (Z)ziyziyz .

5. (b) =5 3/ =57 the power of a quotient

6.1 a®=1 (2 +50°=1 definition of a zero exponent
—n_ 1 3_ 1 _1 - i

7. lan= 7 273 = 5=3 definition of a negative exponent

The last two laws of exponents listed above — the definition of a zero
exponent and the definition of a negative exponent — are often assumed
without proper explanation. The definition of a” as repeated multiplication,
i.e. n factors of g, is easily understood when 7 is a positive integer. So how
do we formulate appropriate definitions for a” when 7 is negative or zero?
These definitions will have to be compatible with the laws for positive integer
exponents. If the law stating b™b" = b™ * " is to hold for a zero exponent,
then b"b° = b"* 0 = p". Since the number 1 is the identity element for
multiplication (multiplicative identity property) then b”+1 = b". Therefore,
we must define b° as the number 1. If the law b™b" = b™* " is to also hold
for negative integer exponents, then b"b~" = b"~ " = b° = 1. Since the

product of b" and b~ " is 1, they must be reciprocals (multiplicative inverse
1

property). Therefore, we must define b~ " as o

Rational exponents

We know that 4> =4 X 4 X 4and4° = 1and 472 = 5 = #,butwhat
) 4 4X14

meaning are we to give to 422 In order to carry out algebraic operations

1

with expressions having exponents that are rational numbers, it will be
very helpful if they follow the laws established for integer exponents. From

the law b™b" = b™ * " it must follow that 4% X 4% = 4% ti= 4!, Likewise,
from the law (b™)" = b™", it follows that (4%)2 =42 =4, Therefore, we
need to define 42 as the square root of 4 or, more precisely, as the principal
(positive) square root of 4, that is, v'4. We are now ready to use radicals to

define a rational exponent of the form %, where # is a positive integer. If the

rule (b™)" = b™" is to apply when m = %, it must follow that (bl”)n = b = bl
This means that the nth power of b% is b and, from the discussion of nth

1
roots in Section 1.2, we define b” as the principal nth root of b.

1
Definition of b™

1
If n € Z*, then b7 is the principal nth root of b. Using a radical, this means

b=



This definition allows us to evaluate exponential expressions such as the
following:

3 — — e (—97)F = 3T :_.L)iz‘lizl
362 = V36 = 6; (—27)F = /=27 3,(81 L-1

Now we can apply the definition of b" and the rule (b™m = b™" to develop
a rule for expressions with exponents not just of the form % but of the

m
more general form 7.

b7 = b = (b7 = B o, equivalently, b% = bt = (b = (Y B)"

3 5
Th5is will allow us to evaluate exponential expressions such as 92, (—8)3 and
645,

Definition of rational exponents
If m and n are positive integers with no common factors, then

bn =vbm or (Vb)™

If nis an even number, we must have b = 0.

The numerator of a rational exponent indicates the power to which the
base of the exponential expression is raised, and the denominator indicates
the root to be taken. With this definition for rational exponents, we can
conclude that the laws of exponents, stated for integer exponents in Section
1.3, also hold true for rational exponents.

Example 4
Evaluate and/or simplify each of the following exponential expressions.
a) (2xy?)’ b) 2(xy?)? ) (=2)7°
~274

d) (a—2)° e) (3%)7-9% £ A b

a>b

_4 2 S (12,330 43,-2) -1

g (—32)7° h) & ) (%) %y
) va+b ) (x+y)?
Vi (x+y)72
Solution

a) (2xy2)3 _ 23x3(y2)3 _ 8x3y6
b) 2(xy?)? = 2x3(y?)? = 2x3y°

Q) (—2) =1 =_1
) (=2) B8 2
d) (a—2)0°=1
e) (33)%.9% = 3%(32)% = 3% . 3% = 3% =33=27
0 a bt a2 (=3 _ a_3
a Bt b
— 73 = [—95 7% = (— —4 = 1 :L
g (7327 = [-2)7 = ()7 = == g

h) 8= V8 =Y6d = dor8 = (VB = (2P =4dor8 = ()i =22 =4

6—3,3+2 3,5

) perert = (e = g1
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) Va+b_(atbP_ 1 1
atb  @th' (g1 (et Vatd

Note: Avoid an error here. Va + b # a + Vb. Also,va+ b # va + Vb
andvVa?+ b #a+ b

+ 2
fy X
(x+y)7?
Note: Avoid an error here. (x + y)" # x" + y™

= (e kP Y = (xt )t

Although (x + y)* = x* + 4x’y + 6x%y? + 4xy° + y*, expanding is not
generally ‘simplifying’.

In questions 1-6, simplify (without your GDC) each expression to a single integer.

116 2 o 3 645
4 3
48 5 32° 6 (V2)°
In questions 7-9, simplify each expression (without your GDC) to a quotient of two
integers.
83 (2 7 25)3
7 () 8 (i5) ° (%)
In questions 1013, evaluate (without your GDC) each expression.
10 (=3)2 1 (130 12 437 13 (—i)_3
272.371 4
In questions 14-28, simplify each exponential expression (leave only positive
exponents).
14 3(—ab?? 15 3(—ab?)? 16 (—3ab?)?
2 37—2
17 5x3y~2- 2x2y° 18 32 19 &mn
Xy ey 2407 8m—n?
1
20 (Imn=2)’ 21 32730 22 Z
Xy
3.5 3 314 3
53 Aa 24 (\/Rg)(@) 55 120+
(a’by* Vx2 9(a + b)
1
(x + 4y)? P2 + g2 28 43 2

) =———— 27 —
2(x + 4)/)_1 «/pz 4L q2

@ Scientific notation (standard form)

Exponents provide an efficient way of writing and calculating with very
large or very small numbers. The need for this is especially great in science.
For example, a light year (the distance that light travels in one year) is
9460 730 472 581 kilometres, and the mass of a single water molecule is
0.000 000 000 000 000 000 000 0056 grams. It is far more convenient and
useful to write such numbers in scientific notation (also called standard
form).




Definition of scientific notation
A positive number N is written in scientific notation if it is expressed in the form:

N =a X 10K where 1 < a < 10 and k is an integer

In scientific notation, a light year is about 9.46 X 10'2 kilometres. This

expression is determined by observing that when a number is multiplied

by 10X and k is positive, the decimal point will move k places to the right.

Therefore, 9.46 X 10'2 = 9460 000 000 000. Knowing that when a number is
12 decimal places

multiplied by 10 and k is negative the decimal point will move k places

to the left helps us to express the mass of a water molecule as 5.6 X 1024

grams. This expression is equivalent to 0.000 000 000 000 000 000 000 0056.

‘ 24 decimal places

Scientific notation is also a very convenient way of indicating the number

of significant figures (digits) to which a number has been approximated.

A light year expressed to an accuracy of 13 significant figures is 9 460 730

472 581 kilometres. However, many calculations will not require such a high

degree of accuracy. For a certain calculation it may be more appropriate to

have a light year approximated to 4 significant figures, which could be written

as 9461000000 000 kilometres, or more efficiently and clearly in scientific

notation as 9.461 X 10 kilometres.

Not only is scientific notation conveniently compact, it also allows a quick
comparison of the magnitude of two numbers without the need to count
zeros. Moreover, it enables us to use the laws of exponents to simplify
otherwise unwieldy calculations.

Example 5

Use scientific notation to calculate each of the following.
a) 64000 X 2500000000

b) 0.00000078
0.000 0000012

¢) /27000000 000

Solution

a) 64000 X 25000000000 = (6.4 X 10%)(2.5 X 10°)
= 6.4 X 2.5 X 10* X 10°
=16 X 10*+?
=1.6 X 10! X 1013 = 1.6 X 10

b) 0.00000078 _ 7.8 X 1077 _78 % 10~
0.0000000012 12x1079 1.2° 1079

= 6.5 X 10% or 650

1 1 1 1
¢) ¥27000000000 = (2.7 X 1010)s = (27 X 10°)3 = (27)3(10°)3
=3 X 10° or 3000

~

=6.5X 107779

Your GDC will automatically express numbers in scientific notation when
a large or small number exceeds its display range. For example, if you use




Fundamentals

your GDC to compute 2 raised to the 64th power, the display (depending
on the GDC model) will show the approximation

1.844674407E190r1.844674407 19

The final digits indicate the power of 10, and we interpret the result as
1.844 674408 X 10, (2% is exactly 18446 744073709551 616.)

In questions 1-8, write each number in scientific notation, rounding to 3 significant

figures.
1 2538 2 0.007 81 3 7405239
4 0.000001 0448 5 49812 6 0.001991

7 Land area of Earth: 148 940 000 square kilometres
8 Relative density of hydrogen: 0.000 0899 grams per cm?

In questions 9-12, write each number in ordinary decimal notation.
9 27Xx1073 10 5 X 107 11 9035 X 1078 12 418 X 10"

In questions 13-16, use scientific notation and the laws of exponents to perform the
indicated operations. Give the result in scientific notation rounded to 2 significant

figures.
_ 3.2 X 10°
13 (25X 1073)(10 X 10° 14 —————
3 (25107910109 16 X 102
-3 6
15 (1 X 107328 X 109 16 (2 X 109435 X 10)

4% 107

@ Algebraic expressions

Examples of algebraic expressions are:

y =1 (bx + ¢)®

y+1 2—Va
Algebraic expressions are formed by combining variables and constants
using addition, subtraction, multiplication, division, exponents and radicals.

5a3b? 2x2+ 7x— 8

Polynomials

An algebraic expression that has only non-negative powers of one or more
variable and contains no variable in a denominator is called a polynomial.

Definition of a polynomial in the variable x
Given ay, a;, ay, ...,a,ERa, # 0and n € Z", a polynomial in x is a sum of distinct

e Hint: Polynomials with one, terms in the form

two and three terms are called
monomials, binomials and where a;, a,, ..., a, are the coefficients, g is the constant term and n (the highest
trinomials, respectively. A exponent) is the degree of the polynomial.

polynomial of degree one is

called linear; degree two is called
quadratic; degree three is cubic; and
degree four is quartic. Quadratic
equations and functions are covered — terms containing the same variable(s) raised to the same power(s) —and

in Chapter 2. applying the distributive property.

@5 Ak @ — 38 = A L A @E A @

Polynomials are added or subtracted using the properties of real numbers
that were discussed in Section 1.1. We do this by combining like terms



For example,
2x%y + 6x% — 7x%y = 2x%y — 7x%y + 6x? rearranging terms so the like
terms are together

(2 = 7)x%*y + 6x2 applying distributive property:
ab+ ac= (b+ c)a

—5x%y + 6x? no like terms remain, so
polynomial is simplified

Expanding and factorizing polynomials

We apply the distributive property in the other direction, i.e. a(b + ¢)
= ab + ac, in order to multiply polynomials. For example,

2x—3)(x+5) =2x(x + 5)—3(x+ 5)
= 2x?+ 10x — 3x — 15 collecting like terms 10x and
—3x
=2x2+7x— 15 terms written in descending
order of the exponents

The process of multiplying polynomials is often referred to as expanding.
Especially in the case of a polynomial being raised to a power, the number
of terms in the resulting polynomial, after applying the distributive
property and combining like terms, has increased (expanded) compared to
the original number of terms. For example,
(x+3)2=(x+3)(x+3) squaring a first degree (linear) binomial
=x(x+3) +3(x+ 3)
=x>+3x+3x+9
=x24+6x+9 the result is a second degree (quadratic)
trinomial
and,
(x+1P=(x+D(x+ 1(x+1) cubing a first degree binomial
=(x+Dx*+x+x+1)
=x(x?+2x+ 1)+ 1(x*+2x+1)
=x>+F2x2+x +x2+2x+1
=x3+3x2+3x+1 the result is a third degree
(cubic) polynomial with four
terms

A pair of binomials of the form a + band a — b are called conjugates.

In most instances, the product of two binomials produces a trinomial.
However, the product of a pair of conjugates produces a binomial such that
both terms are squares and the second term is negative — referred to as a
difference of two squares. For example,

(x+5)(x—5) = x(x — 5) + 5(x — 5) multiplying two conjugates
=x2—5x+ 5x— 25

=x?—-25 x? — 25 is a difference of two squares
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e Hint: You should be able to
perform the middle step ‘mentally’
without writing it.

The inverse (or undoing) of multiplication (expansion) is factorization.
If it is helpful for us to rewrite a polynomial as a product, then we need
to factorize it —i.e. apply the distributive property in the reverse direction.
The previous four examples can be used to illustrate equivalent pairs of
factorized and expanded polynomials.

Factorized Expanded
(2x—3)(x+5) = 2x2+7x— 15

(x + 3)? = x24+6x+9
(x+1)3 = x> +3x?2+3x+1
(x+5)(x—5 = x*—25

Certain polynomial expansions (products) and factorizations occur so
frequently you should be able to quickly recognize and apply them. Here is
a list of some of the more common ones. You can verify these identities by
performing the multiplication.

Common polynomial expansion and factorization patterns
Expanding

(x+a)(x+b = x*+((a+bx+ab
(ax + b)(ex+ d)= acx? + (ad + bo)x + bd
(a+ba—b = a’>—b?

(a + b)? = g2+ 2ab+ b?

(a — b)? = g?—2ab+ b?

(a+ b)? = a3+ 3a’b+ 3ab%>+ b3

(a—b)? = g3 —3a%b + 3ab?— b3
¢ Factorizing

These identities are useful patterns into which we can substitute any
number or algebraic expression for a, b or x. This allows us to efficiently
find products and powers of polynomials and also to factorize many
polynomials.

Example 6

Find each product.

a) (x+2)(x—7) b) Bx—4)4x+1) ¢ (6x+ y)(6x— y)

d) (4h —5)? e) (x*2+2)° f) (3+2/5)(3 —2V5)
Solution

a) This product fits the pattern (x + a)(x + b) = x> + (a + b)x + ab.
(x+2D)(x—7N=x*2+Q2—-7x+2)(—7)=x*—5x— 14

b) This product fits the pattern (ax + b)(cx + d) = acx? + (ad + bc)x + bd.
Bx—4)4x+ 1) = 12x24+ 3 — 16)x — 4 = 12x2 — 13x — 4



c) This fits the pattern (a + b)(a — b) = a? — b? where the result is a
difference of two squares.

(5x3 + 3y)(5x% — 3y) = (5x3)? — (3y)? = 25x° — 9y?
d) This fits the pattern (a — b)? = a? — 2ab + b>.
(4h — 5)? = (4h)?> — 2(4h)(5) + (5)*> = 16h*> — 40h + 25

e) This fits the pattern (a + b)* = a® + 3a%b + 3ab? + b>.
(x24+2)% = (x2)3 4+ 3(x)2(2) + 3(x)(2)2 + 2P =x® + 6x* + 12x%2 + 8

f) The pair of expressions being multiplied do not have a variable but
they are conjugates, so they fit the pattern (a + b)(a — b) = a* — b2
(3+2V5)(3—-2V5) =3 — (2V/5)* =9 —(4:5) =9 — 20 = —11

Note: The result of multiplying two irrational conjugates is a single rational
number. We will make use of this result to simplify certain fractions.

Example 7

Completely factorize the following expressions.
a) 2x*— 14x+ 24

b) 2x2+ x— 15

c) 4x°—9

d) 3y +24y% + 48y

e) (x+3)2—y?

f) 5x3 + 20xy3

Solution
a) 2x*— 14x+ 24
=2(x?—7x+12) factor out the greatest common
factor
=2[x%+ (=3 — 4)x + (—3)(—4)] fits the pattern
(x+a)(x+b=x*+(a+bx+ab
=2(x— 3)(x—4) ‘trial and error’ to find
—3—4=—7and (— 3)(—4) = 12

b) The terms have no common factor and the leading coefficient is not
equal to one. This factorization requires a logical ‘trial and error’
approach. There are eight possible factorizations.
2x—1)(x+15 (2x—3)(x+5) (2x—5)(x+3) (2x—15)(x+1)
2x+1)(x—15) (2x+3)(x—5) (2x+5)(x—3) (2x+15)(x—1)
Testing the middle term in each, you find that the correct factorization
is2x2+ x—15=(2x — 5)(x + 3).

¢) This binomial can be written as the difference of two squares,
4x% — 9 = (2x°)? — (3)? fitting the pattern @®> — b* = (a + b)(a — b).
Therefore, 4x% — 9 = (2x3 + 3)(2x3 — 3).
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d) 3y® + 24y + 48y = 3y(y* + 8y + 16)  factor out the greatest
common factor
=3y(y* + 24y + 4%) fits the pattern
@+ 2ab+ V= (a+ b)?
= 3y(y + 4)?

e) Fits the difference of two squares pattern: a> — b* = (a + b)(a — b) with
a=xt3andb=y.
Therefore, (x + 3)? — y2= [(x + 3) + y][(x + 3) — y]
=(x+y+3)(x—y+3)

(f) 5x3y + 20xy® = 5xy(x? + 4y?): although both of the terms x? and
4y? are perfect squares, the expression x? + 4y is not a difference of
squares and, hence, it cannot be factorized. The sum of two squares, a?
+ b2, cannot be factorized.

Guidelines for factoring polynomials

1 Factor out the greatest common factor, if one exists.

2 Determine if the polynomial, or any factors, fit any of the special polynomial patterns
— and factor accordingly.

3 Any quadratic trinomial of the form ax? + bx + ¢ will require a logical trial and error
approach, if it factorizes.

Most polynomials cannot be factored into a product of polynomials with
integer coefficients. In fact, factoring is often difficult, even when possible,
for polynomials with degree 3 or higher. Nevertheless, factorizing is a
powerful algebraic technique that can be applied in many situations.

Algebraic fractions

An algebraic fraction (or rational expression) is a quotient of two
algebraic expressions or two polynomials. Given a certain algebraic

fraction, we must assume that the variable can only have values such that

x+3
x*—4
x cannot be 2 or —2. Most of the algebraic fractions that we will encounter
will have numerators and denominators that are polynomials.

the denominator is not zero. For example, for the algebraic fraction

b

Simplifying algebraic fractions

When trying to simplify algebraic fractions, we need to completely factor
the numerator and denominator and cancel any common factors.

Example 8

Simplify each algebraic fraction.

) 2a% — 2ab ) 1 — x? 0 (x+ h)? — x2
6ab — 6b* x>+ x—2 h




Solution

2) 202 —2ab _2ala=1b) _ Za _ a
6ab— 602 6bla—D) b 3b

b) 1—x? _(1-90+%_ —(—1+x(1+x_ FDkx+1)

x2+x—2 (x—Dx+2) (x— D(x+2) e=1)(x+2)
— x4+ 1 g —x—1
fc+2or x+2

(x+ h)?—x2 x242hx+ h2— x> 2hx+ h?> HQ2x+h)

0) . = . =S = =t

Adding and subtracting algebraic fractions

Before any fractions — numerical or algebraic — can be added or subtracted
they must be expressed with the same denominator, preferably the least

common denominator. Then the numerators can be added or subtracted
_ad | bc _ ad+ bc

bd  bd

: LAy
according to the rule: b + = bd

Example 9

Perform the indicated operation and simplify.
3

_1 2 _
a) x~x R VX2 a6
Solution
C1_x 1_x* 1_x*—-1 _ (+Dx—-1)
) X - =7 x~ % " x~ x O x
b2 4 3 _ 2 a=b_ 3 atb _2a-b+3ath
a+b a—b a+ba—-b a—b a+b (a+ b)(a—b)
_2a—2b+3a+3b_ 5a+b
- a — b2 T a4t —p2
Q) 2 ox—4 _ 2 _ x—4
XxX+2 2x2+x—6 xt2 (2x—3)(x+2)
_ 2 2x—3_ x—4
x+2 2x—3 (2x—3)(x+2)

_22x—3)—(x—4)
T (2x—3)(x+2)

_4x—6—x+14
2x—3)(x+2)

— 3x—2 3x—2
2x—3)(x+2) 2x>+x—6

Simplifying a compound fraction

Fractional expressions with fractions in the numerator or denominator, or
both, are usually referred to as compound fractions. A compound fraction
is best simplified by first simplifying both its numerator and denominator
into single fractions, and then multiplying the numerator and denominator

a a_d ad
. . . b b < be
by the reciprocal of the denominator, i.e. % = % = % = %; thereby
d '

expressing the compound fraction as a single fraction.

e Hint: Although itis true that

at+tb_a, b )
—=cte& be careful to avoid

an error here:—4— # 9 + %. Also,

b+c b
be sure to only cancel common
factors between numerator and

denominator. It is true that 9¢ = 4
bc b

(with the common factor of ¢
cancelling) because
ac_a.c_a a .
—==—=-===Z-1==butin
bc b ¢ b b

atc_

eneral, it is not true that g
9 btc b

cis not a common factor of the
numerator and denominator.
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e Hint: Factor out the power of
1 — 2x with the smallest exponent.

Example10

Simplify each compound fraction.

: — 3 b)%+1 )x(1—2x)*3+(1—2x)*%
a z - ¢ T—x
Solution
11 x _ x+h x—(x+ h)
2) Zrh X _axth Atk _ xxth _x—x—h 1
h h h x(x+ h) h
1 1
__—h 1__ 1
x(x+ h) A x(x + h)
a a b a+b
b)z+1:z+z:—b _at+b. K _a+b
1—% b_a b-a b b—a b-—a
b b b
3 3
) M= 297 (= 2%)77 (1= 2577 [x+ (1 — 2%)]
¢ 1—x B 1—x
(1 —2x) 7 [x+ 1 —24]
a 1—x
3
_(1—-2x":(0—=x)
1—=x
-1
3
(1 —2x)2

With rules for rational exponents and radicals we can do the following, but

it’s not any simpler...
11 1 _ 1
(1—2x2 V3x—27 JBx—2)2V3x—2 [3x—2[V3x-2

Rationalizing the denominator
Recall Example 3 from Section 1.2 where we rationalized the denominator

of the numerical fractions 2 and V7

V3T 4/10°

section that expressions of the form a + band a — b are called conjugates
and their product is a® — b? (difference of two squares). If a fraction has an
irrational denominator of the form a + bv/c, we can change it to a rational
expression (‘rationalize’) by multiplying numerator and denominator by its
conjugate a — b/, given that (a + bv/c)(a— bvc) = a*>— (bvc)? = a* — b’

Also recall from earlier in this

Example 11
Rationalize the denominator of each fractional expression.
2 1
' 1575 ) T
Solution
b2 2 1-V5_21-V5) 20-V5)_ 21-5)
1+v5 1+V5 1-V5 1-(V5)? 1-5 — A
_—(0=v5)_ -1+/5
2 2

VET1 VE+1 vx—1 (vxP—12 x—1




In questions 1-12, expand and simplify.

1 (n+4)(n—5) 2 2y —3)6y+3)
3 x+7x—=7) 4 5m + 2)?
5 x—1)7 6 (1+va)( —va)
7 @+bla—-b+1) 8 [(2x + 3) + yll(2x + 3) — 5]
9 (a+b)? 10 (ax + b)?
11 (1 +V50 = V5) 12 2x — 1)2x2 — 3x + 5)

In questions 13-30, completely factorize the expression.

13 12x° — 48 14 x° —6x°

15 X2+ x— 12 16 7 —6m — m?

17 x> —10x + 16 18 y>+7y+6

19 3n2—21n+ 30 20 2x3 + 20x2 + 18x
21 @ — 16 22 3y — 14y -5
23 25n* — 24 ax’ + 6ax + 9a
25 2n(m + 1)2 — (m + 1)2 26 x'—1

27 9— (y — 3)? 28 4y* —10y° — 96y’

29 4x2 — 20x + 25 30

Qx +3)72+ 2x(2x + 3)73

In questions 31-36, simplify the algebraic fraction.

x+4 3n—3
x2+5x+4 6n? — 6n
@ = lo? X +4x+4
= 5a — 5b eh x+2
20 —5 (2x + h)? — 4x?
35 §=5g S

In questions 37-46, perform the indicated operation and simplify.

37%—"§1 38 %—15

39 24 4ox13+%
41xly+x1—y a2 35+

43 250 44yi2+y2—35y—1o
45&bb-azlb2 46 3"26;3-%

In questions 47-50, rationalize the denominator of each fractional expression.

1 5
47 48
3—V2 2+ V3
2/2 + V3 l
49 Y2 T V- 50
22 — V3 V5 +7
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One of the most famous
equations in the history of
mathematics, X" + y" = 2",

is associated with Pierre Fermat
(1601-1665), a French lawyer
and amateur mathematician.
Writing in the margin of a
French translation of
Arithmetica, Fermat conjectured
that the equation x” + y" = 2"
(x, y,z.n € Z) has no non-zero
solutions for the variables x, y
and zwhen the parameter n is
greater than two. When n = 2,
the equation is equivalent to
Pythagoras'theorem for which
there are an infinite number of
integer solutions — Pythagorean
triples, such as 32 + 4% = 52 and
52 4 122 = 132, and their
multiples. Fermat claimed to
have a proof for his conjecture
but that he could not fit it in the
margin. All the other margin
conjectures in Fermat's copy of
Arithmetica were proven by the
start of the 19th century, but
this one remained unproven for
over 350 years, until the English
mathematician Andrew Wiles
proved it in 1994.

@)

@ Equations and formulae

Equations, identities and formulae

We will encounter a wide variety of equations in this course. Essentially

an equation is a statement equating two algebraic expressions that may

be true or false depending upon what value(s) is/are substituted for the
variable(s). The value(s) of the variable(s) that make the equation true

are called the solutions or roots of the equation. All of the solutions to

an equation comprise the solution set of the equation. An equation that

is true for all possible values of the variable is called an identity. All of

the common polynomial expansion and factorization patterns shown in
Section 1.5 are identities. For example, (a + b)? = a> + 2ab + V? is true for
all values of a and b. The following are also examples of identities.

3(x—5)=2(x+3)+x—21 (x+p)?—2xy=x2+y

Many equations are often referred to as a formula (plural: formulae) and
typically contain more than one variable and, often, other symbols that
represent specific constants or parameters (constants that may change in
value but do not alter the properties of the expression). Formulae with
which you are familiar include:

A=mtd=rtd=/(x, — %)>+ () —y)?and V= arr?

Whereas most equations that we will encounter will have numerical
solutions, we can solve a formula for a certain variable in terms of other
variables — sometimes referred to as changing the subject of a formula.

Example 12

Solve for the indicated variable in each formula.
a) a?+ b>=c* solveforbd

b) T= 277\/% solve for [

Solution
a) al+ b =ct=b*=ct—al=b==*Vc?:— a4
If bis alength then b= v ¢? — a?.

Y I B T R D N b
b)T—ZW\/;:\/;—zwég—Zmz:ﬂ—zmz

oQ

The graph of an equation

Two important characteristics of any equation are the number of variables
(unknowns) and the type of algebraic expressions it contains (e.g.
polynomials, rational expressions, trigonometric, exponential, etc.). Nearly
all of the equations in this course will have either one or two variables, and
in this introductory chapter we will discuss only equations with algebraic
expressions that are polynomials. Solutions for equations with a single
variable will consist of individual numbers that can be graphed as points on
a number line. The graph of an equation is a visual representation of the



equation’s solution set. For example, the solution set of the one-variable
equation containing quadratic and linear polynomials x? = 2x + 8 is

x € {—2, 4}. The graph of this one-variable equation is depicted (Figure 1.6)
on a one-dimensional coordinate system, i.e. the real number line.

- ———————
-4 -3 -2 -1 0 1 2 3 4 5 6

The solution set of a two-variable equation will be an ordered pair of
numbers. An ordered pair corresponds to a location indicated by a point on
a two-dimensional coordinate system, i.e. a coordinate plane. For example,
the solution set of the two-variable quadratic equation y = x2 will be

an infinite set of ordered pairs (x, y) that satisfy the equation. (Quadratic
equations will be covered in detail in Chapter 2.)

Equations of lines
A one-variable linear equation in x can always be written in the form
ax + b =0, a# 0, and it will have exactly one solution, x = —g. An

example of a two-variable linear equation in xand yis x — 2y = 2. The
graph of this equation’s solution set (an infinite set of ordered pairs) is a
line. (See Figure 1.8.)

The slope m, or gradient, of a non-vertical line is defined by the formula
_ y2—y1 _ vertical change
"™~ %, =% horizontal change
the slope of a vertical line is undefined. Using the two points (1, —%) and
(4, 1), we compute the slope of the line with equation x — 2y = 2 to be

1-(=39 _3 _1
m= ===

. Because division by zero is undefined,

-~ 2Y_2_1
4—-1 EAEA
1

If we solve for y, we can rewrite the equation in the form y = %x — 1. Note
that the coefficient of x is the slope of the line and the constant term is
the y-coordinate of the point at which the line intersects the y-axis, i.e.
the y-intercept. There are several forms in which to write linear equations
whose graphs are lines.

4 Figure 1.6 The solution set.

YA
y=x °
5_
-24 ]
3_
2+ (v2,2)
'I_
(—%,39)
_ —1  0[(0,0 5 X
71_
A

Figure 1.7 Four ordered pairs

in the solution set of y = x2 are
graphed in red. The graph of all the
ordered pairs in the solution set
form a curve, as shown in blue.

YA
4 4

X—2y=2 1

Form

Equation

Characteristics

general form

ax+by+c=0

every line has an equation in this form
if bothaand b # 0

slope-intercept form y=mx+c m is the slope; (0, ¢) is the y-intercept

point-slope form y— 7y =mx—x;) | misthe slope; (x;, y;) is a known point
on theline

horizontal line y=c slope is zero; (0, ¢) is the y-intercept

vertical line xX=cC slope is undefined; unless line is y-axis,

no y-intercept

o
XY

A
Figure 1.8 The graph of
X—=2y=2

<« Table 1.6 Forms for equations of

lines.
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Most problems involving equations and graphs fall into two categories:
(1) given an equation, determine its graph; and (2) given a graph, or some
information about it, find its equation. For lines, the first type of problem
is often best solved by using the slope-intercept form. However, for the
second type of problem, the point-slope form is usually most useful.

Example 13

Without using a GDGC, sketch the line that is the graph of each of
the following linear equations, written here in general form.
a) 5x+3y—6=0

b) y—4=0
c) x+3=0
Solution

a) Solve for y to write the equation in slope-intercept form.
5x+3y—6=0=3y=-5x+6=y= —§x+ 2. The line has
a y-intercept of (0, 2) and a slope of —%.

b) The equation y — 4 = 0 is equivalent to y = 4, whose graph is a
horizontal line with a y-intercept of (0, 4).

¢) The equation x + 3 = 0 is equivalent to x = —3, whose graph
is a vertical line with no y-intercept; but, it has an x-intercept of
(—=3,0).
Example 14

a) Find the equation of the line that passes through the point (3, 31) and
has a slope of 12. Write the equation in slope-intercept form.

b) Find the linear equation in C and F knowing that when C = 10 then
F = 50, and when C = 100 then F = 212. Solve for Fin terms of C.

Solution
a) Substitute into the point-slope form y — y; = m(x — x;); x; = 3,
y1=3land m= 12
y=pn=mx—x)=>y—31=12(x—3)=>y=12x—36+31=>y=12x—5

b) The two points, ordered pairs (C, F), that are known to be on the line
are (10, 50) and (100, 212). The variable C corresponds to the variable x
and F corresponds to y in the definitions and forms stated above. The

B-h _212-50_16_9 Choose one
C,—C, _100—10 90 5

of the points on the line, say (10, 50), and substitute it and the slope
into the point-slope form.

slope of the line is m =

F—F1=m(c—cl);»F—so=%(c— 10);»F=%C— 18+50;»F:%C+ 32




The slope of a line is a convenient tool for determining whether
two lines are parallel or perpendicular.

The two lines graphed in Figure 1.9 suggest the following property:
Two distinct non-vertical lines are parallel if, and only if, their
slopes are equal, 1, = m,.

4 Figure 1.10

The two lines graphed in Figure 1.10 suggest another property: Two non-
vertical lines are perpendicular if, and only if, their slopes are negative

reciprocals — that is, m; = — n%, which is equivalent to m; - m, = —1.

Distances and midpoints

Recall from Section 1.1 that absolute value (modulus) is used to define the
distance (always positive) between two points on the real number line.
The distance between the points A and B on the real number line is

|B — A|, which is equivalent to |A — B|.

The points A and B are the endpoints of a line segment that is denoted with
the notation [AB] and the length of the line segment is denoted AB. In

Figure 1.11, the distance between A and Bis AB= |4 —(—2)| = |—2 — 4] = 6.

The distance between two general points (x;, y;) and (x,, ¥,) on a
coordinate plane can be found using the definition for distance on a
number line and Pythagoras’ theorem. For the points (x;, y;) and (x,, ,),
the horizontal distance between them is |x; — x,| and the vertical distance
is [y1 — y,|- As illustrated in Figure 1.12, these distances are the lengths

of two legs of a right-angled triangle whose hypotenuse is the distance
between the points. If d represents the distance between (x;, y;) and

(%2, y»), then by Pythagoras’ theorem d? = |x; — x,|*> + [y, — y,|*. Because
the square of any number is positive, the absolute value is not necessary,
giving us the distance formula for two-dimensional coordinates.

Figure 1.9

< Figure 1.11

yi
Y24
y o
1 (1, 31) (2 1)
0 X'] xlz X
X = x| —>
A
Figure 1.12
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YA
R(4,8
o] (4,8)
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4 V45 7 o
.l MG 9
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Figure 1.13
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Figure 1.14 The graph shows the
two different points that are both a
distance of 13 from (1, 2).

The distance formula
The distance d between the two points (x;,

d=1/tx

The coordinates of the midpoint of a line segment are the average values
of the corresponding coordinates of the two endpoints.

)’1) and (xz,yz) in the coordinate plane is

— X)) )’2)

The midpoint formula
The midpoint of the line segment joining the points (x;
plane is

,¥1) and (x5, y,) in the coordinate

X +x Yty
2 2

Example 15

a) Show that the points P(1, 2), Q(3, 1) and R(4, 8) are the vertices of a
right-angled triangle.

b) Find the midpoint of the hypotenuse.

Solution

a) The three points are plotted and the line segments joining them are
drawn in Figure 1.13. Applying the distance formula, we can find the
exact lengths of the three sides of the triangle.

PQ=J1-32+Q2—-12=Va+1=15
QR=J(B—-4)2*+(1-8)%=VI+49 =50
PR = /(1 —4)%+ (2—8)> =V9+36 =45

PQ? + PR? = QR?because (v/5)* + (V45)2 =5 + 45 = 50 = (V/50)2.
The lengths of the three sides of the triangle satisfy Pythagoras’
theorem, confirming that the triangle is a right-angled triangle.

b) QRis the hypotenuse. Let the midpoint of QR be point M. Using the
34+4)\ (1+8\_(79
=B =

midpoint formula, M > > =\ E)' This point is

plotted in Figure 1.13.

Example 16
Find x so that the distance between the points (1, 2) and (x, —10) is 13.

Solution

d=13=/(x— 12+ (—10 — 2)? = 132 = (x — 1)> + (—12)?
= 169=x>—2x+1+144=x>—2x—24=0

= (x—6)(x+4)=0=>x—6=0o0rx+4=0

= x=6or x=—4




Simultaneous equations

Many problems that we solve with algebraic techniques involve sets of
equations with several variables, rather than just a single equation with
one or two variables. Such a set of equations is called a set of simultaneous
equations because we find the values for the variables that solve all of the
equations simultaneously. In this section, we consider only the simplest

set of simultaneous equations — a pair of linear equations in two variables.
We will take a brief look at three methods for solving simultaneous linear
equations. They are:

1. Graphical method
2. Elimination method
3. Substitution method

Although we will only look at pairs of linear equations in this section, it is
worthwhile mentioning that the graphical and substitution methods are
effective for solving sets of equations where not all of the equations are
linear, e.g. one linear and one quadratic equation.

Graphical method

The graph of each equation in a system of two linear equations in two
unknowns is a line. The graphical interpretation of the solution of a pair
of simultaneous linear equations corresponds to determining what point,
or points, lies on both lines. Two lines in a coordinate plane can only
relate to one another in one of three ways: (1) intersect at exactly one
point, (2) intersect at all points on each line (i.e. the lines are identical),
or (3) the two lines do not intersect (i.e. the lines are parallel). These three
possibilities are illustrated in Figure 1.15.

Y N N
% ,
N

N B <X

Intersect at exactly one point; Identical-coincident lines; Never intersect-parallel lines;
exactly one solution infinite solutions no solution

(=]
o

Although a graphical approach to solving simultaneous linear equations
provides a helpful visual picture of the number and location of solutions,
it can be tedious and inaccurate if done by hand. The graphical method
is far more efficient and accurate when performed on a graphical display
calculator (GDC).

Example 17

Use the graphical features of a GDC to solve each pair of simultaneous
equations.
a) 2x+3y=6 b) 7x — 5y =120

2x—y=—10 3x+y=2

< Figure 1.15
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Solution

a) First, we will rewrite each equation in slope-intercept form, i.e.
y = mx + ¢ This is a necessity if we use our GDC, and is also very
useful for graphing by hand (manual).

2x+3y=6=3y=—2x+ 6=>y=—%x+2 and 2x—y=—10=y=2x+ 10

Plotl Plot2 Plot3
\YiE (-2/3)X+2 ] E
NYoE 2X+10 : :

\Ys= intersect :
\Ye= dx Intersection f

\NY7= (x)dx

X=-3 FY=4

The intersection point and solution to the simultaneous equations is

x = —3and y = 4, or (—3, 4). If we manually graphed the two linear
equations in a) very carefully using graph paper, we may have been able to
determine the exact coordinates of the intersection point. However, using
a graphical method without a GDC to solve the simultaneous equations in
b) would only allow us to crudely approximate the solution.

Plotl Plot2 Plot3 s X Y
\Y1E(7/5)X-4 : 1.363636364 -2.090909091
Yo -3X+2 i AnsyFrac AnsyFrac
\Y3= B, 15/11 -23/11
\%4: :
NY5= i
“Ye= Intersecticn{
NY7= X=1.3636364 FY=-2.090909

b) 7x—5y=20:>5y=7x—202>y=%x—4 and
3x+y=2=y=—-3x+2

The solution to the simultaneous equations is x = % and y = —%,
(53
1’ 117

The full power and efficiency of the GDC is used in this example to find
the exact solution.

Elimination method

To solve a system using the elimination method, we try to combine the
two linear equations using sums or differences in order to eliminate one
of the variables. Before combining the equations, we need to multiply one
or both of the equations by a suitable constant to produce coefficients for
one of the variables that are equal (then subtract the equations), or that
differ only in sign (then add the equations).

Example 18

Use the elimination method to solve each pair of simultaneous equations.
a) 5x+3y=9 b) x—2y=3
2x — 4y =14 2x —4y =5




Solution

a) We can obtain coefficients for y that differ only in sign by multiplying
the first equation by 4 and the second equation by 3. Then we add the
equations to eliminate the variable y.

5x+3y= 9 — 20x+ 12y = 36
2x —4y=14 — 6x— 12y =42

26x =78
c=18

26

x= 3

By substituting the value of 3 for x in either of the original equations
we can solve for y.

5x+3y=9=503)+3y=9=3y=—-6=y= -2
The solution is (3, —2).

b) To obtain coefficients for x that are equal, we multiply the first equation
by 2 and then subtract the equations to eliminate the variable x.
x—2y=7 — 2x—4y =14
2x —4y=5 — 2x—4y= 5
0= 9

Because it is not possible for 0 to equal 9, there is no solution. The lines
that are the graphs of the two equations are parallel. To confirm this we

can rewrite each of the equations in the form y = mx + .
X—2y=7=2y=x— 7:>y=%x—% and
5

2x—4y=5:>4y=2x—5$y=%x—5

Both equations have a slope of %, but different y-intercepts. Therefore,
the lines are parallel. This confirms that this pair of simultaneous
equations has no solution.

Substitution method

The algebraic method that can be applied effectively to the widest variety
of simultaneous equations, including non-linear equations, is the
substitution method. Using this method, we choose one of the equations
and solve for one of the variables in terms of the other variable. We then
substitute this expression into the other equation to produce an equation
with only one variable, which we can solve directly.

Example 19

Use the substitution method to solve each pair of simultaneous equations.
a) 3 x—y=-9
6x+2y=2

b) —2x+6y=4
3x— 9y = —6
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Solution

a) Solve for yin the top equation,3x — y= —9 =y =3x+ 9, and
substitute 3x + 9 in for y in the bottom equation:
6x+23x+9)=2=6x+6x+18=2= 12x=—16jx=—%= —%.
Now substitute —4 for x in either equation to solve for y.

3(-3)—y=-9=y=—4+9=y=5
The solution is x = —%,y =5, 0r <—%,5>.

b) Solve for x in the top equation,
—2x+ 6y =4=2x= 6y — 4= x= 3y — 2,and substitute 3y — 2 in
for x in the bottom equation:
33y —2) —9y=—6 =9 —6—9y=—6=>0=0.
The resulting equation 0 = 0 is true for any values of x and y. The
two equations are equivalent, and their graphs will produce identical
lines — i.e. coincident lines. Therefore, the solution set consists of all
points (x, y) lying on the line —2x + 6y = 4 (or y= %x + %)

In questions 1-8, solve for the indicated variable in each formula.

1 m(h — x) = n solve for x 2 v=Vab—t solvefora
3 A= g(b1 + b,) solve for b, 4 A=1r29 solveforr
5 é[:% solve for k 6 at=x — bt solvefort
— 1.3 -9
7 V=3mr’h solveforr 8 F A solve for k

In questions 9-12, find the equation of the line that passes through the two given
points. Write the line in slope-intercept form (y = mx + ¢), if possible.

9 (=9 1)and (3, —7) 10 (3, —4)and (10, —4)

11 (—=12,—9)and (4,11) 12 (4 -1)and (52)

13 Find the equation of the line that passes through the point (7, —17) and is
parallel to the line with equation 4x + y — 3 = 0. Write the line in slope-
intercept form (y = mx + 0).

14 Find the equation of the line that passes through the point (—5, %) and is
perpendicular to the line with equation 2x — 5y — 35 = 0. Write the line in
slope-intercept form (y = mx + ¢).

In questions 15-18, a) find the exact distance between the points, and b) find the
midpoint of the line segment joining the two points.

15 (—4,10)and (4, —5) 16 (—1,2)and (5,4)
17 (3 1)and (-3 %) 18 (12,2)and (—10,9)

In questions 19 and 20, find the value(s) of k so that the distance between the points is 5.
19 (5, —1)and (k, 2) 20 (—2,—7)and(1,k)

In questions 21-23, show that the given points form the vertices of the indicated
polygon.

21 Right-angled triangle: (4, 0), (2, 1) and (=1, —5)

22 [sosceles triangle: (1, —3), (3,2) and (=2, 4)

23 Parallelogram: (0, 1), (3, 7), (4,4) and (1, —2)




In questions 24-29, use the elimination method to solve each pair of simultaneous
equations.

24 x +3y=38 25 x -6y =1
x—2y=3 3x+2y=13

26 6x +3y=16 27 x+3y=—1
S5x +4y = —1 x—2y=7

28 8x — 12y =4 29 5x+7y=9
—2x+ 3y =2 —1x—5y=1

In questions 30-35, use the substitution method to solve each pair of simultaneous
equations.

30 2x +y=1 31 3x—2y=7
3x+2y=3 Sx—y=—7
_ x, ) _
32 2x +8y= -6 3354-2 8
—5x — 20y =15 x+y=20
34 2x —y= =2 35 04x + 03y =1
4x+y=>5 0.25x + 0.1y = =0.25

In questions 36-38, solve the pair of simultaneous equations using any method
— elimination, substitution or the graphical features of your GDC.

36 3x+2y=9 37 362x — 588y = —10.11
7x+1y=2 0.08x — 0.02y = 0.92
38 2x—3y=4

Sx+2y=1




functions and
—quations

Assessment statements
2.1 Concept of function f: x — f(x); domain, range, image (value).
Composite functions (feg); identity function. Inverse function =1

2.2 The graph of a function; its equation y = f(x).
Function graphing skills: use of a GDC to graph a variety of functions.
Investigation of key features of graphs such as intercepts, horizontal and
vertical asymptotes, symmetry and consideration of domain and range.
Use of technology to graph a variety of functions.
The graph of y = f~'(x) as the reflection in the line y = x of the graph of
y = f(x).

2.3 Transformations of graphs: translations; stretches; reflections in the axes;
vertical stretch/shrink; horizontal stretch/shrink.
Composite transformations.

2.4 The quadratic function x — ax? + bx + c: its graph, y-intercept (0, ¢),
axis of symmetry x = —2£.
a

The form x — a(x — h)? + k: vertex (h,k).
The form x — a(x — p)(x — q): x-intercepts (p, 0) and (g, 0).

2.5 The reciprocal function x — % x # 0: its graph; its self-inverse nature.

The rational function x = ‘z_x +b

X+ d
2.7 Solving equations, both graphically and analytically.

The solution of ax? + bx + c =0, a # 0.
The quadratic formula. Use of the discriminant A = b2 — 4ac.

. Introduction

This chapter looks at functions and considers how they can be used
United States, use the Celsius in descrlblng.physmal phenomena..We also investigate ?omposue and
scale, invented by the Swedish inverse functions, and transformations such as translations, stretches and
scientist Anders Celsius reflections. Quadratic functions are treated graphically and algebraically.

(1701-1744). The United States
uses the earlier Fahrenheit

scale, invented by the Dutch @ Relations and fu nctions
scientist Gabriel Daniel

Fahrenheit (1686-1736). A .

citizen of the USA travelling to Relations

other parts of the world will
need to convert from degrees
Celsius to degrees Fahrenheit.

and its graph.

Most countries, except the °

There are different scales for measuring temperature. Two of the
more commonly used are the Celsius scale and the Fahrenheit scale. A
temperature recorded in one scale can be converted to a value in the other



scale, based on the fact that there is a constant relationship between the
two sets of numbers in each scale. If the variable C represents degrees
Celsius and the variable F represents degrees Fahrenheit, this relationship
can be expressed by the following equation that converts Celsius to
Fahrenheit: F = %C + 32.

Many mathematical relationships concern how two sets of numbers relate
to one another — and often the best way to express this is with an algebraic
equation in two variables. If it’s not too difficult, we find it useful to express

one variable in terms of the other. For example, in the previous equation,
Fis written in terms of C— making C the independent variable and F
the dependent variable. Since F is written in terms of C, it is easiest for
you to first substitute in a value for C, and then evaluate the expression to
determine the value of F. In other words, the value of Fis dependent upon
the value of C, which is chosen independently of F.

A relation is a rule that determines how a value of the independent

variable corresponds — or is mapped — to a value of the dependent variable.

A temperature of 30 degrees Celsius corresponds to 86 degrees Fahrenheit.

F=2(30) +32=>54+32=86

Along with equations, other useful ways of representing a relation include
a graph of the equation on a Cartesian coordinate system (also called

a rectangular coordinate system), a table, a set of ordered pairs, or a
mapping. These are illustrated below for the equation F = %C + 32.

Graph Table
6(,): A Celsius (C) | Fahrenheit (F)
—40 —40
404 —30 —22
Fi=(3)C+32
-20 -4
2 -
—-10 14
0 = A0 P20 20 lepiE 0 32
10 50
,20—1
20 68
44 30 86
T3 40 104
Ordered pairs Mapping

The graph of the equation F = %C + 32

Domain (input)

Range (output)

is a line consisting of an infinite set of —30 22
ordered pairs (C, F) — each is a solution 0 > 32
. . C F
9f the equation. The following se.:t 2 68
includes some of the ordered pairs on
40 104

the line:

{(—30, —22), (0, 32), (20, 68), (40, 104)}.

Rule: F= 2C+ 32

René Descartes

The Cartesian coordinate
system is named in honour of
the French mathematician and
philosopher René Descartes
(1596-1650). Descartes
stimulated a revolution in

the study of mathematics by
merging its two major fields

— algebra and geometry. With
his coordinate system utilizing
ordered pairs (Cartesian
coordinates) of real numbers,
geometric concepts could

be formulated analytically

and algebraic concepts (e.g.
relationships between two
variables) could be viewed
graphically. Descartes initiated
something that is very helpful
to all students of mathematics
— that is, considering
mathematical concepts

from multiple perspectives:
graphical (visual) and analytical
(algebraic).

e Hint: The coordinate system
for the graph of an equation has
the independent variable on the
horizontal axis and the dependent
variable on the vertical axis.



Functions and Equations

The largest possible set of values for the independent variable (the input
set) is called the domain — and the set of resulting values for the dependent
variable (the output set) is called the range. In the context of a mapping,
each value in the domain is mapped to its image in the range.

Functions

If the relation is such that each number (or element) in the domain
produces one and only one number in the range, the relation is called

a function. Common sense tells us that each numerical temperature in
degrees Celsius (C) will convert (or correspond) to only one temperature
in degrees Fahrenheit (F). Therefore, the relation given by the equation
F= %C + 32 is a function — any chosen value of C corresponds to exactly
one value of F. The idea that a function is a rule that assigns to each number
in the domain a unique number in the range is formally defined below.

Definition of a function

A function is a correspondence (mapping) between two sets X and Y in which each
element of set X corresponds to (maps to) exactly one element of set Y. The domain is
set X (independent variable) and the range is set Y (dependent variable).

Not only are functions important in the study of mathematics and
science, we encounter and use them routinely — often in the form of
tables. Examples include height and weight charts, income tax tables, loan
payment schedules, and time and temperature charts. The importance

of functions in mathematics is evident from the many functions that are
installed on your GDC.

For example, the keys labelled @ @ In (10)2 302585093
B .

each represent a function, because for each
input (entry) there is only one output (answer).
The calculator screen image shows that for the

function y = 1n x, the input of x = 10 has only
one output of y = 2.302 585 093.

For many physical phenomena, we observe that one quantity depends on

another. For example, the boiling point of water depends on elevation

above sea level; the time for a pendulum to swing through one cycle

(its period) depends on the length of the pendulum; and the area of

a circle depends on its radius. The word function is used to describe

this dependence of one quantity on another — i.e. how the value of an

independent variable determines the value of a dependent variable.

e Boiling point is a function of elevation (elevation determines boiling
point).

e The period of a pendulum is a function of its length (length determines
period).

e The area of a circle is a function of its radius (radius determines area).




Example 1

a) Express the volume V of a cube as a function of the length e of each edge.

b) Express the volume V of a cube as a function of its surface area S.

Solution
a) Vasa function of eis V = &3

b) The surface area of the cube consists of six squares each with an area of €.
Hence, the surface area is 6¢2; that is, S = 6e2. We need to write Vin terms
of S. We can do this by first expressing e in terms of S, and then
substituting this expression in for e in the equation V = &°.
S=6e2éez=gée= g

Substituting,

v=( §)3_(S%)3_s§_sl-s% s /s
6

Vas a function of Sis V= g@

Domain and range of a function

The domain of a function may be stated explicitly, or it may be implied by
the expression that defines the function. If not explicitly stated, the domain
of a function is the set of all real numbers for which the expression is
defined as a real number. For example, if a certain value of x is substituted
into the algebraic expression defining a function and it causes division

by zero or the square root of a negative number (both undefined in the
real numbers) to occur, that value of x cannot be in the domain. The
domain of a function may also be implied by the physical context or
limitations that exist. Usually the range of a function is not given explicitly
and is determined by analyzing the output of the function for all values

of the input. The range of a function is often more difficult to find than
the domain, and analyzing the graph of a function is very helpful in
determining it. A combination of algebraic and graphical analysis is very
useful in determining the domain and range of a function.

Example 2

Find the domain of each of the following functions.
a) {(_6) _3)> (_1) O)) (2) 3)’ (3> 0)) (5> 4)}

b) Area of a circle: A = 7rr?

1
A y=x%
d) y=vx
Solution

a) The function consists of a set of ordered pairs. The domain of the
function consists of all first coordinates of the ordered pairs. Therefore,
the domain is the set {—6, —1, 2, 3, 5}.
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b) The physical context tells you that a circle cannot have a negative radius.
You can only choose values for the radius (r) that are greater than zero.
Therefore, the domain is the set of all real numbers such that r > 0.

¢) The value of x = 0 cannot be included in the domain because division
by zero is not defined for real numbers. Therefore, the domain is the set
of all real numbers except zero (x # 0).

d) Any negative values of x cannot be in the domain because the square
root of a negative number is not a real number. Therefore, the domain
is all real numbers such that x = 0.

Determining if a relation is a function

VA y Some relations are not functions — and because of the mathematical

3 significance of functions it is important for us to be able to determine
when a relation is, or is not, a function. It follows from the definition of a
function that a relation for which a value of the domain (x) corresponds
to (or determines) more than one value in the range (y) is not a function.
Any two points (ordered pairs (x, y)) on a vertical line have the same
x-coordinate. Although a trivial case, it is useful to recognize that the
equation for a vertical line, x = 2 for example (see Figure 2.1), is a relation
but not a function. The points with coordinates (2, —3), (2,0) and (2, 4)
-3 are all solutions to the equation x = 2. The number two is the only element
+ in the domain of x = 2 but it is mapped to more than one value in the

A range (—3, 0 and 4, for example). It follows that if a vertical line intersects
Figure 2.1 the graph of a relation at more than one point, then a value in the domain
(x) corresponds to more than one value in the range (y) and, hence, the
relation is not a function. This argument provides an alternative definition
of a function and also a convenient visual test to determine whether or not
the graph of a relation represents a function.

<y

Alternative definition of a function

A function is a relation in which no two different ordered pairs have the same first
coordinate.

Vertical line test for functions
A vertical line intersects the graph of a function at no more than one point.

Figure 2.2 > YA A Rule: y = x2

104 Domain (input) Range (output)

-

|24
~10 -5 O 5 10 '

—107 v Each element of the domain (x) is mapped
to exactly one element of the range (y).

<y




As the graph in Figure 2.2 clearly shows, a vertical line will intersect the
graph of y = x? at no more than one point — therefore, the relation y = x?
is a function.

In contrast, the graph of the equation y? = x is a ‘sideways’ parabola that
can clearly be intersected more than once by a vertical line (see Figure
2.3). There are at least two ordered pairs having the same x-coordinate
but different y-coordinates (for example, (9, 3) and (9, —3)). Therefore,
the relation y? = x fails the vertical line test indicating that it does not
represent a function.

VA A Rule: y2 = xory =*++vx 4 Figure 2.3
104 Domain (input) Range (output)
54
o
-'-"'-'-_-—' b\“
~10 -5 N5 | 10 ¥ J
g ‘
75 ~ X
— ’I O -
¥ At least one element of the domain (x) is mapped
to more than one element of the range (y).
e Hint: To graph the equation y2 = x on your GDC, you need to solve for y in terms of x.
The result is two separate equations: y = vX and y = —v/X (ory = £v/x). Each is one-
half of the 'sideways' parabola. Although each represents a function (vertical line test), the
combination of the two is a complete graph of y? = x that clearly does not satisfy either
definition of a function.
Y1=v(X) Y2=-v(X) Plotl Plot2 Plot3
NY1IEV(X)
“Y2E -V(X)
e . : NY3= .
\Ya=
'\Y5=
“Ye=
X=9 v=3 X=9 v=-3 “Y7=
Example 3
What is the domain and range for the function y = x%?
Solution
e Algebraic analysis: Squaring any real number produces another real
. . A
number. Therefore, the domain of y = x? is the set of all real numbers : é/ i
(R). What about the range? Since the square of any positive or negative g
number will be positive and the square of zero is zero, the range is the 6

set of all real numbers greater than or equal to zero.

e Graphical analysis: For the domain, focus on the x-axis and horizontally
scan the graph from —o to +2. There are no ‘gaps’ or blank regions
in the graph and the parabola will continue to get ‘wider’ as x goes to
either —o or +. Therefore, the domain is all real numbers. For the
range, focus on the y-axis and vertically scan from — or +. The
parabola will continue ‘higher’ as y goes to +, but the graph does not
go below the x-axis. The parabola has no points with negative

Y

domain

&

Figure 2.4




Table 2.1 Different ways of
expressing the domain and range
of y =x2

@ Hint: The infinity symbol o does
not represent a number. When oo

or —m s used in interval notation,
itis being used as a convenient
notational device to indicate that an
interval has no endpoint in a certain
direction.

e Hint: When asked to determine
the domain and range of a function,
it is wise for you to conduct both
algebraic and graphical analysis
—and not rely too much on

either approach. For graphical
analysis of a function, producing a
comprehensive graph on your GDC is
essential — and an essential skill for
this course.

Table 2.2 Function notation.

e e e N o b
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y-coordinates. Therefore, the range is the set of real numbers greater
than or equal to zero. See Figure 2.4.

Description in words Interval notation (both formats)

domain is
{x:x € R} ordomain is x € ] —o0, o[

domain is any real number

range is any real number greater than or
equal to zero

range is
{y:y=0torrangeisy € [0, %[

Function notation

It is common practice to assign a name to a function — usually a single
letter with f, gand h being the most common. Given that the domain
(independent) variable is x and the range (dependent) variable is y, the
symbol f(x), read ‘fof x, denotes the unique value of y that is generated
by the value of x. This function notation was devised by the famous
Swiss mathematician Leonhard Euler (1707-1783). Another notation —
sometimes referred to as mapping notation — is based on the idea that
the function fis the rule that maps x to f(x) and is written f: x — f(x).
For each value of x in the domain, the corresponding unique value of y in
the range is called the function value at x, or the image of x under f. The
image of x may be written as f(x) or as y. For example, for the function
f(x) = x%f(3) = 95 or‘if x=3theny = 9.

Notation Description in words
flx) = x? ‘the function £, in terms of x, is x%; or, simply, 'f of x is x %
fix— x? ‘the function f maps x to x %
f3 =9 ‘the value of the function fwhen x = 3is 9'; or, simply, 'f of 3 equals 9’
f:3—9 ‘the image of 3 under the function fis 9’
Example 4

Find the domain and range of the function h:x — xTIZ

Solution
o Algebraic analysis: The function produces a real number for all x, except
for x = 2 when division by zero occurs. Hence, x = 2 is the only real

can never be

number not in the domain. Since the numerator of P 1 3
zero, the value of y cannot be zero. Hence, y = 0 is the only real number
not in the range.

e Graphical analysis: A horizontal scan shows a ‘gap’ at x = 2 dividing the
graph of the equation into two branches that both continue indefinitely,
with no other ‘gaps’ as x — * . Both branches are asymptotic
(approach but do not intersect) to the vertical line x = 2. This line is a
vertical asymptote and is drawn as a dashed line (it is not part of the

graph of the equation). A vertical scan reveals a ‘gap’ at y = 0 (x-axis)



with both branches of the graph continuing indefinitely, with no other
‘gaps’ as y — = o, Both branches are also asymptotic to the x-axis. The
x-axis is a horizontal asymptote.

Both approaches confirm the following for h: x — ﬁ:

The domainis {x:xER,x# 2} or x&]—00,2[U]2, 0

Therangeis {y:y€R,y#0}or ye]—o0,0[U]0, %[

Example 5
Consider the function g(x) = vx + 4. YA
a) Find: (i) g(7) 31
(i) g(32) .
(iii) g(—4) ghd =g 2
b) Find the values of x for which gis 11
undefined.

c) State the domain and range of g. -4 -2

Solution

a) (i) g(7) =V7 + 4 = V11 = 3.32 (3 significant figures)
(i) g(32)=V32+4=V36=6
(ili) g(—4)=vV—-4+4=/0=0

b) g(x) will be undefined (square root of a negative) when x + 4 < 0.
x+ 4 < 0= x< —4. Therefore, g(x) is undefined when x < —4.

c) It follows from the result in b) that the domain of gis {x:x= —4}.
The symbol v stands for the principal square root that, by definition,
can only give a result that is positive or zero. Therefore, the range of gis
{y:y = 0}. The domain and range are confirmed by analyzing the graph
of the function.

Example 6

Find the dolmain and range of the function Y1=1/y(9-xX2)

flx) = ﬁ

Solution

The graph of y = ﬁ on a GDC, shown oo |- 33333333

right, agrees with algebraic analysis indicating that the expression

ﬁ will be positive for all x, and is defined only for —3 < x < 3.
Further analysis and tracing the graph reveals that f(x) has a minimum at
(O, %) The graph on the GDC is misleading in that it appears to show that
the function has a maximum value (y) of approximately 2.803 7849 (see
screen image next page). Can this be correct? A lack of algebraic thinking
and over-reliance on your GDC could easily lead to a mistake. The graph
abruptly stops its curve upwards because of low screen resolution.

e Hint: As Example 6 illustrates,
itis dangerous to completely

trust graphs produced on a GDC
without also doing some algebraic
thinking. It is important to mentally
check that the graph shown is
comprehensive (shows all important
features of the graph), and that the
graph agrees with algebraic analysis
of the function - e.g. where should
the function be zero, positive,
negative, undefined, increasing/
decreasing without bound, etc.
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Y1=1/+/(9-X2) TABLE SETUP
TblStart .999
aTbl=.

Indpnt: A o Ask
Depend @ Ask

X=2.9787234 | Y=2.8037849

_X 7L Y1(2'32398g95525

18135 Y1(2'283932%3245

2-3003 133325 Y1(2.9999999)

2.9999 |40.825 1290.994449

3 ERROR l

X=2.9994

Function values should get quite large for values of xa

little less than 3, because the value of V9 — x2 will be
1

V9 — x?

GDC to make a table for f(x), or evaluating the function

for values of x very close to —3 or 3, confirms that as x
approaches

small, making the fraction large. Using your

—3 or 3, yincreases without bound, i.e. y goes
to +o0. Hence, f(x) has vertical asymptotes of x = —3 and
x = 3. This combination of graphical and algebraic
analysis leads to the conclusion that the domain of f(x) is
{x: —3 < x <3}, and the range of f(x) is {y:y = %}.

For each equation 1-9, a) match it with its graph (choices are labelled A to L), and
b) state whether or not the equation represents a function — with a justification.
Assume that x is the independent variable and y is the dependent variable.

1y=2x 2 y=-3 3x—y=2
4 x?+y’=4 5y=2-x 6 y=x’+2
3 _ _2 2 —
7 y°= 8 y=% 9 x°+ty=2
YA VA YA
] N C N1/
2- 24

T 29 3 4x 4|20 5 ix & 29 % ix
—2- —2+ —24
—4 4 —4 —4 4
D YA E VA F YA
4 4 y

4 24 7-\

24 250 T 4 X “4 —2/0 2 ii "4 5 0 . Ai
— ) —2 -
—4 —4
G YA H | YA
4 49
2+ 24 / 24

S (e _'4_‘20/2 ix =50 3 ix
—p —2 -
_4— A — &4
J yA K YA L YA
X 4l 4]
2 \ /—\ 2

T4 00 N iax 4 J{;l,/ﬁ 4 x J4 0 2 ax
—2 i —24
—4 —4 —4




10 Express the area, A, of a circle as a function of its circumference, C.

11 Express the area, A, of an equilateral triangle as a function of the length, €, of
each of its sides.

In questions 12—17, find the domain of the function.
12 f(x) =2x — 7 13 h(x) = x> — 4
14 gt)=V3—1t 15 h(t) = VT
4 _ 6

16 Volume of a S|ohere.V—§7Tr3 17 g(k) =279
18 Do all linear equations represent a function? Explain.
19 Find the domain and range of the function fdefined as f: x — x]TS
20 Consider the function h(x) = vx — 4.

a) Find: () h(21) (i) h(53) (i) h(4)

b) Find the values of x for which h is undefined.

) State the domain and range of h.

d) Sketch a comprehensive graph of the function.
1

21 Find the domain and range of the function fdefined as f(x) = . and sketch
J Vx?2—9
a comprehensive graph of the function clearly indicating any intercepts or

asymptotes.

@ Composition of functions

Composite functions

Consider the function in Example 5 in the previous section, f(x) = vx + 4
. When you evaluate f(x) for a certain value of x in the domain (for
example, x = 5) it is necessary for you to perform computations in two
separate steps in a certain order.

f(5)=V5+ 4= f(5) =9 Step 1: compute the sum of 5 + 4
= f(5) =3  Step 2: compute the square root of 9

Given that the function has two separate evaluation ‘steps), f(x) can be
seen as a combination of two ‘simpler’ functions that are performed in a
specified order. According to how f(x) is evaluated (as shown above), the
simpler function to be performed first is the rule of ‘adding 4’ and the
second is the rule of ‘taking the square root’. If h(x) = x + 4 and g(x) = v,
we can create (compose) the function f(x) from a combination of h(x) and
g(x) as follows:
flx)= g(h(x))

= g(x+4) Step 1:substitute x + 4 for h(x), making x + 4 the

argument of g(x)
=Vx+4  Step 2:apply the function g(x) on the argument x + 4

We obtain the rule vx + 4 by first applying the rule x + 4 and then
applying the rule vx. A function that is obtained from ‘simpler’ functions
by applying one after another in this way is called a composite function.
In the example above, f(x) = v/x + 4 is the composition of h(x) = x + 4

From the explanation on

i how fis the composition (or

composite) of g and h, you
can see why a composite
function is sometimes referred
to as a‘function of a function
Also, note that in the notation
g(h(x)) the function h that is
applied first is written ‘inside;
and the function g that is
applied second is written
‘outside’



Figure 2.5

e Hint: The notations (g ° h)(x) and
g(h(x)) are both commonly used to
denote a composite function where
his applied first and then followed
by applying g. Since we are reading
this from left to right, it is easy to
apply the functions in the incorrect
order. It may be helpful to read go h
as'g following h, or as'g composed
with h'to emphasize the order in
which the functions are applied.
Also, in either notation, (g ° h)(x) or
g(h(x)), the function applied first is
closest to the variable x.

Functions and Equations

followed by g(x) = vx. In other words, fis obtained by substituting & into
g and can be denoted in function notation by g(h(x)) — read ‘g of h of x.

g°h

range of h
domain of g

domain of h range of g

We start with a number x in the domain of 4 and find its image h(x). If this
number h(x) is in the domain of g we then compute the value of g(h(x)).
The resulting composite function is denoted as (g° h)(x). See mapping
illustration in Figure 2.5.

Definition of the composition of two functions
The composition of two functions, g and h, such that h is applied first and g second is
given by

(gehx) = g(h(x))
The domain of the composite function g h is the set of all x in the domain of h such
that h(x) is in the domain of g.

Example 7
If f(x) = 3xand g(x) = 2x — 6, find:
a) (fog)(5)
) (g°N)5)
e) (g°8)(5)

b) Express (f ° g)(x) as a single function rule (expression).
d) Express (g ° f)(x) as a single function rule (expression).

f) Express (g ° g)(x) as a single function rule (expression).

Solution
a) (feg)(5) = f(g(5) = f(2:5—6) = f(4) = 34 = 12

b) (feg)(x) = f(g(x)) = f(2x — 6) = 3(2x — 6) = 6x — 18
Therefore, (f° g)(x) = 6x — 18.
Check with result from a): (f° ¢)(5) = 6:5 — 18 =30 — 18 = 12

c) (gof)(5) = g(f(5)) = g(3:5) = g(15) = 2:15 — 6 = 24

d) (g°f)(x) = g(f(x) = g(3x) = 2(3x) — 6 = 6x— 6
Therefore, (g ° f)(x) = 6x — 6.
Check with result from ¢): (g° f)(5) = 65— 6 =30 — 6 = 24

e) (gog(5) =g(g(5)=g(25—6)=g(4)=24—6=2

f) (geg(x) =g(g(x) =g2x—6) =2Q2x—6) —6=4x— 18
Therefore, (g © g)(x) = 4x — 18.
Check with result frome): (g° g)(5) = 45— 18 =20 — 18 =2




It is important to notice that in parts b) and d) in Example 7, f o gis not
equal to go f. At the start of this section, it was shown how the two functions
h(x) = x + 4 and g(x) = vx could be combined into the composite
function (ge° h)(x) to create the single function f(x) = v'x + 4. However,
the composite function (h° g)(x) — the functions applied in reverse order
— creates a different function: (he g)(x) = h(g(x)) = h(vx) = vx + 4.
Since vX + 4 # Vx + 4, then again f © gis not equal to g ° f. Is it always
true that f o g # go f? The next example will answer that question.

Example 8

Given f:x+— 3x — 6and g: x — %x + 2, find the following:
a) (fogx) b) (g°/)(x)
Solution

a) (fog)(x) = flgx) = flx+2)=3(3x+2)—6=x+6-6=x
b) (gof)(x) =g(f(x) =gB3x—6) =3(3x—6) +2=x—2+2=x

Example 8 shows that it is possible for f o g to be equal to g © f. We will
learn in the next section that this occurs in some cases where there is a
‘special’ relationship between the pair of functions. However, in general,

fog#gof

Decomposing composite functions

In Examples 7 and 8, we created a single function by forming the
composition of two functions. As we did with the function f(x) = vx + 4
at the start of this section, it is also important for you to be able to identify
two functions that make up a composite function, in other words, for you to
decompose a function into two simpler functions. When you are doing this
it is very useful to think of the function which is applied first as the ‘inside’
function, and the function that is applied second as the ‘outside’ function.
In the function f(x) = Vx + 4, the ‘inside’ function is h(x) = x + 4 and the
‘outside’ function is g(x) = Vx.

Example 9

Each of the following functions is a composite function of the form
(f° @)(x). For each, find the two component functions fand g.

a) h;xHﬁ b) kixro 20x+1 ) plx) =Vx?— 4

Solution

a) If you were to evaluate the function h(x) for a certain x in the domain,
you would first evaluate the expression x + 3, and then evaluate the
expression . Hence, the ‘inside’ function (applied first) is y = x + 3,
and the ‘outside’ function (applied second) is y = % Then, with

g(x) = x+ 3and f(x) = 1, it follows that h:x— (fo g)(x).

e Hint: Decomposing composite
functions — identifying the
component functions that form

a composite function —is an
important skill when working with
certain functions in the topic of
calculus. For the composite function
f(x) = (go h)(x), g and h are the
component functions.
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b) Evaluating k(x) requires you to first evaluate the expression 4x + 1, and
then evaluate the expression 2*. Hence, the ‘inside’ function is y = 4x + 1,
and the ‘outside’ function is y = 2*. Then, with g(x) = 4x + 1 and
flx) = 2% it follows that k:x— (f° g)(x).

c) Evaluating p(x) requires you to perform three separate evaluation
‘steps’: (1) squaring a number, (2) subtracting four, and then (3) taking
the cube root. Hence, it is possible to decompose p(x) into three
component functions: if h(x) = x?, g(x) = x — 4 and f(x) = V%, then
plx) = (foge h)(x) = f(g(h(x))). However, for our purposes it is best to
decompose the composite function into only two component functions:
if g(x) = x> — 4 and f(x) = VX, then p:x— (f° g)(x) = f(g(x)).

geh

A Finding the domain of a composition of functions
’ Referring back to Figure 2.5 (shown again here as Figure 2.6), it is
w important to note that in order for a value of x to be in the domain of the
composite function g © h, two conditions must be met:
domain range of h range

ofh domain of g ofg (1) xmust be in the domain of h, and (2) h(x) must be in the domain of g.
:gure 2.6 Likewise, it is also worth noting that g(h(x)) is in the range of g © honly if x

is in the domain of g © h. The next example illustrates these points —and also
that, in general, the domains of g © hiand h ° gare not the same.

Example 10
Let g(x) = x> — 4 and h(x) = vx. Find:

a) (g° h)(x) and its domain and range

b) (h° g)(x) and its domain and range.

Solution
Firstly, establish the domain and range for both gand h. For g(x) = x> — 4,
the domain is x € R and the range is y = —4. For h(x) = vXx, the domain is
x = 0 and the range is y = 0.
a) (g°h)(x) = g(h(x))
= g(vVx) To be in the domain of g © h, vX must be
defined for x = x = 0.
= (VX)? — 4 Therefore, the domain of go his x= 0.
=x—4 Since x = 0, the range for y = x — 4is y = —4.
Therefore, (g © h)(x) = x — 4, and its domain is x = 0, and its range
isy= —4.
b) (heog)(x) = h(g(x)) g(x)= x> — 4 must be in the domain of h
¥ —4=0=>x>=4
= h(x? — 4) Therefore, the domainof hogisx< —2orx=2
=vx?—4 and,with x < —2 or x = 2, the range for
y=vVx}—4isy=0.
Therefore, (h ° g)(x) = Vx* — 4, and its domain is x < —2 or x = 2,
and its range is y = 0.




— __1
1 Let f(x) = 2x and g(x) = 5= 3,x¢ 0.

a) Find the value of (i) (fe g)(5) and (ii) (g > f)(5).
b) Find the function rule (expression) for (i) (fo g)(x) and (ii) (g ° f)(x).

2 letfix—2x—3andg:x— 2 — x°
In a)-f), evaluate:

a) (feg)(0) b) (g=1)(0) Q) (fef)(4)

d) (gog)(—3) e) (feg)(—=1) f) (gof)(—3)

In g)-)), find the expression:

g) (feg)x) h) (ge°f)(x) ) (fef)(x) ) (gegx)

For each pair of functions in questions 3-7, find (fe g)(x) and (g ° f)(x) and state the
domain for each.

3 flx)=4x—1,g(x) =2+ 3x

4 f(x)=x>+1,gkx) = —2x

5 fx)=vx+1,gx=1+x

2
x+4

7 f(x) = 3x + 5,g(x) = "%5

8 letg(x) =+vx — 1 and h(x) = 10 — x? Find:

6 f(x) =

gx)=x—1

a) (geh)(x) and its domain and range
b) (heg)(x) and its domain and range.
In questions 9-14, determine functions g and h so that f(x) = g(h(x)).
9 f(x) = (x + 3)? 10 f(x) =vVx —5
— _ = —1
1M f(x)=7—vx 12 f(x) >53
13 f(x) =10%*! 14 f(x) =Vx— 9

In questions 15-18, find the domain for a) the function £, b) the function g, and c) the
composite function fog.

15 f(x) = VX, glx) = x> + 1 16 f(x) =

17 f(x) =

XZ_],g(x)=x+1 18 f(x) = 2x

@ Inverse functions

Pairs of inverse functions
Let’s look again at the function at the start of this chapter — the formula
that converts degrees Celsius (C) to degrees Fahrenheit (F): F = %C + 32.

If we rearrange the function so that Cis the independent variable (i.e. Cis
expressed in terms of F), we get a different formula that does the reverse,

or inverse process, and converts F to C. Writing C in terms of F (solving for

C) gives: C = g(F —32)orC= gF - %

useful for people travelling to the USA. These two conversion formulae,
160

F= %C +32and C = gF — g »are both linear functions. As mentioned

This new formula could be




® Hint: Writing a function using
x and y for the independent and
dependent variables, such that y is
expressed in terms of x, is a good
idea because this is the format in
which you must enter it on your
GDC in order to have the GDC
display a graph or table for the
function.

Plotl Plot2 Plot3

\YiE(9/5)X+32
Y2 (5/9)X-160/9

\Y3=
\Ya=
\Y5=
\Ye=

domainof f ¢ range of f

range of g 9 domainofg

A
Figure 2.7

You are already familiar with
pairs of inverse operations.
Addition and subtraction

are inverse operations. For
example, the rule of ‘adding
six'(x + 6) and the rule of
‘subtracting six’ (x — 6) undo
each other. Accordingly, the
functions f(x) = x + 6 and
g(x) = x — 6 are a pair of
inverse functions. Multiplication
and division are also inverse
operations.

Functions and Equations

previously, it is typical for the independent variable (domain) of a function
to be x and the dependent variable (range) to be y. Let’s assign the name
fto the function converting C to F, and the name g to the function
converting Fto C.

converting Cto F: y = %x + 32 = flx)= %x + 32
converting Cto F: y= gx - % =  g(x) = %x - %

The two functions, fand g have a ‘special’ relationship in that they ‘undo’
each other.

To illustrate, function fconverts 25°C to 77 °F
[f(ZS) = %(25) +32=45+32= 77], and then function g can ‘undo’ this

by converting 77 °F back to 25°C

_ 5.7, _ 160 _ 385 — 160 _ 225 _

this reverse (inverse) effect on function f, we call function g the inverse of
function f. Function f has the same inverse effect on function g [g(77) = 25
and then f(25) = 77], making f the inverse function of g The functions f
and gare inverses of each other — they are a pair of inverse functions.

25]. Because function g has

In Figure 2.7, the mapping diagram for the functions fand gillustrates the
inverse relationship for a pair of inverse functions where the domain of
one is the range for the other.

The composition of two inverse functions

The mapping diagram (Figure 2.7) and the numerical examples in the
previous paragraph indicate that if function fis applied to a number in
its domain (e.g. 25) giving a result in the range of f(e.g. 77) and then
function gis applied to this result, the final result (e.g. 25) is the same
number first chosen from the domain of f. This process and result can be
expressed symbolically as: (g° f)(x) = xor g(f(x)) = x. The composition
of two inverse functions maps any value x back to itself — i.e. one function
‘undoing’ the other. It must also follow that (fo g) = x. Let’s verify these
results for the pair of inverse functions fand g

9 5(9 160 160 160
(g°f)(x) =g(§x+ 32) =§(§x+32) —gi=xtgimgi=x

—¢(3,, 160\ _9(5 _ 160 -, _ 160
f(g(x))—f(gx 9) 5(9x 9)+32 x =g+ 32
=x—32+32=x

Examples 7 and 8 in the previous section on composite functions explored
whether fo g = go f. Example 7 provided a counter-example showing it

is not a true statement. However, Example 8 showed a pair of functions
for which (f° g)(x) = (g°f)(x) = x the same result that we just obtained
for the pair of inverse functions that convert between Cand F. The two
functions in Example 8, f: x+— 3x — 6 and g: x — %x + 2, are also a pair of
inverse functions.



Definition of the inverse of a function

If fand g are two functions such that (fe g)(x) = x for every x in the domain of g and
(gof)(x) = x for every x in the domain of f, the function g is the inverse of the function f.
The notation to indicate the function that is the ‘inverse of function 7" is f~!. Therefore,

(Fof=N(x) =xand (f1of)(x) = x

The domain of f must be equal to the range of f~, and the range of f must be equal to
the domain of £,

Figure 2.8 shows a mapping diagram for a pair of inverse functions.

Finding the inverse of a function
Example11

Given the linear function f(x) = 4x — 8, find its inverse function f~!(x)
and verify the result by showing that (fo f~!)(x) = xand (f !¢ f)(x) = x.

Solution
Recall that the way we found the inverse of the function converting Cto F,
F= %C + 32, was by making the independent variable the dependent
variable and vice versa. Essentially what we are doing is switching the domain
(x) and range (y), since the domain of f becomes the range of f~! and the
range of f becomes the domain of f~!, as stated in the definition of the
inverse of a function, and depicted in Figure 2.8. Also, recall that y = f(x).
flx) =4x—8
y = 4x — 8 write y = f(x)
x = 4y — 8 interchange x and y (i.e. switch the domain and range)
4y = x + 8 solve for y (dependent variable) in terms of x (independent
variable)
y= ix +2
f4(x) = 1x + 2 resulting equation is y = f~!(x)
Verify that fand f~! are inverses by showing that f(f~! (x)) = xand
(%) = x
f(ix+2)=4(ix+2>—8=x+8—8=x
f1(4x — 8) Zi(4x—8) +2=x—2+2=x

This confirms that y = 4x — 8 and y = 4x + 2 are inverses of each other.

The method of interchanging x and y to find the inverse function also gives us
a way for obtaining the graph of f~! from the graph of f. Given the reversing
effect that a pair of inverse functions have on each other, if f(a) = b then
f1(b) = a. Hence, if the ordered pair (g, b) is a point on the graph of y = f(x),
the ‘reversed’ ordered pair (b, a) must be on the graph of y = f~!(x). Figure
2.9 shows that the point (b, a) can be found by reflecting the point (a, b) about
the line y = x.

As Figure 2.10 illustrates, the following is true.

Graphical symmetry of inverse functions
The graph of £~ is a reflection of the graph of fabout the line y = x.

domain of f f range of f

rangeof f' f ' domainof f!

A
Figure 2.8 f(x)=yand f~'(y)= x.

It follows from the definition
that if g is the inverse of f, it
must also be true that fis the
inverse of g.

e Hint: Do not mistake the —1in
the notation £~ for an exponent.
It is not an exponent. f~! does not
denote the reciprocal of f(x). If a
superscript of —1 is applied to the
name of a function —as in f~'(x) or
sin~1(x) — it denotes the function that
is the inverse of the named function
(e.g. f(x) or sin(x)). If a superscript of
—1is applied to an expression, as in
77 orx + 5 Tor (f(x) ", itisan
exponent and denotes the reciprocal
of the expression. For example, the

. 1

. ; T
reciprocal of f(x) is (f(x)) " = )

yi

/ (a, b)

<y

.-/fé

A
Figure 2.9

yi

Figure 2.10
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When f(x) = f~'(x), the O
function fis said to be self-
inverse. The fact that the
function f(x) = x is self-inverse
should make you wonder if
there are any other functions
with the same property.
Knowing that inverses are
symmetric about the line

y = X, weonly need to find a
function whose graph has

y = xasaline of symmetry.

The identity function

We have repeatedly demonstrated the fact, and it is formally stated in

the definition of the inverse of a function, that the composite function
which has a pair of inverse functions as its components is always the linear
function y = x. That is, (fo f~1)(x) = xor (f 1o f)(x) = x. Let’s label the
function y = x with the name I. Along with the fact that I(x) = (fof!)(x)
= (f~1of)(x) = x, the function I(x) has other interesting properties. It is
obvious that the line y = x is reflected back to itself when reflected about
the line y = x. Hence, from the graphical symmetry of inverse functions,
the function I(x) is its own inverse; that is, I(x) = I !(x). Most interestingly,
I(x) behaves in composite functions just like the number one behaves for
real numbers and multiplication. The number one is the identity element
for multiplication. For any function f, it is true that fo I = fand I o f = f. For
this reason, we call the function f(x) = x, or I(x) = x, the identity function.

The existence of an inverse function

Is it possible for the inverse of a function not to be a function? Recall that
the definition of a function (Section 2.1) says that a function is a relation
such that a certain value x in the domain produces only one value y in the
range. The vertical line test for functions followed from this definition.

Example12

Find the inverse of the function g(x) = x? + 2 with domain x € R.

Solution
Following the method used in Example 11:
ﬂx) = x2 + 2 Y y=x
y=x*+2
x=y*+2
yr=x—2 y=x2+2 i
=vx—
y=XvVx—2 Y
/ /
/ "
//(’) N
.//
y=—vx—2
Figure 2.11 | 4

Certainly the graphs of y = x> + 2 and y = =V/x — 2 are reflections about
the line y = x (see Figure 2.11). However, the graph of y = =v/x — 2 does
not pass the vertical line test. y = */x — 2 is the inverse of g(x) = x* + 2,
but it is only a relation and not a function.

The inverse of g(x) will be a function only if g(x) is a one-to-one function;
that is, a function such that no two elements in the domain (x) of g
correspond to the same element in the range (y). The graph of a one-to-one
function must pass both a vertical line test and a horizontal line test.



The function f(x) = x? with domain x € R (Figure YA O
2.12) is not a one-to-one function. Hence, its inverse

is not a function. There are two different values of x 8
that correspond to the same value of y; for example, i
x = 2and x = —2 both get mapped to y = 4. 6+

Hence, f does not pass the horizontal line test. 5

Figure 2.12
The function f(x) = x2 with domain x = 0 is a one- YA
to-one function (Figure 2.13). Hence, its inverse is 10+
also a function. [Note: domain changed to x = 01] 8:
A function f has an inverse function £~ " if and only if 6:
fis one-to-one. -
24
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Figure 2.13

Definition of a one-to-one function

A function is one-to-one if each element y in the range is the image of exactly one
element x in the domain. No horizontal line can pass through the graph of a one-to-one
function at more than one point (horizontal line test).

Referring back to Example 12, you now understand that the function

g(x) = x* + 2 with domain xE R does not have an inverse function g~ !(x).
However, if the domain is changed so that g(x) is one-to-one, then g~ !(x)
exists. There is not only one way to change the domain of a function in
order to make it one-to-one.

Example 13

Given g(x) = x* + 2 such that x = 0, find g~ !(x) and state its domain.
Solution

Given that the domain is x = 0, the VA

range for g(x) will be y = 0. Since the
domain and range are switched for the
inverse, for ¢~ 1(x) the domain is x = 2

y=x*+2,x=0

and the range is y = 2. Given the 1

working in Example 12, it follows that 1
g 1(x) = Vx — 2 with domain x = 2. 1
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e Hint: For the Mathematics
Standard Level course, if an inverse
function is to be found, the given
function will be defined with a
domain that ensures it is one-to-

one.

Example 14

Given g(x) = x? + 2 such that x < —1, find g !(x) and state its domain.

Solution

Given that the domainis x < —1,

the range for g(x) willbe y = 3.Since ~ y=x*+2
the domain and range are switched for *= '
the inverse, for g~ !(x) the domain is

x = 3 and the range is y < —1. Given

the working in Example 12, it follows

that ¢~ !(x) = —vx — 2 with domain N B E 1

x=3. : \

Finding the inverse of a function

To find the inverse of a function f, use the following steps:

1 Confirm that fis one-to-one (although, for this course, you can assume this).

2 Replace f(x) with y.

3 Interchange x and y.

4 Solve fory.

5 Replace y with f~'(x).

6 The domain of f~"is equal to the range of f; and the range of f~" is equal to the
domain of f.

Example 15
Consider the function f: x+— vx + 3, x= —3.
a) Determine the inverse function 1.

b) What is the domain of f~1?

Solution
a) Following the steps for finding the inverse of a function gives:

y=vx+3  replace f(x) with y
x=,/y+3 interchange x and y
x?=y+3 solve for y (squaring both sides here)
y=x*-3 solved for y
fflix—x?-3 replace y with f~1(x)
b) The domain explicitly defined for fis x = —3 and since the V' symbol
stands for the principal square root (positive), then the range of fis

all positive real numbers, i.e. y = 0. The domain of f~! is equal to the
range of f; therefore, the domain of f~!is x = 0.

Graphing y = vVx + 3 and y = x? — 3 from Example 15 on your GDC
visually confirms these results. Note that since the calculator would have
automatically assumed that the domain is x € R, the domain for the



equation y = x? — 3 has been changed to x = 0. In order to show that
fand f~! are reflections about the line y = x, the line y = x has been
graphed and a viewing window has been selected to ensure that the scales
are equal on each axis. Using the trace feature of your GDC, you can
explore a characteristic of inverse functions — that is, if some point (g, b)
is on the graph of £, the point (b, a) must be on the graph of f~1.

Plotl Plot2 Plot3 WINDOW Y2=(X2-3)(X=0) Y1=v/(X+3)
\YIEV(X+3) Xmin=-6
NY2E (X2-3) (X20) Xmax=6
\Y3EX Xscl=1
“Ya= Ymin=-4
\Ys= Ymax=4
“Ye= Yscl=1
\Y7= Xres=1 X=2 =1 X=1 Y=2
Example 16
Consider the function f(x) = 2(x + 4) and g(x) = 1 ; X
a) Find ¢! and state its domain and range.
b) Solve the equation (fo g~ 1)(x) = 2.
Solution
a) =1 g X replace f(x) with y
1 -y .
X=-—3 interchange x and y
3x=1—y solve for y
y=-3x+1 solved for y
g (x) = —3x+1 replace y with g !(x)
gis alinear function and its domain is x € R and its range is y ER;
therefore, for ¢! the domain is x € R and range is y € R.
b) (feg (%) = flg7'(x) = f(=3x+ 1) =2
2[(=3x+ 1) +4] =2
—6x+2+8=2
—6x = —38
_4
xX=3
Example 17
Given f(x) = x> — 6x, find the inverse f~!(x) and state its domain.
Y1=X2-6X /
Solution il A
The graph of f(x) = x? — 6x, xER, is a parabola with a vertex at (3, —9). It
is not a one-to-one function. There are many ways to restrict the domain of f
to make it one-to-one. The choices that have the domain as large as possible X=3 =-9

are x = 3 or x < 3. Let’s change the domain of fto x = 3.




Functions and Equations

y=x%*—6x  replace f(x) with y
x=y*— 6y interchange x and y
y=3+Vx+9 y?—6y+9=x+9 add 9 to both sides
(See pg 67 for explanation of method)
(=9,3) (y—32=x+9 substituting (y — 3)2 for y> — 6y + 9
I I 0 y—3=%=Vx+9
4 y =3+ Vx+9 + rather than * because range of f 1 is x= 3
G (domain of f)
/// 1 B -9 In order for vx + 9 to be a real number then x = —9.
- Therefore, f~1(x)= 3 + Vx + 9 and the domain of f~!is x= —9.
Figure 2.14 The inverse relationship between f(x) = x> — 6xand f " !(x)=3 + Vx + 9

is confirmed graphically in Figure 2.14.

In questions 1-4, assume that fis a one-to-one function.
1 a) Iff(2) = =5, whatis f~'(=5)? b) If f=1(6) = 10, what is f(10)?
2 a) Iff(—1) =13, whatisf~'(13)? b) If f=1(b) = a, what is f(a)?
3 Ifg(x) = 3x — 7, what is g~ '(5)?
4 If h(x) = x* — 8x, with x = 4, what is h ='(—=12)?

In questions 5-12, show a) algebraically and b) graphically that fand g are inverse
functions by verifying that (fe g)(x) = x and (g °f)(x) = x, and by sketching the
graphs of fand g on the same set of axes, with equal scales on the x- and y-axes. Use
your GDC to assist in making your sketches on paper.

5fx—x+6gx—x—6 6f:x»—>4x;g:x'—>§
7f:x»—>3x+9;g:x»—>%x—3 8f:x»—>1§;g:x»—>%
9 fix—x2—2x=0g:x—Vx+2,x=-2

. 3. . 3 . 1 .. | =3
10 f1x— x5 g:x— VX 11f.x»—>m,g.xv—> o

12 f:x»—>(6—><)%;g:x»—>6—x2,x20

In questions 13-20, find the inverse function f~' and state its domain.

13 f(x) = 2x — 3 14f(x)=xj7
_ _ 1
15 f(x) = vx 162‘(x)—x+2
17 f) =4 —x2x=0 18 f(x) =Vx —5
19 f(x) =ax+ba+0 20 f(x) =x2+ 2x,x= —1

In questions 21-28, use the functions g(x) = x + 3 and h(x) = 2x — 4 to find the
indicated value or the indicated function.

21 (g7 "eh™N)(5) 22 (h'eg™N)(9) 23 (g7 'og ()

24 (h"'oh™1)(2) 25 g lop] 26 h7'log™!

27 (goh)™ 28 (hog)™!

29 The function in question 8, f(x) = % is its own inverse (self-inverse). Show that
a

any function in the form f(x) = — b,a # 0,is its own inverse.

x+0b




@ Transformations of functions

Even when you use your GDC to sketch the graph of a function, it is helpful
to know what to expect in terms of the location and shape of the graph
—and even more so if you're not allowed to use your GDC for a particular
question. In this section, we look at how certain changes to the equation

of a function can affect, or transform, the location and shape of its graph.
We will investigate three different types of transformations of functions
that include how the graph of a function can be translated, reflected and
stretched (or shrunk). This will give us a better understanding of how to
efficiently sketch and visualize many different functions.

Graphs of common functions

It is important for you to be familiar with the location and shape of a
certain set of common functions. For example, from your previous
knowledge about linear equations, you can determine the location of the
linear function f(x) = ax + b. You know that the graph of this function is a
line whose slope is a and whose y-intercept is (0, b).

The eight graphs in Figure 2.15 represent some of the most commonly
used functions in algebra. You should be familiar with the characteristics
of the graphs of these common functions. This will help you predict and
analyze the graphs of more complicated functions that are derived from
applying one or more transformations to these simple functions. There are
other important basic functions with which you should be familiar — for
example, exponential, logarithmic and trigonometric functions — but we
will encounter these in later chapters.

A
"1 fix) = x Y

<y

Xy

e Hint: When analyzing the graph
of a function, it is often convenient
to express a function in the form

y = f(x). As we have done
throughout this chapter, we often
refer to a function such as f(x) = x?2
by the equation y = x?.

Figure 2.15
functions.

v

Graphs of common

fix) = x2

¢) Absolute value

b) Identity function function

VA

fix) = x3

XY

b 4

yil

<Y

o
<y

e) Square root function

Reciprocal function

f) Cubing function g)

h) Inverse square function



e Hint: The word inverse can have
different meanings in mathematics
depending on the context. In
Section 2.3 of this chapter, inverse
is used to describe operations or
functions that undo each other.
However, ‘inverse’is sometimes
used to denote the multiplicative
inverse (or reciprocal) of a
number or function. This is how it is
used in the names for the functions
shown in g) and h) of Figure 2.15.
The function in g) is sometimes
called the reciprocal function.

Functions and Equations

We will see that many functions have graphs that are a transformation
(translation, reflection or stretch), or a combination of transformations, of
one of these common functions.

Vertical and horizontal
translations
\Y2E X2+3

Use your GDC to graph each of the following

: \Y3EX2-2
three functions: f(x) = x2, g(x) = x*> + 3 and Ya=
h(x) = x* — 2. How do the graphs of gand h :%22
compare with the graph of fthat is one of the \Y7=

common functions displayed in Figure 2.15?

Plotl Plot2 Plot3

\YiE X2

The graphs of gand h both appear to have the
same shape — it’s only the location, or position,
that has changed compared to f. Although the
curves (parabolas) appear to be getting closer
together, their vertical separation at every value
of x is constant.

A
Figure 2.16

<y

A
Figure 2.17

As Figures 2.16 and 2.17 clearly show, you can obtain the graph of

g(x) = x? + 3 by translating (shifting) the graph of f(x) = x? up three
units, and you can obtain the graph of h(x) = x? — 2 by translating the
graph of f(x) = x? down two units.

Vertical translations of a function

Given k > 0, then:

. The graph of y = f(x) + ks obtained by translating up k units the graph of y = (x).

IIl. The graph of y = f(x) — ks obtained by translating down k units the graph of y = f(x).

Change function gto g(x) = (x + 3)? and change function h to
h(x) = (x — 2)2. Graph these two functions along with the ‘parent’ function



f(x) = x* on your GDC. This time we observe that functions gand & can be Flotl Plot2 Plots
obtained by a horizontal translation of f. \gég é( +3)2
\Y3g (X -2)2

\Ya=
\Ys=
\Ye6=

~Y7=

y=(x+3)? y=x* 2

Note
that a different
graphing style is
assigned to each
equation on the
GDC.

(0, 9) $—————>+4(3,9)

(=5,4) y¢——> -

(=2,4)

o
Xy

A
Figure 2.18

(3,9) ge—=4(5,9)

y=(x-2)?

o
xy

A
Figure 2.19

As Figures 2.18 and 2.19 clearly show, you can obtain the graph of g(x) =

(x + 3)? by translating the graph of f{x) = x? three units to the lef, and you
can obtain the graph of h(x) = (x — 2)? by translating the graph of f(x) = x2
two units to the right.

Horizontal translations of a function
Given h > 0, then:

. The graph of y = f(x — h) is obtained by translating the graph of y = f(x) h units to
the right.

IIl. The graph of y = f(x + h) is obtained by translating the graph of y = f(x) h units to
the left.




Functions and Equations

Note that in Example 18, if O
the transformations had been
performed in reverse order
—that is, the vertical translation
followed by the horizontal
translation — it would produce
the same final graph (in part
b)) with the same equation. In
other words, when applying
both a vertical and horizontal
translation on a function it
does not make any difference
which order they are applied
(i.e. they are commutative).
However, as we will see further
on in the chapter, it can make
a difference to how other
sequences of transformations
are applied. In general,
transformations are not
commutative.

@ Hint: A common error is caused by confusion about the direction of a horizontal
translation since f(x) is translated feft if a positive number is added inside the argument of
the function — e.g. g(x) = (x + 3)2is obtained by translating f(x) = x? three units left. You
are in the habit of associating positive with movement to the right (as on the x-axis) instead
of left. Whereas f(x) is translated up if a positive number is added outside the function - e.g.
g(x) = x? + 3 is obtained by translating f(x) = x? three units up. This agrees with the
convention that a positive number is associated with an upward movement (as on the
y-axis). An alternative (and more consistent) approach to vertical and horizontal translations
is to think of what number is being added directly to the x- or y-coordinate. For example,
the equation for the graph obtained by translating the graph of y = x? three units up is

y = x? + 3, which can also be written as y — 3 = x2 In this form, negative three is added to
the y-coordinate (vertical coordinate), which causes a vertical translation in the upward (or
positive) direction. Likewise, the equation for the graph obtained by translating the graph of
y = x” two units to the right is y = (x — 2). Negative two is added to the x-coordinate
(horizontal coordinate), which causes a horizontal translation to the right (or positive
direction). There is consistency between vertical and horizontal translations. Assuming that
movement up or to the right is considered positive, and that movement down or to the left

is negative, then the direction for either type of translation is opposite to the sign () of the
number being added to the vertical (y) or horizontal (x) coordinate. In fact, what is actually
being translated is the y-axis or the x-axis. For example, the graph of y — 3 = x? can also be
obtained by not changing the graph of y = x? but instead translating the y-axis three units
down —which creates exactly the same effect as translating the graph of y = x? three units up.

Example18

The diagrams show how the graph of y = v/x is transformed to the graph
of y = f(x) in three steps. For each diagram, a) and b), give the equation of

the curve.
y a)y b) ¥
/ . /
0 X X 0 : X
| w-va | 3 | :
Solution

To obtain graph a), the graph of y = v/x is translated three units to the
right. To produce the equation of the translated graph, —3 is added inside
the argument of the function y = vx . Therefore, the equation of the curve
graphed ina) is y = vVx — 3.

To obtain graph b), the graph of y = v/x — 3 is translated up one unit.

To produce the equation of the translated graph, +1 is added outside the
function. Therefore, the equation of the curve graphed in b) is

y=vx—3+1l(ory=1+Vx—3).

Example 19

Write the equation of the absolute value function whose graph is shown
on the left.

(=2,-3)

<y

Solution

The graph shown is exactly the same shape as the graph of the equation
y = |x| but in a different position. Given that the vertex is (—2, —3), it is
clear that this graph can be obtained by translating y = |x| two units left



and then three units down. When we move y = |x| two units left we get the
graph of y = |x + 2|. Moving the graph of y = |x + 2| three units down
gives us the graph of y = |x + 2| — 3. Therefore, the equation of the graph
shown is y = |x + 2| — 3. (Note: The two translations applied in reverse
order produce the same result.)

Reflections
Use your GDC to graph the two functions f(x) = x? and g(x) = —x2. The
graph of g(x) = —x? is a reflection in the x-axis of f(x) = x2. This certainly

makes sense because g is formed by multiplying f by — 1, causing the
y-coordinate of each point on the graph of y = —x? to be the negative of the
y-coordinate of the point on the graph of y = x? with the same x-coordinate.

Plotl Plot2 Plot3
sY1E X2
\YoE-X2

\Y3=

\Y4=

\Y5=

Ye=

\Y7=

Figures 2.20 and 2.21 illustrate that the graph of y = —f(x) is obtained by
reflecting the graph of y = f(x) in the x-axis.

<Y
<Y

- Ll U

(2,—4)

A
Figure 2.21

Figure 2.20

Graph the functions f(x) = vx — 2 and g(x) = V' —x —2 . Previously, with
f(x) = x*and g(x) = —x?, gwas formed by multiplying the entire function
f by —1. However, for f(x) = vx — 2 and g(x) = V —x —2, gis formed by
multiplying the variable x by —1. In this case, the graph of g(x) = v —x =2
is a reflection in the y-axis of f(x) = v/x — 2. This makes sense if you
recognize that the y-coordinate on the graph of y = v—x will be the same as
the y-coordinate on the graph of y = V%, if the value substituted for x in

y = v —x is the opposite of the value of xin y = vx. For example, if x =9
then y =v9 = 3;and, if x= —9 then y =/ —(—9) =9 = 3. Opposite
values of x in the two functions produce the same y-coordinate for each.

@ Hint: The expression —x?is
potentially ambiguous. It is
accepted to be equivalent to —(x)2.
Itis not equivalent to (—x)2. For
example, if you enter the expression
—32into your GDC, it gives a result
of =9, not +9. In other words, the
expression —3? is consistently
interpreted as 32 being multiplied
by —1.The same as —x2is
interpreted as x 2 being multiplied
by —1.
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(—a, fla) $=<—|-—4 (g, fla)

A
Figure 2.22

A
Figure 2.23

Figures 2.22 and 2.23 illustrate that the graph of y = f(—x) is obtained by
reflecting the graph of y = f(x) in the y-axis.

Reflections of a function in the coordinate axes
. The graph of y = —f(x) is obtained by reflecting the graph of y = f(x) in the x-axis.
IIl. The graph of y = f(—x) is obtained by reflecting the graph of y = f(x) in the y-axis.

Example 20 .

For g(x) = 2x®> — 6x? + 3, find:
a) the function h(x) that is the reflection of g(x) in the x-axis
b) the function p(x) that is the reflection of g(x) in the y-axis.

Solution

a) Knowing that y = —f(x) is the reflection of y = f(x) in the x-axis, then
h(x) = —g(x) = —(2x3 — 6x2 + 3) = h(x) = —2x> + 6x> — 3 will be
the reflection of g(x) in the x-axis. We can verify the result on the GDC
— graphing the original equation y = 2x> — 6x? + 3 in bold style.

Plotl Plot2 Plot3
SY1IE 2X"3-6X2+3
\Y2=.

Y=
\Y4=
\Y5:
“Ye=
\Y7=

| Plotl Plot2 Plot3
3 SY1IE2X"3-6X2+3
/'\ NYoE -2X73+6X2-3
i \Y3=
[ \Ya=
[ NYs=
i “Ye=
[ \NY7= !

b) Knowing that y = f(—x) is the reflection of y = f(x) in the y-axis, we
need to substitute —x for xin y = g(x). Thus,
p(x) = g(—x) = 2(—x)* — 6(—x)% + 3 = p(x) = —2x> — 6x + 3 will be
the reflection of g(x) in the y-axis. Again, we can verify the result on the
GDC - graphing the original equation y = 2x* — 6x? + 3 in bold style.

Plotl Plot2 Plot3
AY1IE2X"3-6X2+3
YYo=

\Y}:

“Ya=

\Y5=

\Y6=

NY7=

Plotl Plot2 Plot3 [
SY1E2X"3-6X2+3 1

/\ \YoE -2X7346X2-3 \
\Y3: i

[T\J | & N/

Y=




Non-rigid transformations: stretching and
shrinking

Horizontal and vertical translations, and reflections in the x- and y-axes
are called rigid transformations because the shape of the graph does not
change — only its position is changed. Non-rigid transformations cause
the shape of the original graph to change. The non-rigid transformations
that we will study cause the shape of a graph to stretch or shrink in either
the vertical or horizontal direction.

Vertical stretch or shrink

Graph the following three functions: f(x) = x2, g(x) = 3x%and

h(x) = x> How do the graphs of gand h compare to the graph of f?
Clearly, the shape of the graphs of gand /4 is not the same as the graph of

f. Multiplying the function f by a positive number greater than one, or less
than one, has distorted the shape of the graph. For a certain value of x, the
y-coordinate of y = 3x? is three times the y-coordinate of y = x2. Therefore,
the graph of y = 3x? can be obtained by vertically stretching the graph of

y = x2 by a factor of 3 (scale factor 3). Likewise, the graph of y = %xz can

be obtained by vertically shrinking the graph of y = x? by scale factor %

Plotl Plot2 Plot3
sY18 X2
Y2E 3X2
\Y3E(1/3) X2
\Y4: ]
\Ys5=
~Ye6=
\Y7:

Figures 2.24 and 2.25 illustrate how multiplying a function by a positive
number, a, greater than one causes a transformation by which the function
stretches vertically by scale factor a. A point (x, y) on the graph of y = f(x)
is transformed to the point (x, ay) on the graph of y = af(x).

VA

1 2,12 )
-~
y=3 : (x, af(x))
] i ! y = af(x)
: : y= x? :
] | x (x, fix))
| |
101,3) I(2 4) x, fx)) y = fx) A0 X}
1 ’ |
] ; a>1
1 400 (x, aftx)
I ' T O_ T T T T ;r;
= A

Figure 2.24 Figure 2.25
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Figures 2.26 and 2.27 illustrate how multiplying a function by a positive
number, a, greater than zero and less than one causes the function to
shrink vertically by scale factor a. A point (x, y) on the graph of y = f(x) is
transformed to the point (x, ay) on the graph of y = af(x).

YA

0) \,"}
0<a<1

Figure 2.26

Figure 2.27

Vertical stretching and shrinking of functions
. Ifa> 1, the graph of y = af(x) is obtained by vertically stretching the graph of

y = fx).
IIl. If0 < a <1, the graph of y = af (x) is obtained by vertically shrinking the graph of
y = fx).

Horizontal stretch or shrink

Let’s investigate how the graph of y = f(ax) is obtained from the graph

of y = f(x). Given f(x) = x? — 4x, find another function, g(x), such

that g(x) = f(2x). We substitute 2x for x in the function f, giving

g(x) = (2x)? — 4(2x). For the purposes of our investigation, let’s leave g(x)
in this form. On your GDC, graph these two functions, f(x) = x* — 4xand
g(x) = (2x)? — 4(2x), using the indicated viewing window and graphing fin
bold style.

Plotl Plot2 Plot3
sYi1E X2-4X
NY2B (2X)2-4 (2X)
\Y3: (W]
“Ya=
\NY5=
\Y6:

NY7=

WINDOW Y1=X2-4X ¥2=(2X) 2-4 (2X)
Xmin=-1
Xmax=5

Xscl=1
Ymin=-5
Ymax=5
Yscl=1
Xres=1 X=4 Y=0 X=2 Y=0

Comparing the graphs of the two equations, we see that y = g(x) is nota
translation or a reflection of y = f(x). It is similar to the shrinking effect that
occurs for y = af(x) when 0 < a < 1, except, instead of a vertical shrinking,
the graph of y = g(x) = f(2x) is obtained by horizontally shrinking the graph
of y = f(x). Given that it is a shrinking — rather than a stretching — the scale
factor must be less than one. Consider the point (4, 0) on the graph of y = f(x).
The point on the graph of y = g(x) = f(2x) with the same y-coordinate and on



the same side of the parabola is (2, 0). The x-coordinate of the point on

y = f(2x) is the x-coordinate of the point on y = f(x) multiplied by % Use
your GDC to confirm this for other pairs of corresponding points on

y = x? — 4xand y = (2x)? — 4(2x) that have the same y-coordinate.

The graph of y = f(2x) can be obtained by horizontally shrinking the
graph of y = f(x) by scale factor 3. This makes sense because if

f(2x,) = (2x,)* — 4(2x,) and f(x;) = x? — 4x; are to produce the same
y-value then 2x, = x;; and, thus, x, = %xl. Figures 2.28 and 2.29 illustrate
how multiplying the x-variable of a function by a positive number, 4,
greater than one causes the function to shrink horizontally by scale factor .

A point (x, y) on the graph of y = f(x) is transformed to the point %x, y)
on the graph of y = f(ax).

yf‘ y=(2x)2—4(2x) y=x*—4x VA
_/(7;_’ 5 y = flax)
(~1,5 y+47 (§,5) pe—-=-=-- (5,5) y =fix)
4 2\ (x fx)
_ (£, fx)
T 0 X
—oN oo Jfeo X C00)) S— o} (2, f0)
1 a>1
| a0 e 2 -4
A A
Figure 2.28 Figure 2.29
If 0 < a < 1, the graph of the function y = f(ax) is obtained by a horizontal
stretching of the graph of y = f(x) — rather than a shrinking — because the
scale factor  will be a value greater than 1if 0 < a < 1. Now, letting a = ]
and, again using the function f(x) = x? — 4x, find g(x), such that
g(x) = f(%x) We substitute %C for xin f, giving g(x) = (%5)2 - 4(%) On
your GDC, graph the functions f and g using the indicated viewing
window with f in bold.
pPlotl Plot2 Plot3 WINDOW Y1=X2-4X Y2=(X/2)2-4(X/2)
SYi1E X2-4X Xmin=-2
NY2E(X/2)2-4(X/2)| | Xmax=10
) Xscl=1
NY3= Ymin="5
\Ya= Ymax=5
\Ys5= Yscl=1
“Ye= Xres=1 X=4 Y=0 X=8 Y=0

The graph of y = (g)z - 4(%) is a horizontal stretching of the graph of

y = x? — 4x by scale factor% = % = 2. For example, the point (4, 0)

on y = f(x) has been moved horizzontally to the point (8, 0) on
_ _ X
y =g =f3)-
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Figures 2.30 and 2.31 illustrate how multiplying the x-variable of a
function by a positive number, a, greater than zero and less than one causes

the function to stretch horizontally by scale factor %. A point (x, y) on the

graph of y = f(x) is transformed to the point (%x, y) on the graph of

y = flax).
| y=(§)2_4(§) y=x%—4x YA
| y = flx)
1.(=1,5)
(=2,5) 8<% 1 (5, Sfgr=== +$(10, 5) y = f(ax)
T = X AX)
. (x, f(x))
% s 0 19
' % % (%, fx)) =~ — —— 4 (x, f(x))
0<a<i
A A
Figure 2.30 Figure 2.31

Horizontal stretching and shrinking of functions
. Ifa>1,the graph of y = f(ax) is obtained by horizontally shrinking the graph of

y = fx).
IIl. If0 < a <1, the graph of y = f(ax) is obtained by horizontally stretching the graph of

y =f).

Example 21

The graph of y = f(x) is shown. Sketch the graph of each of the following

two functions.

;/J\ a) y = 3f(x)
2- y = ) b) y=3f(x)
'I =
T T T T T T l\ T T T T T T T T T ‘; C) y - f(3x)
—9-8-7-6—-5—-4-3— 1 2 45 6 7 8 9X
iR d) y = f(3x)
—2
—3
Solution
yA a) The graph of y = 3f(x) is obtained by
31 vertically stretching the graph of y = f(x) by
21 y = 3f(x
: scale factor 3.
ERR R R W I DI A A
34




b) The graph of y = %f(x) is obtained by YA
vertically shrinking the graph of y = f(x) by i !

=3flx)
scale factor % yo
T T T T T T :‘““h- T T r"'h“‘.l T T T T T T >
~9-8-7-6-5-4-3-2-10 1 23 4 56 7 8 9%
_2 4
_3 .
c) The graph of y = f(3x) is obtained by y
horizontally shrinking the graph of y = f(x) ; y— 13

by scale factor %

-2
_3 -
d) The graph of y = fi (%x) is obtained by YA
horizontally stretching the graph of y = f(x) ;J y = )

by scale factor 3.

| |
O
| |
(o]
|
~N
|
o
|
|
A
L ©
_
o
w -
_b_
-
;
-
xy

_2 -
_3 e
Example 22
Describe the sequence of transformations performed on the graph of
y = x? to obtain the graph of y = 4x? — 3.
Solution
Step 1: Start with the graph of y = x2.
Step 2: Vertically stretch y = x2 by scale factor 4.
Step 3: Vertically translate y = 4x? three units down.
Stepl: Step2: Step3:
YA YA
10 10 )
8- g
y=x* o] y = 4x? y=4x2-3 o
4+ 41
2+ 2 -
. BT RN\ A
—4- 4]
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Note that in Example 22, a vertical stretch followed by a vertical translation
does not produce the same graph if the two transformations are performed
in reverse order. A vertical translation followed by a vertical stretch would
generate the following sequence of equations:

2 Step2iy=x*—3 Step3:y=4(x*—3)=4x2—-12

Stepl:y = x
This final equation is not the same as y = 4x? — 3.

When combining two or more transformations, the order in which they
are performed can make a difference. In general, when a sequence of
transformations includes a vertical/horizontal stretch or shrink, or a
reflection through the x-axis, the order may make a difference.

Summary of transformations on the graphs of functions
Assume that g, h and k are positive real numbers.

Transformed function Transformation performed on y = f(x)

y="fx) +k vertical translation k units up

y="flx) —k vertical translation k units down

y="flx—nh) horizontal translation h units right
y="rfx+h horizontal translation h units left

y=—f(x) reflection in the x-axis

y =1(=x) reflection in the y-axis

y = af(x) vertical stretch (@ > 1) or shrink (0 <a < 1)

y = f(ax) horizontal stretch (0 < a < 1) or shrink (@ > 1)

In questions 1-14, sketch the graph of f, without a GDC or by plotting points, by using your
knowledge of some of the basic functions shown in Figure 2.15.

1fix—x>—6 2 f:x— (x —6)° 3fx—|x|+4

4 fix— |x + 4 5fix—5+Vx—2 6f:x|—>ﬁ

7 fixes— 5+ 2 8 fix— —x3—4 9 fix——|x—1]+6
(x+5)

10 f:ix—v—x+3 11 f:x—3vx 12 fix—1x?

13 fix (3x)° 14 fix - (=x)?

In questions 15-18, write the equation for the graph that is shown.
15 YA 16

N 4
<y




17 VA

5 Y4
4_

h

18 Vertical and horizontal asymptotes shown:

19 The graph of fis given. Sketch the
graphs of the following functions.

a) y="fx)—3
b) y=1f(x—3)
o y=2f(x)
d) y="f(2x)
e)y——f()
f) y=1f(—x)

g) y=2flx)+4

In questions 20-23, specify a sequence of transformations to perform on the graph

of y = x? to obtain the graph of the given function.
20 g'xn—>(x—3)2+5 21 h:ix— — x2
22 p:x+— (x + 4)2

@ Quadratic functions

A linear function is a polynomial function of degree one that can be
written in the general form f(x) = ax + b, where a # 0. The degree of

a polynomial written in terms of x refers to the largest exponent for x in
any terms of the polynomial. In this section, we will consider quadratic
functions that are second degree polynomial functions, often written in the
general form f(x) = ax? + bx + ¢. Examples of quadratic functions, such as
f(x) = x* + 2 (wherea=1,b = 0and ¢ = 2) and f(x) = x> — 4x (where
a=1,b= —4and c = 0), appeared earlier in this chapter.

Definition of a quadratic function

If a, b and c are real numbers, and a # 0, the function f(x) = ax? + bx + cisa
quadratic function. The graph of fis the graph of the equation y = ax? + bx + cand

is called a parabola.

+2

23 fx—[Bx—112—6

The word quadratic comes
from the Latin word quadratus
that means four-sided, to make
square, or simply a square.
Numerus quadratus means

a square number. Before
modern algebraic notation
was developed in the 17th and
18th centuries, the geometric
figure of a square was used to
indicate a number multiplying
itself. Hence, raising a number
to the power of two (in modern
notation) is commonly referred
to as the operation of squaring.
Quadratic then came to be
associated with a polynomial of
degree two rather than being
associated with the number
four, as the prefix quad often
indicates (e.g. quadruple).
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Figure 2.32 B y axis of symmetry axis of symmetry
4 | Y A |
\ : |
| I
| I
| I
| I
: vertex l
: fix) =ax2+bx+c
i
! fix) = ax®> + bx + ¢
vertex |
0 t > 0 t >
| " | &
If a > 0 then the parabola opens upward If a < 0 then the parabola opens downward
Figure 2.33 . . . . . .
v Each parabola is symmetric about a vertical line called its axis of
y=(+372+2 symmetry. The axis of symmetry passes through a pf)int‘on the
l A parabola called the vertex of the parabola, as shown in Figure 2.32. If
] ! the leading coefficient, g, of the quadratic function f(x) = ax? + bx + ¢
1 is positive, the parabola opens upward (concave up) — and the
! . . . . .
64 y-coordinate of the vertex will be a minimum value for the function.
If the leading coefficient, a, of f(x) = ax? + bx + cis negative, the
. !4 ;’y _,2 Pparabola opens downward (concave down) — and the y-coordinate of
y=x+ 3)2\\ Ao/ the vertex will be a maximum value for the function.
L / /!
2 units up /f \\ /f
To ¥ g B T O % Ny
3 units left The graph of f(x) = a(x — h)?> + k

axis of symmetry y = (x+3)2+2

| A

Figure 2.34

e Hint: f(x) =alx — h)? + k
is sometimes referred to as the
standard form of a quadratic
function.

<y

From the previous section, we know that the graph of the equation

y = (x + 3)? + 2 can be obtained by translating y = x? three units to
the left and two units up. Being familiar with the shape and position of
the graph of y = x2, and knowing the two translations that transform
y=x?toy= (x+ 3)? + 2, we can easily visualize and/or sketch the
graph of y = (x + 3)% + 2 (see Figure 2.33). We can also determine the
axis of symmetry and the vertex of the graph. Figure 2.34 shows that the
graph of y = (x + 3)? + 2 has an axis of symmetry of x = —3 and a
vertex at (—3, 2). The equation y = (x + 3)? + 2 can also be written as
y = x? + 6x + 11. Because we can easily identify the vertex of the
parabola when the equation is written as y = (x + 3)? + 2, we often
refer to this as the vertex form of the quadratic equation, and

y = x?+ 6x + 11 as the general form.

Vertex form of a quadratic function
If a quadratic function is written in the form f(x) = a(x — h)? + k, with a # 0, the graph
of fhas an axis of symmetry of x = h and a vertex at (h, k).

Completing the square

For visualizing and sketching purposes, it is helpful to have a quadratic
function written in vertex form. How do we rewrite a quadratic function
written in the form f(x) = ax? + bx + ¢ (general form) into the form



f(x) = a(x — h)? + k (vertex form)? We use the technique of completing
the square.

2
For any real number p, the quadratic expression x? + px + (g) is the

square of (x + g) Convince yourself of this by expanding (x + g)z The

technique of completing the square is essentially the process of adding a
constant to a quadratic expression to make it the square of a binomial. If
the coefficient of the quadratic term (x?) is a positive one, the coefficient

2

x* + px + (g)z = (x + 12—7)2 and the square is completed.

2
of the linear term is p, and the constant term is (B) , then

Remember that the coefficient of the quadratic term (leading coefficient)
must be equal to positive one before completing the square.

Example 23

Find the equation of the axis of symmetry and the coordinates of the
vertex of the graph of f(x) = x? — 8x + 18 by rewriting the function in the
form f(x) = a(x — h)*> + k.

Solution

To complete the square and get the quadratic expression x> — 8x + 18 in
2 —8\2

the form x? + px + (g) , the constant term needs to be (78) = 16. We

need to add 16, but also subtract 16, so that we are adding zero overall and,
hence, not changing the original expression.

f(x) = x*—=8x+16 — 16 + 18 actually adding zero (—16 + 16) to the

right side
2
flx) = x> —8x+ 16 +2 x2 — 8x + 16 fits the pattern x> + px + (g)
withp = —38
flx) =(x—4)*+2 x2—8x+ 16 = (x — 4)2

The axis of symmetry of the graph of fis the vertical
line x = 4 and the vertex is at (4, 2). See Figure 2.35.

YA

Figure 2.35 | g
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Example 24

For the function g: x+— —2x% — 12x + 7,

a) find the axis of symmetry and the vertex of the graph

b) indicate the transformations that can be applied to y = x? to obtain the
graph

¢) find the minimum or maximum value.

Solution
a) gix— —2(x2 + 6x — %) factorize so that the coefficient of
the quadratic term is +1

) _ ( 2 _9_7 _ Py _ . _
gix— —2{x*+6x+9-9 > p=6=|5] =9 hence,add +9 — 9

2
(zero)
gix— —2[(x+ 3)? —%—%] x?+6x+9=(x+3)?
gix— —2[(x+ 3)? — 22—5]
gixr— —2(x+3)*+25 multiply through by —2 to remove
outer brackets
g:x— —2(x—(—3))?+25 express in vertex form:

gix—alx—h?+k

The axis of symmetry of the graph of gis the vertical line x = —3 and the
vertex is at (—3, 25). See Figure 2.36.

Figure 2.36 | 4

w
o
1

(—3,25)

y=-22—-12x+7

Xy

|
|
|
|
|
:
x:f3:
|
|
|
|
|

1k
_8/_6 = _2_5_\2

b) Since g:x+— —2x? — 12x + 7 = —2(x + 3)? + 25, the graph of gcan
be obtained by applying the following transformations (in the order
given) on the graph of y = x2: horizontal translation of 3 units left;
reflection in the x-axis (parabola opening down); vertical stretch of
factor 2; and a vertical translation of 25 units up.

¢) The parabola opens down because the leading coefficient is negative.
Therefore, ghas a maximum and no minimum value. The maximum
value is 25 (y-coordinate of vertex) at x = —3.

The technique of completing the square can be used to derive the quadratic
formula. The following example derives a general expression for the axis

of symmetry and vertex of a quadratic function in the general form

f(x) = ax? + bx + ¢ by completing the square.




Example 25

Find the axis of symmetry and the vertex for the general quadratic
function f(x) = ax? + bx + ¢

Solution

fx) = a<x2 + %x + é) factorize so that the coefficient

of the x2 term is +1

b - (4]

LI (ﬁ)Z — (ﬁ)Z +<

flx)=a

2a 2a
= bYh_ b ¢ 2. b b\ _ b2
f(x)—a(x+2a) w2 a x+ax+(2a)—(x+2a)
b\ _ b2 .
flx) = a(x + 2_11) gt c multiply through by a
b\\? b? .
flx) = a(x —(— Z)) +c— 4a express in vertex form:

f(x) = alx— h)?+ k

This result leads to the following generalization.

Symmetry and vertex of f(x) = ax? + bx + ¢
For the graph of the quadratic function f(x) = ax? + bx + ¢, the axis of symmetry is the

2
vertical line with the equation x = -5 and the vertex has coordinates (— b JE= b )
2a 2a 4a

Check the results for Example 24 using the formulae for the axis of
symmetry and vertex. For the function g: x— —2x% — 12x + 7:

b —12

X="5.=" 20=2) = —3 = axis of symmetry is the vertical line x = —3
_br_ ., (=12 56, 144 _ : B
i 7 0= 8 8 25 = vertex has coordinates (—3, 25)

These results agree with the results from Example 24.

Zeros of a quadratic function

A specific value for x is a zero (or root) of a quadratic function

f(x) = ax? + bx + cif it is a solution to the equation ax? + bx + ¢ = 0. For
this course, we are only concerned with values of x that are real numbers.
The x-coordinate of any point(s) where fcrosses the x-axis (y-coordinate is
zero) is a zero of the function. A quadratic function can have no, one or two
real zeros as Table 2.3 illustrates. Finding the zeros of a quadratic function
requires you to solve quadratic equations of the form ax? + bx + ¢ = 0.
Although a # 0, it is possible for b or ¢ to be equal to zero. There are five
general methods for solving quadratic equations as outlined in Table 2.3.




Functions and Equations

Square root
Examples

Ifg? =candc>0,thena = =vC.

x2—25=0 (x+2)2=15
x2=125 x+2==x/15
x==*5 x=—2+/15

Factorizing
Examples

Ifab=0,thena=0orb=0.

Completing the
square

Example

x2+3x—10=0 x2—=7x=0
(x+5)x—2)=0 xx—7)=0
x=—5orx=2 x=0o0rx=7
2 2 2 2
|fx2+px+q=0,thenx2+px+(g) =—q+(g) which Ieadsto(x+§) =—q+%..‘

and then the square root of both sides (as above).

x2—8x+5=0
x2—8x+16=—-5+16

Quadratic formula

(x —4)2 =11
x—4==/11
x=4+11
h+ R =
|fax2+bx+c=0,thenx=w.

Example 2x2—3x—4=0
_—(=3=* (—3)> — 4Q2)(—4)
2(2)
_3*xv4l
x=2=Val
4
Graphing Graph the equation y = ax? + bx + ¢ on your GDC. Use the calculating features of your GDC to
determine the x-coordinates of the point(s) where the parabola intersects the x-axis.
Example 2x?—5x—7=0 GDC calculations reveal that the zeros are at x = %and x=—1
Plotl Plot2 Plot3 Y1=2X2-5X-7 Y1=2X2-5X-7 Y1=2X2-5X-7
\Y1E 2X2-5X-7 1:value ' ’
“Yo= Zero
Y= 3:minimum
“Ya= 4 :maximum \ \
NYs= 5:1intersect
“Ye6= 6: d%/ dx Left bound? Right bound? Guess?
NY7= 7:5T (x)dx X=2.787234  Y=-5.398823| |X=3.8085106 Y¥=2.9669534| |X=3.6382979 Y¥=1.2829335
\ / Y1=2X2-5X-7 / Y1=2X2-5X-7 / Y1=2X2-5X-7 / \ /
AW
Zero \—/‘ Left bound? Right boun\f—/ Guess?w Zero k/
X=3.5 Y=0 X=-1.297872 Y=2.8583069 X=-.6170213 Y=-3.153463| |X=-.8723404 Y=-1.116342 X=-1 r Y=0
A

Table 2.3 Methods for solving

quadratic equations.

The quadratic formula and the discriminant

The expression b? — 4ac in the quadratic formula has special significance
because you need to take the positive and negative square root of b? — 4ac
when using the quadratic formula. Hence, whether b? — 4ac (often labelled
A; read ‘delt?’) is positive, negative or zero will determine the number of
real solutions for the quadratic equation ax? + bx + ¢ = 0, and,
consequently, also the number of times the graph of f(x) = ax? + bx + ¢
intersects the x-axis (y = 0).




For the quadratic function f(x) = ax? + bx + ¢,a # 0:

If A = b2 — 4ac > 0, fhas two distinct real solutions, and the graph of fintersects the x-axis
twice.

If A = b2 — 4ac = 0, fhas one real solution (a double root), and the graph of fintersects
the x-axis once (i.e. it is tangent to the x-axis).

If A = b? — 4ac < 0, fhas no real solutions, and the graph of f does not intersect the x-axis.

Example 26

Use the discriminant to determine how many real solutions each equation
has. Visually confirm the result by graphing the corresponding quadratic
function for each equation on your GDC.

a) x?+3x—1=0 b) 4x2—12x+9=0 ¢) 2x*—5x+6=0

Solution

a) The discriminantis A = 32 — 4(1)(—1) = 13 > 0. Therefore, the
equation has two distinct real zeros. This result is confirmed by the
graph of the quadratic function y = x? + 3x — 1 which clearly shows it
intersecting the x-axis twice as shown in GDC image on the right.

b) The discriminant is A = (—12)% — 4(4)(9) = 0. Therefore, the equation
has one real zero. The graph on the GDC of y = 4x? — 12x + 9 appears
to intersect the x-axis at only one point. We can be more confident with
this conclusion by investigating further — for example, tracing or looking
at a table of values on the GDC as shown in GDC images below.

[ TABLE SETUP X Y1
: TblStart=1.2 1.2 .36
i ATbl=1 13 16
1 Indpnt: Ask| [ 14 |.oe
\ Depend: EGide] Ask 156 ~04
] 1.7 16
s , . 1.8 .36
i Y1=0

¢) The discriminant is A = (—5)% — 4(2)(6) = —23 < 0. Therefore, the
equation has no real zeros. This result is confirmed by the graph of the
quadratic function y = 2x? — 5x + 6 which clearly shows that the graph
does not intersect the x-axis as shown in GDC image on the right.

Example 27

For 4x% + 4kx + 9 = 0, determine the value(s) of k so that the equation
has a) one real zero, b) two distinct real zeros, and ¢) no real zeros.

Solution

a) Foronereal zero: A = (4k)? —4(4)(9) =0 = 16k>—144=0
= 16k’=144 = k*=9 = k==3

b) For two distinct real zeros: A = (4k)2 —4(4)(9) >0
= 16k?>144 =k*>9 = k< -3ork>3

c) For noreal zeros: A = (4k)> —4(4)(9) <0 = 16k*< 144
= k<9 = k>-3andk<3 = -3<k<3
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The graph of f(x) = a(x — p)(x — q)

If a quadratic function is written in the form f(x) = a(x — p)(x — q) then
we can easily identify the x-intercepts of the graph of f. Consider that
flp) = a(p — p)(p — q) = a(0)(p — q) = 0 and that

axis of symmetry (@) = alq — p)(q — q) = a(q — p)(0) = 0. Therefore, the quadratic

fx) 4 ix = szr—q function f(x) = a(x — p)(x — q) will intersect the x-axis at the points

: (p,0) and (g, 0). We need to factorize in order to rewrite a quadratic function

: in the form f(x) = ax? + bx + ¢ to the form f(x) = a(x — p)(x — q).

Hence, f(x) = a(x — p)(x — q) can be referred to as the factorized form of a

quadratic function. Recalling the symmetric nature of a parabola, it is clear

vertex that the x-intercepts (p, 0) and (g, 0) will be equidistant from the axis of

%
t

(m, f( M)) symmetry (see Figure 2.37). As a result, the equation of the axis of symmetry
& 2 2 and the x-coordinate of the vertex of the parabola can be found from finding
Figure 2.37 the average of p and q.

Factorized form of a quadratic function

If a quadratic function is written in the form f(x) = a(x — p)(x — g), with a # 0, the
graph of fhas x-intercepts at (p, 0) and (g, 0), an axis of symmetry with equation

_Ptgq (p+a (p+a))
x=" ,and a vertex at 5 ,f—2 .
Example28

Find the equation of each quadratic function from the graph in the form
f(x) = a(x — p)(x — g) and also in the form f(x) = ax? + bx + <.

a) YA b) Y\
6 \ 12

Solution

a) Since the x-intercepts are —3 and 1 then y = a(x + 3)(x — 1). The
y-intercept is 6, so when x = 0, y = 6. Hence,
6=a(0+3)(0—1)=—3a=-a= —2 (a<<0 agrees with the fact that
the parabola is opening down). The function is f(x) = —2(x + 3)(x — 1),
and expanding to remove brackets reveals that the function can also be
written as f(x) = —2x2 — 4x + 6.

b) The function has one x-intercept at 2 (double root), so p = g = 2 and
y = a(x — 2)(x — 2) = a(x — 2)% The y-intercept is 12, so when
x=0,y=12.Hence, 12 = a(0 — 2)> = 4a=- a = 3 (a > 0 agrees with
the parabola opening up). The function is f(x) = 3(x — 2)2. Expanding
reveals that the function can also be written as f(x) = 3x? — 12x + 12.




Example 29

The graph of a quadratic function intersects the x-axis at the points (—6, 0)
and (—2, 0) and also passes through the point (2, 16). a) Write the function
in the form f(x) = a(x — p)(x — ¢q). b) Find the vertex of the parabola.

¢) Write the function in the form f(x) = a(x — h)> + k.

Solution

a) The x-intercepts of —6 and —2 gives f(x) = a(x + 6)(x + 2). Since f
passes through (2, 16), then f(2) = 16 = f(2) = a2+ 6)(2+2) =16
= 32a=16 = a= % Therefore, f(x) = %(x +6)(x+ 2).

b) The x-coordinate of the vertex is the average of the x-intercepts.
x = # = —4, 50 the y-coordinate of the vertex is
y=f(—4) = %(—4 + 6)(—4 + 2) = —2. Hence, the vertex is (—4, —2).

¢) In vertex form, the quadratic function is f(x) = %(x + 4)2 — 2.

For each of the quadratic functions fin questions 1-5, find the following:
a) the axis of symmetry and the vertex, by algebraic methods
b) the transformation(s) that can be applied to y = x? to obtain the graph of y = f(x)
¢) the minimum or maximum value of f.
Check your results using your GDC.
1 fx—x2—10x+32 2 fx—x?+6x+8 3 fix— —2x?—4x +10

4 fx—4x2—4x+9 5f:x»—>%x2+7x+26

In questions 6-13, solve the quadratic equation using factorization.

6 x2+2x—8=0 7 x?°=3x+10
8 6x°—9x=0 9 6+ 5x=x?
10 x2 + 9 =6x 11 3x2+ 11x—4=0
12 3x° + 18 = 15x 13 Ox — 2 = 4x?

In questions 14-19, use the method of completing the square to solve the quadratic

equation.

14 x> +4x—3=0 15 x? —4x—5=0
16 x° —2x+3=0 17 2x? +16x+6=0
18 x?+2x—8=0 19 —2x2+4x+9=0

20 letf(x) = x2 — 4x — 1.a) Use the quadratic formula to find the zeros of the
function. b) Use the zeros to find the equation for the axis of symmetry of the
parabola. ¢) Find the minimum or maximum value of f.

In questions 21-23, a) express the quadratic function in the form f(x) = alx — h)> + k,
and b) state the coordinates of the vertex of the parabola with equation y = f(x).

21 f(x) =x2+ 6x + 2 22 f(x) =x2—2x+ 4
23 f(x) =4x2 — 4x — 1

In questions 24-28, determine the number of real solutions to each equation.

24 x°+3x+2=0 25 2x°—3x+2=0
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26 x> —1=0 27 2x? —3x+1=0

28 Find the value(s) of p for which the equation 2x2 + px + 1 = 0 has one real solution.
29 Find the value(s) of k for which the equation x2 + 4x + k = 0 has two distinct real
solutions.

30 The equation x2 — 4kx + 4 = 0 has two distinct real solutions. Find the set of all
possible values of k.

31 Find all possible values of m so that the graph of the function
g:x > mx? + 6x + m does not touch the x-axis.

@ Rational functions

A fraction is only zero if its
numerator is zero. Therefore,
the zeros of a rational function
are the zeros of the numerator.

Another important category of functions is rational functions. These are

functions in the form R(x) = % where fand gare polynomials and the
domain of the function R is the set of all real numbers, except the real zeros
of polynomial gin the denominator. In the Mathematics Standard Level

course, only rational functions of the form R(x) = ccl;cj__ Z will be
considered. Examples of this type of rational function include

h(x) = ﬁ (Example 4 in Section 2.1) and g(x) = 29;4__ 75.

The domain of h excludes x = 2, and the domain of g excludes x = %
Example 30

Find the domain and range of f(x) = 2;4__ 56. Sketch the graph of f, clearly
indicating any asymptotes and x- and y- intercepts.

Solution

Because the denominator is zero when x = —5, the domain of fis all real
numbers except x = —5, i.e. x ER, # —5. We anticipate that the graph of
the function will have a vertical asymptote of x = —5. Determining the

range of the function is a little less straightforward. To give some insight
into the behaviour of the function, some values of the domain and range
(pairs of coordinates) are displayed in the table below (approximate values
given to 5 significant figures).

x approaches —5 from the left x approaches —5 from the right

X fx) 2 fx)

500 20323 500 1.9683

—-100 2.1684 100 18476

—25 28 3 0

~10 52 0 —12

-6 18 —4 —14

55 34 —45 —30

—51 162 —49 —158

—501 1602 —499 —1598




The values in the table provide clear evidence that the range of fis all real
numbers except x = 2. The values in the table show that as x - —,

f(x) — 2 and as x — +%, again f(x) — 2. It follows that the line with
equation y = 2 is a horizontal asymptote for the graph of . As x —» —5
from the left (sometimes written x — —57), f(x) appears to increase
without bound, whereas as x — —5 from the right (x > —57), f(x)
appears to decrease without bound. This confirms that the graph of fwill

have a vertical asymptote at x = —5. This behaviour is supported by the
graph below. The x-intercept of fis (3, 0) and its y-intercept is (O, —g .
vertical

asymptote x = -5

A YA
154

104

x

/"\

horizontal
asymptote
y=2

¢-9

Domain:x ER, x# -5 Range:y ER,y#2

Why does the graph of f(x) = 2X — 6 pave a horizontal asymptote at y = 2?

x+5
We can approach this question analytically by considering what we get if
we divide both the numerator and denominator by x.
26 5 _ 6

flx) = 2x+— 56 = ﬁ Sx = Sx‘ In this equivalent form of the rational
x 2+ 1+2

function, if we substitute large values for x (i.e. x — +% or x & —), then

both of the terms 3; and 3; will approach zero. Thus as x — +oo,

flx) = H = 2. For the general rational function R(x) = GCI;C i— Z, as
x— 0, f(x) — %. Furthermore, as occurred for the function h(x) = XTIZ

(Example 4 in Section 2.1), if a = 0, then as x — £%, f(x) — 0 and the
x-axis is a horizontal asymptote.

Horizontal and vertical asymptotes

The line x = cis a horizontal asymptote of the graph of the function fif at least one of
the following statements is true:

< asx — +%, then f(x) = ¢t
«asx —> +%0 then f(x) = ¢~

« asx —> —%,then f(x) = c*

- asx —> —%, then f(x) = ¢~

The line x = d'is a vertical asymptote of the graph of the function fif at least one of
the following statements is true:
- asx —>dt, then f(x) = +%

- asx—>d -, then f(x) = +©

. asx — dT, then f(x) > —©
. asx —>d ,then f(x) = —®©

O The further the number n is
from 0, the closer the number]ﬁ
is to 0. Conversely, the closer
the number nis to 0, the
further the number% is from 0.
These facts can be expressed
simply as:

1 1
BIC little and e BIG.

They can also be expressed
more mathematically using the
concept of a limit expressed
in limit notation as: nIimmﬁ =0
1 -

and lim = = oo,

n—0 n
Note: Infinity is not a number,
e} r!anoﬁ actually does not

exist, but writing lim % =
n—0

expresses the idea that ,]7—
increases without bound as n
approaches 0.

O The superscript * means
approaching the number

¢ from the right (not
necessarily positive numbers)
and superscript ~ means
approaching from the left.



Functions and Equations

Using Example 30 and the discussion that followed it as a guide, we can set
out a general procedure for analyzing rational functions of the form

+0b

Rx) =@+ 0b

) ox+d

determining its domain and range.

leading to a complete sketch of the function’s graph and

Analyzing rational functions R(x) = X + b
cx+d
1 Intercepts: A zero of the numerator ax + b will be a zero of R and hence, an
x-intercept of the graph of R. The y-intercept is found by evaluating R(0) which always

equals r

2 Vertical asymptote: A zero of cx + d will give the location of a vertical asymptote.
On one side of the vertical asymptote, R(x) — +o and on the other side R(x) —> —.

3 Horizontal asymptote: As x — +, R(x) —> % Thus a vertical asymptote is the line
a

J=¢

4 Sketch of graph: Start by drawing dashed lines where the asymptotes are located.
Use the information about the X- and y- intercepts, whether R(x) falls or rises on
either side of a vertical asymptote, and additional points as needed to make an
accurate sketch.

5 Domain and range: The domain of R will be all real numbers except the zeros of the

denominator. The range of R will be all real numbers except for where the horizontal

asymptote occurs, i.e.y = %.

In questions 1=8, sketch the graph of the rational function without the aid of your
GDC. On your sketch, clearly indicate any x- or y- intercepts and any asymptotes. Use
your GDC to verify your sketch. Also, state the domain and range of the function.

_ _ 3
1) =— 2 gl ==
g hm:% o = Zxx—8

10 _ x—5

5 P =575 S e ==y
7 — 2% _ bx+5

7 00=53 8 M) =2—12

In questions 9—12, use your GDC to sketch a graph of the function, and state the
domain and range of the function.

9 fl)=—2 10 g =212
1 hx=10-1 12 =218
13 If nis positive, sketch the curve y = n;x++1n for each of the following
conditions.
a) m>0 b) m<0
14 The diagram shows part of the graph of the function f(x) = % The curve

passes through the point (6, 3). The line (AB) is a vertical asymptote. Find the
value of m and the value of n.




4 A%
(6,3)
] -
+B
4
15 Consider the function g(x) = xp_xp.The curve passes through the points

(=4, —12) and (=2, 6). Find the equations for the vertical asymptote and the
horizontal asymptote.

Practice questions

1 Let fix — Vx — 3 and g:x — x2 + 2x. The function (fo g)(x) is defined for all x € R
except for the interval ]a, bl.
a) Calculate the values of a and b.
b) Find the range of fog.

2 Two functions g and h are defined as g(x) = 2x — 7 and h(x) = 3(2 — x).
Find: a) ¢~'(3) b) (heg)6)
4 — X

3 Consider the functions f(x) = 5x — 2 and g(x) = 3

a) Findg™".
b) Solve the equation (fe g~")(x) = 8.

4 The functions gand h are defined by g:x — x — 3 and h:x — 2x.
a) Find an expression for (g © h)(x).
b) Show that g='(14) + h='(14) = 24.

5 The function fis defined by f(x) = x2 + 8x + 11, forx = —4.
a) Write f(x) in the form (x — h)2 + k.
b) Find the inverse function f~".
¢) State the domain of 7. YA

6 The diagram right shows the graph of
y = f(x). It has maximum and minimum points
at (0, 0) and (1, —1), respectively.
a) Copy the diagram and, on the same diagram, £ \I/ 2
draw the graph of y = f(x + 1) — % 1
b) What are the coordinates of the minimum
and maximum points of y = f{x + 1) — %?

w -
xy
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7 The diagram shows parts of the graphs of y = x?and y = —%(x + 5)2 + 3,

YA
6

y=—3(x+52+3 - y=x

The graph of y = x2 may be transformed into the graph of y = —%(x + 502 + 3 by
these transformations.

A reflection in the line y = 0, followed by

a vertical stretch by scale factor , followed by

a horizontal translation of p units, followed by

a vertical translation of g units.

Write down the value of
a) k b) p q q

8 The function f is defined by f(x) = % for —4 < x < 4.
=5

a) Without using a GDC, sketch the graph of f.
b) Write down the equation of each vertical asymptote.

c) Write down the range of the function .

9 Letg:xH%,xaﬁO.

a) Without using a GDC, sketch the graph of g.

The graph of gis transformed to the graph of h by a translation of 4 units to the left and
2 units down.

b) Find an expression for the function h.
¢) (i) Findthe x-and y-intercepts of A.

(i) Write down the equations of the asymptotes of h.
(i) Sketch the graph of h.

10 Consider f(x) = vx + 3.
a) Find:
(i) 18)
(i) f(46)
(iii) f(—3)
b) Find the values of x for which fis undefined.
¢) letg:x+s x%— 5 Find (gof)(x).




xggandh(x)=x2—1.

a) Find g~ '(—2).
b) Find an expression for (g "o h)(x).
c) Solve (g="e h)(x) = 22.

11 Let g(x) =

12 Given the functions f:x — 3x — 1and g:x — % find the following:
a) ! b) fog Q) (feg)! d) gog
13 The quadratic function fis defined by f(x) = 2x? + 8x + 17.
a) Write fin the form f(x) = 2(x — h)? + k.

b) The graph of fis translated 5 units in the positive x-direction and 2 units in the
positive y-direction. Find the function g for the translated graph, giving your
answer in the form g(x) = 2(x — h)> + k.

14 Let g(x) = 3x2 — 6x — 4.
a) Express g(x) in the form g(x) = 3(x — h)? + k.
b) Write down the vertex of the graph of g.
c) Write down the equation of the axis of symmetry of the graph of g.
d) Find the y-intercept of the graph of g.

o
e) The x-intercepts of g can be written as P —r\/ﬁ' where p, g, r€ Z. Find the value
of p, gand r. "
15 a) The diagram shows part of the graph i -
of the function h(x) = p i b The curve i 10
passes through the point A (=4, —8). E
The vertical line (MN) is an asymptote. I}
. /A - i
Find the value of: (i) a (i) b. | \
— T 0 M x
i
I_5 1
A

i
o
1

<
>

b) The graph of h(x) is transformed as
shown in the diagram right. The point A
Ais transformed to A’(—4, 8). Give
a full geometric description of the
transformation.

(V5]
1

(=)
\X\F

|
1

o
1

Zppmbopl et d L LLLEEEE TS 2R
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1
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16 The graph of y = f(x) is shown in the diagram.

YA
2
14
T T T T T T IO T T T T T T T I‘;
—8—7—-6-5-4-3—-2-1 1 2 3 4 5 6 7 8%
’I_
72_

a) Make two copies of the coordinate system as shown in the diagram but without
the graph of y = f(x). On the first diagram sketch a graph of y = 2f(x), and on
the second diagram sketch a graph of y = f(x — 4).

b) The point A(—3, 1) is on the graph of y = f(x). The point A" is the corresponding
point on the graph of y = —f(x) — 1. Find the coordinates of A".

17 The diagram represents the graph of the function f(x) = (x — p)(x — g).
YA

W
<Y

B

a) Write down the values of pand q.
b) The function has a minimum value at the point B. Find the x-coordinate of B.

¢) Write the expression for f(x) in the form ax? + bx + ¢

18 The diagram shows the parabola y = (5 + x)(2 — x). The points A and C are the
x-intercepts and the point Bis the maximum point. Find the coordinates of A, Band C.

YA
B

o
xy




© Scquences and
Series

Assessment statements

1.1 Arithmetic sequences and series; sum of finite arithmetic sequences;
geometric sequences and series; sum of finite and infinite geometric series.
Sigma notation.

1.3 The binomial theorem: expansion of (@ + b)", n € N.
Calculation of binomial coefficients using Pascal’s triangle and (’r')

. Introduction

The heights of consecutive bounds of a ball, compound interest and
Fibonacci numbers are only a few of the applications of sequences and series
that you have seen in previous courses. In this chapter, you will review these
concepts, consolidate your understanding and take them one step further.

@ Sequences

Take the following pattern as an example:

=
o e o
@ L e o o
@ e @ e o @ ® e 0 @
L e @ ¢ o 0 e o e 0 e e 0 e 0
@ e e e o o e & 0 0 ® e 0 o o e ® e o o 0
1 2 3 4 5 6

The first figure represents 1 dot, the second represents 3 dots, etc. This
pattern can also be described differently. For example, in function notation:

f(1) = 1, f(2) = 3, f(3) = 6, etc., where the domain is Z*

Here are some more examples Of sequences:
1 6,12,18,24,30
2 3,9,27,....3k ...

3 {,lz;iz 1,2,3,...,10}
1

4 {b, b, ..., b, ...}, sometimes used with an abbreviation {b,}

The first and third sequences are finite and the second and fourth are
infinite. Notice that, in the second and third sequences, we were able to
define a rule that yields the nth number in the sequence (called the nth
term) as a function of n, the term’s number. In this sense, a sequence is a
function that assigns a unique number (a,,) to each positive integer n.
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e Hint: This can easily be done
using a GDC.

Plotl Plot2 Plot3
nMin=1
U(n)BE2(u(n—1)+3
U(nMin) E5H
“V(n) =
V (nMin) =
“W(n)=
U(5)
170
U(20)
5767162

Example 1

Find the first five terms and the 50th term of the sequence {b,} such that
1

bn =2 F

Solution

Since we know an explicit expression for the nth term as a function of its

number 7, we only need to find the value of that function for the required

terms:

1131 1 _ 15,
bl—z_F—l, b2—2 ?—11, b3—2 ? b4 2 E 11—6,
_,_1_ .24 _ 1 42499
bs 2 52 25, and bso 502 1_2500.

So, informally, a sequence is an ordered set of real numbers. That is, there
is a first number, a second, and so forth. The notation used for such sets is
shown above. The way we defined the function in Example 1 is called the
explicit definition of a sequence. There are other ways to define sequences,
one of which is the recursive definition. The following example will show
you how this is used.

Example 2

Find the first five terms and the 20th term of the sequence {b,} such that
b,=5and b, =2(b, _, + 3).

Solution

The defining formula for this sequence is recursive. It allows us to find the
nth term b,, if we know the preceding term b,, _ . Thus, we can find the
second term from the first, the third from the second, and so on. Since we
know the first term, b; = 5, we can calculate the rest:

b,=2(b, +3)=2(5+3)=16

by = 2(b, +3) =2(16 + 3) = 38

by = 2(b; + 3) = 2(38 + 3) = 82

bs =2(b, +3) =2(82+ 3) =170
Thus, the first five terms of this sequence are 5, 16, 38, 82, 170. However,
to find the 20th term, we must first find all 19 preceding terms. This is

one of the drawbacks of the recursive definition, unless we can change the
definition into explicit form.

However, you need to understand that not all sequences have formulae,
either recursive or explicit. Some sequences are given only by listing their
terms. Among the many kinds of sequences that there are, two types are of
interest to us: arithmetic and geometric sequences.



Find the first five terms and the 50th term of each infinite sequence defined in
questions 1-8.

1a,=2n-3
2 bh,=2X%x3"""1
—1._2n
3u,=(-1"""
Up =1 n’+2
4qg,=n""
5a,=2a,_,+5anda, =3
3
6un+1=2uni+1andu1=0
7bn=3‘bn_1andb1=2
8ad,=a,_,+2anda, = —1

@ Arithmetic sequences

Examine the following sequences and the most likely recursive formula for
each of them.
7,14, 21,28, 35,42, ... a=7anda,=a,_,+7,forn>1
2,11,20,29, 38,47, ... a=2anda,=a,_,+9,forn>1
48,39, 30,21,12,3, —6,... a,=48anda,=a,_,— 9, forn>1

Note that in each case above, every term is formed by adding a constant
number to the preceding term. Sequences formed in this manner are called
arithmetic sequences.

Definition of an arithmetic sequence
A sequence aj, a,, as, ... is an arithmetic sequence if there is a constant d for which
a,=a,_,+d

for all integers n > 1. d is called the common difference of the sequence, and
d=a,—a,_, forallintegersn > 1.

So, for the sequences above, 7 is the common difference for the first, 9 is
the common difference for the second and —9 is the common difference
for the third.

This description gives us the recursive definition of the arithmetic sequence.
It is possible, however, to find the explicit definition of the sequence.

Applying the recursive definition repeatedly will enable you to see the

expression we are seeking:
w=atda=atd=a+d+d=a + 24
Gm=ast+td=a +2d+d=a +34d...

So, as you see, you can get to the nth term by adding d to a;, (n — 1) times,

and therefore:

nth term of an arithmetic sequence

The general (nth) term of an arithmetic sequence, a,,, with first term a; and common
difference d, may be expressed explicitly as

a,=a; +((n—1)d
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This result is useful in finding any term of the sequence without knowing
all the previous terms.

Note: The arithmetic sequence can be looked at as a linear function as
explained in the introduction to this chapter, i.e. for every increase of one
unit in #, the value of the term will increase by d units. As the first term is
ay, the point (1, a;) belongs to this function. The constant increase d can be
considered to be the gradient (slope) of this linear model; hence, the nth
term, the dependent variable in this case, can be found by using the point-
slope form of the equation of a line:
y—n=mx—x)
a,—a=dn—-1)<a,=a +(n—1)d

This agrees with our definition of an arithmetic sequence.

Example 3
Find the nth and the 50th terms of the sequence 2, 11, 20, 29, 38,47, ...

Solution
This is an arithmetic sequence whose first term is 2 and common
difference is 9. Therefore,
a,=a,+(n—1)d=2+(n—-1)X9=9n—7
= as) =9 X 50 — 7 = 443

Example 4
Find the recursive and the explicit forms of the definition of the following
sequence, then calculate the value of the 25th term.

13,8,3, —2, ...

Solution
This is clearly an arithmetic sequence, since we observe that —5 is the
common difference.

Recursive definition: a; = 13
a,=4a,_-1—5

Explicit definition: a, = 13 — 5(n — 1) = 18 — 5n,and
18 — 5 X 25 = —107

a5

Example 5
Find a definition for the arithmetic sequence whose first term is 5 and fifth
termis 11.

Solution

Since the fifth term is given, using the explicit form, we have
as=a+(G-Dd=11=5+4d=>d=23

This leads to the general term,

a, =5+ %(n — 1), or, equivalently, the recursive form

a; =5
anzan—1+%>n>1




Example 6 e Hint: Definition: In a finite
arithmetic sequence ay, a,, as, ...,
ai theterms ay, as, ..., a, — ; are
Solution called arithmetic means between
a, and q,.

Insert four arithmetic means between 3 and 7.

Since there are four means between 3 and 7, the problem can be reduced to
a situation similar to Example 5 by considering the first term to be 3 and
the sixth term to be 7. The rest is left as an exercise for you!

1 Insert four arithmetic means between 3 and 7.

2 Say whether each given sequence is an arithmetic sequence. If yes, find the
common difference and the 50th term; if not, say why not.

a) a,=2n-—13 b) b,=n+2
Q ¢,=¢,_1+2and¢ =—1 d) u,=3u,_;+2
e) 2,57,12,19, ... f) 2,—5—12,—19, ...

For each arithmetic sequence in questions 3-8, find:
a) the 8th term
b) an explicit formula for the nth term
c) arecursive formula for the nth term.

3 -2,2,610,... 4 29,25,21,17, ...
5-6,3,12,21,... 6 10.07,9.95,983,9.71, ...
7 100,97,94,91, ... 823-1-2..

9 Find five arithmetic means between 13 and —23.
10 Find three arithmetic means between 299 and 300.

11 In an arithmetic sequence, as = 6 and a,, = 42. Find an explicit formula for the
nth term of this sequence.

12 In an arithmetic sequence, a; = —40 and a, = —18. Find an explicit formula for
the nth term of this sequence.

@ Geometric sequences

Examine the following sequences and the most likely recursive formula for
each of them.

7,14,28, 56, 112,224, ... a,=7anda,=a,_, X2 forn>1
2,18,162,1458,13122, ... a=2anda,=a,_, X9, forn>1
48, —24,12, —6,3, —1.5, ... a,=48and a,=a,_; X —0.5,forn>1

Note that in each case above, every term is formed by multiplying a
constant number with the preceding term. Sequences formed in this
manner are called geometric sequences.

Definition of a geometric sequence
A sequence a;, a,, as.. . is a geometric sequence if there is a constant r for which
Ay =0n_1 X1
for all integers n > 1.ris called the common ratio of the sequence,and r = a, +~ a,—4
forall integers n > 1.
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Thus, for the sequences above, 2 is the common ratio for the first, 9 is the
common ratio for the second and —0.5 is the common ratio for the third.

This description gives us the recursive definition of the geometric
sequence. It is possible, however, to find the explicit definition of the
sequence.

Applying the recursive definition repeatedly will enable you to see the
expression we are seeking:

=g Xna=aXr=aqXrXr=a Xrk
a=aXr=gq XrXr=a Xr%;...

So, as you see, you can get to the nth term by multiplying a; with r, (n — 1)
times, and therefore:

nth term of geometric sequence

The general (nth) term of a geometric sequence, a,,, with common ratio r and first term
a,, may be expressed explicitly as

a,=a; X ="

This result is useful in finding any term of the sequence without knowing
all the previous terms.

Example 7

a) Find the geometric sequence with a; = 2 and r = 3.

b) Describe the sequence 3, —12, 48, —192, 768, ...

. 111
c) Describe the sequence 1,5, 7,5 ---

d) Graph the sequence a, = 53"~ !

Solution
a) The geometric sequence is 2, 6, 18, 54, ..., 2 X 3"~ 1, Notice that the
ratio of a term to the preceding term is 3.

b) This is a geometric sequence with a; = 3 and r = —4. The nth term is
a, =3 X (—4)"~ 1. Notice that, when the common ratio is negative,
the terms of the sequence alternate in sign.

. . -1 . )
¢) The nth term of this sequenceisa, = 1+ (%)n . Notice that the ratio
of any two consecutive terms is % Also, notice that the terms decrease in
value.

d) The graph of the geometric
sequence is shown on the left.
Notice that the points lie on
the graph of the function

—1 x—1
y=g33"




Example 8

At 8:00 a.m., 1000 mg of medicine is administered to a patient. At the end
of each hour, the concentration of medicine is 60% of the amount present
at the beginning of the hour.

a) What portion of the medicine remains in the patient’s body at noon if
no additional medication has been given?

b) If a second dosage of 1000 mg is administered at 10:00 a.m., what is the
total concentration of the medication in the patient’s body at noon?

Solution

a) We use the geometric model, as there is a constant multiple by the end
of each hour. Hence, the concentration at the end of any hour after
administering the medicine is given by:

a, = a, X r'" =D where n is the number of hours

Thus, at noon # = 5,and as = 1000 X 0.6C =V = 129.6.

b) For the second dosage, the amount of medicine at noon corresponds to
n=3,and a; = 1000 X 0.6~ = 360.
So, the concentration of medicine is 129.6 + 360 = 489.6 mg.

Compound interest

Interest compounded annually

When we borrow money we pay interest, and when we invest money we
receive interest. Suppose an amount of €1000 is put into a savings account
. . . O See also Section 4.2
that bears an annual interest of 6%. How much money will we have in the
bank at the end of four years?

It is important to note that the 6% interest is given annually and is added
to the savings account, so that in the following year it will also earn
interest, and so on.

Time in years Amount in the account

0 1000

1 1000 + 1000 X 0.06 = 1000(1 + 0.06)

2 1000(1 + 0.06) + (1000(1 + 0.06)) X 0.06 = 1000(1 + 0.06) (1 + 0.06) = 1000(1 + 0.06)?

3 1000(1 + 0.06)% + (1000(1 + 0.06)?) X 0.06 = 1000(1 + 0.06)? (1 4+ 0.06) = 1000(1 + 0.06)*

4 1000(1 + 0.06)® + (1000(1 + 0.06)%) X 0.06 = 1000(1 + 0.06)> (1 + 0.06) = 1000(1 + 0.06)*
A

This appears to be a geometric sequence with five terms. You will notice e

that the number of terms is five, as both the beginning and the end of the
first year are counted. (Initial value, when time = 0, is the first term.)

In general, if a principal of P euros is invested in an account that yields
an interest rate r (expressed as a decimal) annually, and this interest is
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Table 3.2 Compound interest
formula.

»

added at the end of the year, every year, to the principal, then we can use
the geometric sequence formula to calculate the future value A, which is
accumulated after ¢ years.

If we repeat the steps above, with
Ay = P = initial amount
r = annual interest rate
t = number of years

it becomes easier to develop the formula:

Time in years Amount in the account

0 Ay=P

1 Ay=P+Pr=P01 +1)

2 A=A 1+ =P0 417

t Ar=P0 + 1t

Notice that since we are counting from 0 to t, we have ¢ + 1 terms, and
hence using the geometric sequence formula,

a,=a; Xr" =D = A =A; X (1+ n)!

Interest compounded n times per year

Suppose that the principal P is invested as before but the interest is paid
. r. . . . .

n times per year. Then ; is the interest paid every compounding period.

Since every year we have # periods, for t years, we have nt periods. The

amount A in the account after ¢ years is

A=P+1)"

Example 9

€1000 is invested in an account paying compound interest at a rate of 6%.
Calculate the amount of money in the account after 10 years if

a) the compounding is annual
b) the compounding is quarterly

¢) the compounding is monthly.

Solution
a) The amount after 10 years is
A =1000(1 + 0.06)'° = €1790.85.

b) The amount after 10 years quarterly compounding is

A= 10001 + 200" = €1814.00.
¢) The amount after 10 years monthly compounding is

A= 1000(1 n %)m = €1819.40.




Example 10

You invested €1000 at 6% compounded quarterly. How long will it take
this investment to increase to €2000?

Solution
Let P = 1000, r = 0.06, n = 4 and A = 2000 in the compound interest
formula:

Then solve for ¢:

2000 = 1000(1 + 0'4&)“: 2 = 1.015%

Using a GDC, we can graph the functions y = 2 and y = 1.015* and then
find the intersection between their graphs.

As you can see, it will take the €1000 investment 11.64 years to double to
€2000. This translates into approximately 47 quarters.

You can check your work to see that this is accurate by using the
compound interest formula: 0.06

A= 1000(1 n T)47 — €2013.28

In the next chapter you will learn how to solve the problem algebraically.

Y2=1.015%(4x)
y

Intersection x
X=11.638881 Y=2

Example 11

You want to invest €1000. What interest rate is required to make this
investment grow to €2000 in 10 years if interest is compounded quarterly?

Solution
Let P = 1000, n = 4, t = 10 and A = 2000 in the compound interest
formula:
_ r\nt
A=P(1+1L)
Now solve for r:
2000 = 1000(1 + i)‘“’ =2= (1 + 2)40 =1+ i =V2=r=4"2 -1
=0.0699

So, at a rate of 7% compounded quarterly, the €1000 investment will grow
to at least €2000 in 10 years.

You can check to see whether your work is accurate by using the

compound interest formula:

A= 1000(1 n 0'4ﬂ)4° — €2001.60

Population growth

The same formulae can be applied when dealing with population growth.

Example 12

The city of Baden in Lower Austria grows at an annual rate of 0.35%.
The population of Baden in 1981 was 23 140. What is the estimate of the
population of this city for 20112
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Solution

This situation can be modelled by a geometric sequence whose first term is
23 140 and whose common ratio is 1.0035. Since we count the population
of 1981 among the terms, the number of terms is 31.

2011 is equivalent to the 31st term in this sequence. The estimated
population for Baden is, therefore,

Population (2011) = as; = 23 140(1.0035)%° = 25697

Note: In Chapter 4, more realistic population growth models will be
explored and more efficient methods will be developed, as well as the
ability to calculate interest that is continuously compounded.

@ Hint: Definition: In a finite 1 Insert four geometric means between 3 and 96.
geometric sequence d,, dy, ds, ..., di, 2 Determine whether the sequence in each question is arithmetic, geometric or
the terms a,, as, ... di — ; are called neither. Find the common difference for the arithmetic ones and the common
geometric means between g, ratio for the geometric ones. Find the common difference or ratio, and the 10th
and ay. term for each arithmetic or geometric one as appropriate.
a) a,=3n—3 b) b, = 20*2
Q) ¢, =2¢,_;—2and¢ = —1 d) u,=3u,_andu; =4
e) 2,5,125,31.25,78.125 ... f) 2,—5,12.5 —31.25,78.125 ...
g) 2,2.75,35,4.25,5, ... h) 18,—12,8 -2 2, ..
For each geometric sequence in questions 3-8, find
a) the 8th term b) an explicit formula for the nth term
) arecursive formula for the nth term.
3-23-27%. 43525252 5-6-3-2-2 ..
6 9.5,19,38,76, ... 7 100,95,90.25, ... 8232 Z

"3 32 560
9 Find three geometric means between 7 and 4375.
10 Find a geometric mean between 16 and 81. @ Hint: This is also called the
mean proportional.

11 The first term of a geometric sequence is 24 and the fourth term is 3. Find the
fifth term and an expression for the nth term.

12 The common ratio in a geometric sequence is % and the fourth term is % Find
the third term.

13 Which term of the geometric sequence 6, 18, 54, ... is 1180987

14 The fourth term and the seventh term of a geometric sequence are 18 and %

59049

Is =555 a term of this sequence? If so, which term is it?

15 Jim put €1500 into a savings account that pays 4% interest compounded semi-
annually. How much will his account hold 10 years later if he does not make any
additional investments in this account?

16 At her daughter Jane’s birth, Charlotte set aside £500 into a savings account. The
interest she earned was 4% compounded quarterly. How much money will Jane
have on her 16th birthday?

17 How much money should you invest now if you wish to have an amount of €4000
in your account after 6 years if interest is compounded quarterly at an annual rate
of 5%?

18 In 2007, the population of Switzerland (in thousands) was estimated to be 7554.
How large would the Swiss population be in 2012 if it grows at a rate of 0.5%
annually?




@ Series

The word ‘series’ in common language implies much the same thing as
‘sequence’. But in mathematics when we talk of a series, we are referring in
particular to sums of terms in a sequence, e.g. for a sequence of values a,,,
the corresponding series is the sequence of S, with

S, =ayta,+...+a,_,+a,

If the terms are in an arithmetic sequence, we call the sum an arithmetic
series.

Sigma notation

Most of the series we consider in mathematics are infinite series. This
name is used to emphasize the fact that the series contain infinitely many
terms. Any sum in the series S; will be called a partial sum and is given by
Ss=ata+ ... ta_ g+ oa
For convenience, this partial sum is written using the sigma notation:
i=k
S = E g=a+ay+ ...+ a_,+ a
i=1
Sigma notation is a concise and convenient way to represent long sums.
Here, the symbol 2, is the Greek capital letter sigma that refers to the initial
i=k
letter of the word ‘sum’. So, the expression E a; means the sum of all the
i: 1 n
terms a;, where i takes the values from 1 to k. We can also write E a;to
i=m
mean the sum of the terms a;, where i takes the values from m to n. In such
a sum, m is called the lower limit and # the upper limit.

Example 13

Write out what is meant by:

5 7 1
a) Y it b Y 3 9 D _xplx)

i=1 r=3 i=1
Solution
5
2) 3 =14+ 24+ 34+ 44+ 58
i=1

7
b) ) 3 =343 435 +30+3
r=3

) ijp(xj) = x1p(x7) + p(x,) + ... + x,p(x,)

j=1
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Example 14

5
Evaluate Zzn

n=20

Solution

5
D an=20421 22423420+ 25 =63
n=20

Example 15

: 1_ 2,3 _4 9 . .
Write the sum 5 — 5 + 5 — < + ... + {5; in sigma notation.

Solution
We notice that each term’s numerator and denominator are consecutive

ko any equivalent form.
k+1
We also notice that the signs of the terms alternate and that we have 99
terms. To take care of the sign, we use some power of (—1) that will start
with a positive value. If we use (— 1)k, the first term will be negative, so we

can use (— 1)k !instead. We can, therefore, write the sum as
99

v+l o2 +12 4 43413 _1y99+199 _ k1 _k
(DT (CIF IS (S L ()P e =y (-

integers, so they take on the absolute value of

k=1

Properties of the sigma notation
There are a number of useful results that we can obtain when we use sigma
notation.
1 For example, suppose we had a sum of constant terms
5
2.2
i=1

What does this mean? If we write this out in full, we get
5

Y a=2+2+2+2+2=5x2=10.
i=1

In general, if we sum a constant n times then we can write

Y k=k+k+..+k=nXk=nk

i=1

2 Suppose we have the sum of a constant times 7. What does this give us?
For example,

5
E 5i=5X1+5X2+5X3+5X4+5X5=5X(1+2+3+4+5)=75
i=1

However, this can also be interpreted as follows
5

5
E 5i:5><1+5><2+5><3+5><4+5><5:5><(1+2+3+4+5):5E ;
i=1 i=1



which implies that
5 5

D _5i=5) i
i=1 i=1

In general, we can say

Zkizkx1+kx2+...+k><n

Tl kXA 42+ ..+
n

3 Suppose that we need to consider the summation of two different
functions, such as
n

D+ =+ D)+ @+ D)+ .+t
k=1
—(PH+ 2+ D)+ (P24 .+ )

=Y @+ ®)

k=1 k=1

In general,
D (k) g =D )+ D gk
k=1 k=1 k=1

Arithmetic series

In arithmetic series, we are concerned with adding the terms of arithmetic
sequences. It is very helpful to be able to find an easy expression for the
partial sums of this series.

Let us start with an example:
Find the partial sum for the first 50 terms of the series
3+8+13+18+ ...
We express S5 in two different ways:
Soo= 3+ 8+ 13+..+248, and
S50 =248 +243+238+ ...+ 3
2850 =251 +251+251 + ...+ 251

There are 50 terms in this sum, and hence
285 = 50 X 251 = S5 = 22(251) = 6275.

This reasoning can be extended to any arithmetic series in order to develop
a formula for the nth partial sum §,,.

Let {a,} be an arithmetic sequence with first term g, and a common
difference d. We can construct the series in two ways: Forward, by adding d
to a, repeatedly, and backwards by subtracting d from a,, repeatedly. We get
the following two expressions for the sum:

S,=aytay, +a3 +..+ta,=a +(@+d+(a+2d+..+(a+(n—1)d)
and

S,=a,+a,_ta,_,+..+ta=a,+(,—d+(a,—2d)+ ...+ (a,— (n—1)d)
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By adding, term by term vertically, we get
S, = a + (g +d) +(a+2d)+ ...+ (g + (n—1)d)
S, = a, + (a,—d) + (a,—2d)+ ...+ (a,— (n—1)d)

: . . .

28, = (ay+a,) + (agy+a,) +(a+a,)+..+(a+a,

Since we have n terms, we can reduce the expression above to
2S,= n(a; + a,), which can be reduced to
S, = g (a, + a,), which in turn can be changed to give an
interesting perspective of the sum,

a, + a,
2
the first and last terms!

ie.S, = n( ) is n times the average of

If we substitute a; + (n — 1)d for a, then we arrive at an alternative
formula for the sum:

Sp="5(a+ay + (n—1)d) = 5 (2a, + (n — 1)d)

Sum of an arithmetic series
The sum, S,,, of n terms of an arithmetic series with common difference d, first term a,
and nth term a, is:

Sp="5(a+a,) or S,=5Qa,+(n—1)d

Example 16

Find the partial sum for the first 50 terms of the series
3+8+13+18+ ...
Solution
Using the second formula for the sum, we get
S0 =22 X 3+ (50 — 1)5) = 25 X 251 = 6275.
Using the first formula requires that we know the nth term. So,
asy = 3 + 49 X 5 = 248, which now can be used:
Sso = 25(3 + 248) = 6275.

Geometric series

As is the case with arithmetic series, it is often desirable to find a general
expression for the nth partial sum of a geometric series.

Let us start with an example:

Find the partial sum for the first 20 terms of the series
3+6+12+24+ ...



We express S, in two different ways and subtract them:

S0 =3+6+12 + ...+ 1572864
280 = 6 4 12 + ...+ 1572864 + 3145728

=8, = 3145725

This reasoning can be extended to any geometric series in order to develop
a formula for the nth partial sum §,,

Let {a,} be a geometric sequence with first term g, and a common ratio
r # 1. We can construct the series in two ways as before and using the
definition of the geometric sequence, i.e. a, = a,_; X 1, then

S, =ay tay+ a3+ ... + a,_, + a, and

rS,=ray+ray +raz+ ... + ra,_; + ra,

vy

=a+a +..+a,_+ a, +ra,
Now, we subtract the first and last expressions to get
a, — ra,
11
This expression, however, requires that r, a;, as well as a,, be known in
order to find the sum. However, using the nth term expression developed
earlier, we can simplify this sum formula to

S,—rS,=a,—ra,=S,(1—r)=a —ra,=S,= r# 1.

ap —ra, ay—rar"" 1 a1 — 1"

1—r 1—r 1—r sr# L

Sn =

Sum of a geometric series
The sum, S,,, of n terms of a geometric series with common ratio r(r# 1) and first term a,

is:
=t =1
all =) equivalentto S, = M

=T = =1

Example17

Find the partial sum for the first 20 terms of the series 3 + 6 + 12 + 24 + ...
in the opening example for this section.

Solution

3(1—220)  3(1 — 1048576
Sy = (1_2 ) _ X — ) = 3145725

Infinite geometric series

Consider the series
n

PIFIEN AT S A S S

k=1
Consider also finding the partial sums for 10, 20 and 100 terms. The sums
we are looking for are the partial sums of a geometric series. So,
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k=1 2

20 1_<l 20

D () =2 x —2—~3.999996
2 1 _ L

k=1 2

100 1 —(L)0
2L =2x 1(—2>l ~4

k=1 2

As the number of terms increases, the partial sum appears to be approaching
the number 4. This is no coincidence. In the language of limits,

lim 5 :ZG _ lim 5 1_%)](_ 1_O=4sincelim(1>n=0
n—o0 2 n—oo 1 1 > n—o\2 .
k=1 1= (5) 2

This type of problem allows us to extend the usual concept of a ‘sum’ of a

finite number of terms to make sense of sums in which an infinite number
of terms is involved. Such series are called infinite series.

One thing to be made clear about infinite series is that they are not true
sums! The associative property of addition of real numbers allows us to
extend the definition of the sum of two numbers, such as a + b, to three or
four or n numbers, but not to an infinite number of numbers. For example,
you can add any specific number of 5s together and get a real number, but
if you add an infinite number of 5s together, you cannot get a real number!
The remarkable thing about infinite series is that, in some cases, such as the
example above, the sequence of partial sums (which are true sums) approach
a finite limit L. The limit in our example is 4. This we write as
. n .
}}Eﬁo ap = }}H}o (g, +a+...+a,) =L
k=1
We say that the series converges to L, and it is convenient to define L as the
sum of the infinite series. We use the notation

wZak = }}E&c nZak =L

k=1 k=1
We can, therefore, write the limit above as

> oty =tim Zz =
k=1 k=1
If the series does not have a limit, it diverges and does not have a sum.
We are now ready to develop a general rule for infinite geometric series.
As you know, the sum of the geometric series is given by
ap —ra, ay—rar" "1 a1 — ")

Sn= 1—r 1—7r T 1—r sr# L

If |r| <1, then }}E}C " = 0and

e lima( =) a
$:= 5= o 1—-r 1—7




We will call this the sum of the infinite geometric series. In all other cases
the series diverges. The proof is left as an exercise.
ZZ(%)IC_I = X 2 __ 4, as already shown.
k=1

N —

Sum of an infinite geometric series
The sum, S, of an infinite geometric series with first term a; such that the common ratio,
r, satisfies the condition Irl < 1 is given by:

a;

S =7

Example 18

A rational number is a number that can be expressed as a quotient of two
integers. Show that 0.6 = 0.666 ... is a rational number.

Solution

0.6=0.666 ... = 0.6 + 0.06 + 0.006 + 0.0006 + ...
2 3
=%t i) T ()

.. . . . . . 6 1
This is an infinite geometric series with a; = T and r = o therefore,

p—— — __ 2
0.6 = 093

Example 19
If a ball has elasticity such that it bounces up 80% of its previous height,
find the total vertical distances travelled down and up by this ball when it is
dropped from an altitude of 3 metres. Ignore friction and air resistance.

luti
Solution °

A .
N

After the ball is dropped the initial 3 m, it bounces up and down a distance
of 2.4 m. Each bounce after the first bounce, the ball travels 0.8 times the
previous height twice — once upwards and once downwards. So, the total
vertical distance is given by

h=34224+ (24X0.8) + (24X 08)+ ...)=3+2X

The amount in parenthesis is an infinite geometric series with a; = 2.4 and
r = 0.8. The value of that quantity is
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Table 3.3 Calculating the future
value.

Plotl Plot2 Plot3
nMin=1
U(n)BU(n—1) %

(nl\zlln) BE1000
V( ) =
V (nMin)
“W(n) =

(1+
O

sum(seqg(u(n),n,1,
10)

13180.79494

Table 3.4 Calculating the future
value — formula.

>

4

24
1—0.8

Hence, the total distance required is

h=3+2(12) = 27m.

=12.

Applications of series to compound interest
calculations (optional)

Annuities

An annuity is a sequence of equal periodic payments. If you are saving
money by depositing the same amount at the end of each compounding
period, the annuity is called ordinary annuity. Using geometric series you
can calculate the future value (FV) of this annuity, which is the amount of
money you have after making the last payment.

You invest €1000 at the end of each year for 10 years at a fixed annual
interest rate of 6%. See table below.

Year Amount invested Future value
10 1000 1000
9 1000 1000(1 + 0.06)
8 1000 100001 + 0.06)2
1 1000 100001 + 0.06)°

The future value of this investment is the sum of all the entries in the last
column, so it is

FV = 1000 + 1000(1 + 0.06) + 1000(1 + 0.06)? + ... + 1000(1 + 0.06)°

This sum is a partial sum of a geometric series with » = 10 and r = 1 + 0.06.

Hence,

1000(1 — (1 + 0.06)') _
1— (1+0.06)

This result can also be produced with a GDC, as shown.

1000(1—(1 + 0.06)')

Fv= —0.06

= 13180.79.

We can generalize the previous formula in the same manner. Let the
periodic payment be R and the periodic interest rate be 7,1.e. i = % . Let the
number of periodic payments be .

Period Amount invested Future value
m R R

m—1 R R(1 +1)

m-—2 R RO+ i)?

RO+ )m 1




The future value of this investment is the sum of all the entries in the last
column, so it is

FV=R+R1+i)+R1+i2+..+R1+i)m!

This sum is a partial sum of a geometric series with mtermsand r =1 + i.
Hence,

_RQI—-(1+9H™ RA-(1Q+pm) _ ((1 + )™ — 1)
V="T"a+y ~ — R W

Note: If the payment is made at the beginning of the period rather than

at the end, the annuity is called annuity due and the future value after m

periods will be slightly different. The table for this situation is given below.

Period Amount invested Future value A Table 3.5 Calculating the future
value (annuity due).
m R R(I+1)
m—1 R RO + /)2
m-—2 R R(1 +i)3
1 R R(1 4+ 0m

The future value of this investment is the sum of all the entries in the last
column, so it is

FV=R(1+i)+R1+i)?*+..+R1+)" 1+ RA+ )"

This sum is a partial sum of a geometric series with m termsand r =1 + i.
Hence,

FV=

RA+i1—(1+)") R(A+i—(1+)m*) _R((l +omti—1 1)
1—(1+14) N —i B i

If the previous investment is made at the beginning of the year rather than

at the end, then in 10 years we have

a+pmtt—1
i

1+0.06)°"!—1
FV:R( (1 + 0.06)

0.006

1 Find the sum of the arithmetic series 11 + 17 + ... + 365.

2 Find the sum:

.9 27, 17147
2=3 45Tt T

1)=1000( - 1)=13971.64.

13
3 Evaluate Z(z — 0.3k).
k=0
8 16
E E + cee
1,V3 .1 . .vV3, 3
5 EVaante§+ﬁ+E+6—4+E+
6 Express each repeating decimal as a fraction:

a) 052 b) 0453 c) 3.0137

J’_

4 Evaluate 2 —

GTEN

7 At the beginning of every month, Maggie invests £150 in an account that pays
6% annual rate. How much money will there be in the account after six years?
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@ The binomial theorem

In this section, you will learn about a sequence of numbers called Pascal’s
triangle and work with one of its applications, the binomial theorem.

A binomial is a polynomial with two terms. For example, x + yis a
binomial. In principle, it is easy to raise x + y to any power; but raising it
to high powers would be tedious. In this book, we will find a formula that
gives the expansion of (x + y)" for any positive integer 1, but we will leave
the proof for higher level courses.

Let us look at some special cases of the expansion of (x + y)™
(x+y)° =1

(x+tt=x+y

(x+y)? = x2+ 2xy + y?

(x+y)°?=x3+ 3x%y + 3xy2 + »3

(x+y)* = x* + 4x3y + 6x2y% + 4xy3 + y4

(x+y)> = x> + 5xty + 10x3y?2 +10x2y3 + 5xp* + y°

(x+y)° = x° + 6x° + 15x*y? + 20x%y® + 15x2y* + 6xp° + y©

There are several things that you will have noticed after looking at the
expansion:

e There are n + 1 terms in the expansion of (x + y)".

The degree of each term is n.

The powers on x begin with n and decrease to 0.

The powers on y begin with 0 and increase to #.

The coefficients are symmetric.

For instance, notice how the exponents of x and y behave in the expansion of
(x+ ).
The exponents of x decrease:

(x+y)?° = X2+ 5xy + ley2 + ley3 + 5xmy4 + x@ys

The exponents of y increase:

(x+y)P = x5y@ + Sx‘*ym + 10x3y + 10x2y + Sxy + y

Using this pattern, we can now proceed to expand any binomial raised to
power n: (x + y)". For example, leaving a blank for the missing coefficients,
the expansion for (x + y)” can be written as

(x+y)’

=L+ Dxy + 0%y + Dety? + Dyt + Dy + Do + Ly
To finish the expansion we need to determine these coefficients. In order

to see the pattern, let us look at the coefficients of the expansion we started
the section with.




(x+y)° 1 row 0
(x + ! 1 1 row 1
(x + y)? 1 2a) 1 row 2
Yy L
(x +y)? 1 3] (3 1] row 3
O CEEL i EX
(x + )t 1 4 6 4 1 row 4
x+y)° 1 (5 10) 10 (5 1) row 5
y H# 2
(x + y)° 1 6 15 20 15 6 1 row 6
0 1 2 3 4 5 6
= = = o = = =
£ £ £ g = g g
= =2 2 2 2 2 2
5 3 ) S S 5 5
Q ) Q Q Q (9] Q

A triangle like the one above is known as Pascal’s triangle. Notice how the
first and second terms in row 3 give you the second term in row 4; the
third and fourth terms in row 3 give you the fourth term of row 4; the
second and third terms in row 5 give you the third term in row 6; and the
fifth and sixth terms in row 5 give you the sixth term in row 6, and so on.
So now we can state the key property of Pascal’s triangle.

Pascal’s triangle

Every entry in a row is the sum of the term directly above it and the entry diagonally
above and to the left of it. When there is no entry, the value is considered zero.

Take the last entry in row 5, for example; there is no entry directly above it,
soitsvalueis0 + 1 = 1.

From this property it is easy to find all the terms in any row of Pascal’s
triangle from the row above it. So, for the expansion of (x + y)7, the terms
are found from row 6 as follows:

0 > 1 6 >15 20 >15 ) > 1 >0
I T R T
1 7 21 35 35 21 7 1

So, (x+y)” = x7+ [7]xy + 21 x°y? + B3 x*y> + B3 x3y* + 21 x%y°

+ [Z]xy® + y7.
Note: Several sources use a slightly different arrangement for Pascal’s
triangle. The common usage considers the triangle as isosceles and uses
the principle that every two entries add up to give the entry diagonally
below them, as shown in the following diagram.

1

1 2 1
1 4 3\‘6'/3 4 1
S g N, S o

1 1

Pascal’s triangle was known
to Persian and Chinese
mathematicians in the 13th
century.
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Example 20

Use Pascal’s triangle to expand (2k — 3)°.

Solution
We can find the expansion above by replacing x by 2k and y by —3 in the
binomial expansion of (x + ).
Using the fifth row of Pascal’s triangle for the coefficients will give us the
following:
1(2k)°> + 5(2k)*(—3) + 10(2k)*(—3)* + 10(2k)*(—3)* + 5(2k)(—3)*

+ 1(—3)°> = 32k> — 240k* + 720k®> — 1080k? + 810k — 243.

m
The proof that Pascal’s entry and @
the binomial coefficientare the
same can be found by visiting doing that for large values of n. Imagine you want to evaluate (x + y)%.
www.pearsonhotlinks.com, enter Using Pascal’s triangle, you will need the terms in the 19th row and the
the title or ISBN of this book and
select weblink 1.

Pascal’s triangle is an easy and useful tool in finding the coefficients of the
binomial expansion for relatively small values of . It is not very efficient

18th row and so on. This makes the process tedious and not practical.

Luckily, we have a formula that can find the coefficients of any Pascal’s
triangle row. This formula is the binomial formula, whose proof is beyond

the scope of this book. Every entry in Pascal’s triangle is denoted by (7;),
which is also known as the binomial coefficient.

In <1r1)’ n is the row number and ris the column number. To understand
the binomial coefficient, we need to understand what the factorial notation
means.

Factorial notation

The product of the first n positive integers is denoted by n! and is called n factorial:
nN=1X2X3X4..n—2)XNn—=1)Xn

We also define 0! = 1.

This definition of the factorial makes many formulae involving the
multiplication of consecutive positive integers shorter and easier to write.
That includes the binomial coefficient.

The binomial coefficient

With n and r as non-negative integers such that n = r, the binomial coefficient (?) is
defined by

|
()= r./(nné )l

Note: The GDC uses ,,C, to represent (?)

Example 21
Find the value of a) (;) b) (Z) Q) ((7)) d) (;)
Solution

N_ 7N 71 1:2+3-45:6-7 _5:6°7 _
¥ (5) = 57— 31 34l (1-2-3)(L23~8 1:2:3 >




b 7\ 71 7! 1:2:3+4.5.6-7 567 _ e Hint: Your calculator can do
) (4) T 47— 4) 4131 (1e2-3~4)(1-2-3) 1:2-3 35 the tedious work of evaluating the
| binomial coefficient. If you have a
c) (7) -7 A _1_ 1 Tl, the binomial coefficient appears
0 0i(7 —0)! oA 1 as ,C, which is another notation
7\ 71 N 1 frequently used in mathematical
d) (7) - 717 = 7)! 00 1 1 literature.
7 nCr 3
Although the binomial coefficient (? ) appears as a fraction, all its results 35
where # and r are non-negative integers are positive integers. Also, notice 7 nCr 4 35
the symmetry of the coefficient in the previous examples. This is a 7 nCr O
property that you are asked to prove in the exercises: a 1
n\_( n
(r) - (n - r)

Example 22
Calculate the following:

o 6 6 6 G € )

§=r ) @75 ©) - ()15 )=o)

The values we calculated above are precisely the entries in the sixth row of
Pascal’s triangle.

We can write Pascal’s triangle in the following manner:

Example 23

Calculate ( n 1) + (?) @ Hint: You will be able to provide reasons for
r the steps after you do the exercises!

Solution

n ny _ n! n!
<r— 1) + (”) S (r=Di(n—r+1)! * (n—r)!

nler + nl-(n—r+1)
re(r—=DW(n—r+1)! dAn—nln—r+1)

ner n«(n—r+1)
n—r+1)! (n—r+1)!
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ner+nl-(n—r+1) n(r+n—r+1)

nn—r+1)! (n—r+1)!
_onlnt1) _ (n+ 1) _<n+l)
S An—r+ D! Amn+1-7! T

If we read the result above carefully, it says that the sum of the terms in the
nth row (r — 1)th and rth columns is equal to the entry in the (n + 1)th
row and rth column. That is, the two entries on the left are adjacent entries
in the nth row of Pascal’s triangle and the entry on the right is the entry in
the (n + 1)th row directly below the rightmost entry. This is precisely the
principle behind Pascal’s triangle!

Using the binomial theorem
We are now prepared to state the binomial theorem.
(x+yr= (g)x"—i- (’f)x"* ly+ (g)x”*zyz + (?)x”*3y3+ ot (n n l)xy"* 14 (Z)y”

In a compact form, we can use sigma notation to express the theorem as
follows:

n

(X+ y)n — Z(?)xnfiyi

i=0

Example 24

Use the binomial theorem to expand (x + y)’.

Solution
7= G Qe G B e
HE G+ ()

= x7 + 7x% + 21x3y2 + 35x%y® + 35x3y* + 21x2y5 + Txy® + y7

Example 25

Find the expansion for (2k — 3)°.
Solution
(2k = 3)° = (3] @k + [7)@R14(=3) + (5 ) @R1*(=3) + (3 ) 2k2(~3)°

+(3)epE3t+ (2)-3)

= 32k> — 240k* + 720k> — 1080k> + 810k — 243

Example 26

Find the term containing @ in the expansion (2a — 3b)°.



Solution
To find the term, we do not need to expand the whole expression.
n
Since (x + )" = Z(?)x” ~ 1y, the term containing a’ is the term where
i=0
n — i = 3,i.e.when i = 6. So, the required term is

(2)(211)9 ~6(—3p)6 = 84 - 843 - 72965 = 489 88843 °.

Example 27

).

The phrase ‘term independent of x’ means the term with no x variable, i.e.

the constant term. A constant is equivalent to the product of a number and
0

Find the term independent of x in (4x3 -

Bl

Solution

x9, since x* = 1. We are looking for the term in the expansion such that

the resulting power of x is zero. In terms of i, each term in the expansion is
given by:

(5;) )(4x3)5 ~i(—2x2)i
Thus, for the constant term:

35—-1) —2i=0=15—-51=0=>i=3
Therefore, the term independent of x is:

(g)(4x3)2(—2x_2)3 = 10-16x5(—8x6) = —1280

Example 28

Find the coefficient of b° in the expansion of (sz -

e

=

Solution
The general term is

[P (4 - (P ()
— (liz)(z)lz —ip24 - Zibfi(_l)i = (11'2)(2)12 —ip24 - Si(_l)i

24 — 3i = 6 =i = 6. So, the coefficient in question is (162)(2)6(— 1)°=59136.




v Sequences and Series

1 Use Pascal'’s triangle to expand each binomial.
a) (x+2yp b) (@ — by o (x—23)°

d) Q- %) e) (x — 3b) f) (zn + #)6
9 (B -2x)

2 FEvaluate each expression.

3 Use the binomial theorem to expand each of the following.

a) (x+2y) b) (a — b)° Q (x—3p
d 2 - X &) (x — 3bY ) 20+ l2)6
n
(i vz)* W) (+ V5 + (1= V5)
Yy (V34+1)8 -3 —-1)8 ) (0 + )8 wherej2=—1
k) (V2 — i) where 2= —1
4 Consider the expression (x = %)45.

a) Find the first three terms of this expansion.

b) Find the constant term if it exists or justify why it does not exist.

c) Find the last three terms of the expansion.

d) Find the term containing x 3 if it exists or justify why it does not exist.

5 Prove that (Z) = (n n

_k)foralln,kENandan.

6 Prove that for any positive integer n,
(7)*@)*--~+(nf1)+(2)=2“—1 e Hint: 27 = (1 4+ 1)"

7 Consideralln, k&€ Nandn = k.
a) Verify that k! = k(k — 1)!
b) Verify that(n —k+ 1)l=( —k+ 1) (n — k!

n ny _(n+1);
) Justify the steps given in the proofof( 1) 4 (r) = ( ’ ) in the
examples.

8 Find the value of the expression:
)+ )G G) + CIGIE) + -+ E)E)

9 Find the value of the expression:
RIE) + B)EN &)+ CIEG) + -+ GIE)

10 Find the value of the expression:

B+ @) E)+ GBS+ + )




Practice questions

Find the first five terms of each infinite sequence defined in questions 1-6.

1 s(n)=2n-73 2 glk)=2-3
. _ 51:5
Y =gz 4{an=a,,_1+3; forn> 1

b1:3
5 a,= (=112 +3 6 {bn:bn—1 +2n forn=2

Determine whether each sequence in questions 7—12 is arithmetic, geometric or neither. Find
the common difference for the arithmetic ones and the common ratio for the geometric ones.

7 52,55,58,61, ...

8 —1,3,-927, =81, ...

9 0.1,0.2,04,08,16,3.2, ...
10 3,6, 12,18, 21, 27, ...
11 6, 14, 20, 28, 34, ...
12 2.4,3.7,5,63,7.6, ...

For each arithmetic or geometric sequence in questions 13-23, find
a) the 8th term
b) an explicit formula for the nth term
c) arecursive formula for the nth term.

13 =3,2,7,12, ...
14 19,1511, 7, ...
15 —8,3,14,25, ...

16 10.05,9.95,9.85,9.75, ...
17 100, 99, 98, 97, ...
1821 -1, -5 ..
19 3,6,12,24, ...

20 4,12,36,108, ...

215 5,5 -5, ...

22 3,-6,12, =24, ...

23 972, —324,108, —36, ...

24 Find five arithmetic means between 15 and —21.
25 Find three arithmetic means between 99 and 100.

26 In an arithmetic sequence, a; = 11 and a;, = 47. Find an explicit formula for the nth
term of this sequence.

27 In an arithmetic sequence, a; = —48 and a;3 = —10. Find an explicit formula for the
nth term of this sequence.

28 Find four geometric means between 7 and 1701.

29 Find a geometric mean between 9 and 64. e Hint: This is also called the
mean proportional.




Sequences and Series

30 The first term of a geometric sequence is 24 and the third term is 6. Find the fourth term
and an expression for the nth term.

31 The common ratio in a geometric sequence is % and the fourth term is %. Find the third
term.

32 Which term of the geometric sequence 7, 21, 63, ... is 1377817

243

33 The third term and the sixth term of a geometric sequence are 18 and i

19683
64
34 Tim put €2500 into a savings account that pays 4% interest compounded semi-
annually. How much will his account hold 10 years later if he does not make any

additional investments in this account?

s

a term of this sequence? If so, which term is it?

35 At her son William's birth, Jane set aside £1000 into a savings account. The interest she
earned was 6% compounded quarterly. How much money will William have on his 18th
birthday?

36 How much money should you invest now if you wish to have an amount of €3000 in
your account after six years if interest is compounded quarterly at an annual rate of
6%?

37 Find the sum of the arithmetic series 13 + 19 + ... + 367.

38 Find the sum of

_4.8_16 _ 409
2=3 g7t T T

11
39 Evaluatez (3 + 0.24).

k=0
_4.8_16

40 Evaluate 2 34—9 57 T

41 Evaluatel+£+l+£+z+...

2 23 3 3/3 9

42 Express each repeating decimal as a fraction:
a) 0.7 b) 0.345 ) 3.2129
43 Find the coefficient of x in the expansion of (2x — 3)°.
44 Find the coefficient of x3b%in (ax + b)’.
45 Find the constant term of (% =7z )15.
46 Expand 3n — 2m)>.
47 Find the coefficient of r'%in (4 + 3r2)°.

48 In an arithmetic sequence, the first term is 4, the fourth term is 19 and the nth term is
99. Find the common difference and the number of terms n.

49 Two students, Nick and Charlotte, decide to start preparing for their IB exams 15 weeks
ahead of the exams. Nick starts by studying for 12 hours in the first week and plans



50

51

52

53

54

to increase the amount by 2 hours per week. Charlotte starts with 12 hours in the first

week and decides to increase her time by 10% every week.

a) How many hours did each student study in week 5?

b) How many hours in total does each student study for the 15 weeks?

¢) In which week will Charlotte exceed 40 hours per week?

d) In which week does Charlotte catch up with Nick in the number of hours spent on
studying per week?

Two diet schemes are available for relatively overweight people to lose weight. Plan A
promises the patient an initial weight loss of 1000 g the first month, with a steady loss
of an additional 80 g every month after the first. So, the second month the patient will
lose 1080 g and so on for a maximum duration of 12 months.

Plan B starts with a weight loss of 1000 g the first month and an increase in weight loss
by 6% more every following month.
a) Write down the amount of grams lost under Plan B in the second and third months.
b) Find the weight lost in the 12th month for each plan.
) Find the total weight loss during a 12-month period under

(i) PlanA (ii) Plan B.

Planning on buying your first car in 10 years, you start a savings plan where you invest
€500 at the beginning of the year for 10 years. Your investment scheme offers a fixed
rate of 6% per year compounded annually.

Calculate, giving your answers to the nearest euro (€),
(@) how much the first €500 is worth at the end of 10 years
(b) the total value your investment will give you at the end of the 10 years.

The first three terms of an arithmetic sequence are 6, 9.5, 13.
a) What is the 40th term of the sequence?
b) What is the sum of the first 103 terms of the sequence?

A marathon runner plans her training programme for a 20 km race. On the first day

she plans to run 2 km, and then she wants to increase her distance by 500 m on each

subsequent training day.

a) On which day of her training does she first run a distance of 20 km?

b) By the time she manages to run the 20 km distance, what is the total distance she
would have run for the whole training programme?

In the nation of Telefonica, cellular phones were first introduced in the year 2000. During
the first year, the number of people who bought a cellular phone was 1600. In 2001, the
number of new participants was 2400, and in 2002 the new participants numbered 3600.
a) You notice that the trend is a geometric sequence; find the common ratio.
Assuming that the trend continues,

b) how many participants will join in 2012?

¢) in what year would the number of new participants first exceed 50 000?

Between 2000 and 2002, the total number of participants reaches 7600.

d) What is the total number of participants between 2000 and 20127

During this period, the total adult population of Telefonica remains at approximately
800 000.

e) Use this information to suggest a reason why this trend in growth would not continue.
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55 In an arithmetic sequence, the fist term is 25, the fourth term is 13 and the nth term is
—11995. Find the common difference d and the number of terms n.

56 The midpoints M, N, P, Q of the sides M
of a square of side 1 cm are joined to
form a new square.

a) Show that the side of the second s R

square MNPQ is g

b) Find the area of square MNPQ. N <> Q

A new third square RSTU'is
constructed in the same manner.
¢) (i) Find the area of the third T u
square just constructed.
(ii) Show that the areas of the
squares are in a geometric
sequence and find its common ratio.

The procedure continues indefinitely.
d) (i) Find the area of the tenth square.
(ii) Find the sum of the areas of all the squares.

57 Tim is a dedicated swimmer. He goes swimming once every week. He starts the first
week of the year by swimming 200 metres. Each week after that he swims 20 m more
than the previous week. He does that all year long (52 weeks).

a) How far does he swim in the final week?
b) How far does he swim altogether?

58 The diagram below shows three iterations of constructing squares in the following
manner: A square of side 3 units is given, then it is divided into nine smaller squares
as shown and the middle square is shaded. Each of the unshaded squares is in turn
divided into nine squares and the process is repeated. The area of the first shaded
square is 1 unit.

Biw gjojojojojojojo|o
=) ojo ojo =]
gjgjojojgojojaio|o

| A ojojo ojojo
= =] 8] =] =]
ojojo o|jojo
ojojojojojojofo|o
u] ojo ojo u ]
gjojojojojojojo|o

a) Find the area of each of the squares A and B.

b) Find the area of any small square in the third diagram.

¢) Find the area of the shaded regions in the second and third iterations.
d) If the process is continued indefinitely, find the area left unshaded.

59 The table below shows four series of numbers. One series is an arithmetic one, one is
a converging geometric series, one is a diverging geometric series and the fourth is
neither geometric nor arithmetic.




Series Type of series

(i) 2+ 22+ 222+ 2222 + ...

i 4.8 .16
(ii) R R R R

(iii) 0.8+ 0.78+0.76 + 0.74 + ...

i 8. 32 128
(iv) 2R R R R

a) Complete the table by stating the type of each series.
b) Find the sum of the infinite geometric series above.

60 Two IT companies offer ‘apparently” similar salary schemes for their new appointees. Kell
offers a starting salary of €18 000 per year and then an annual increase of €400 every
year after the first. YBO offers a starting salary of €17 000 per year and an annual increase
of 7% for the rest of the years after the first.
a) (i) Write down the salary paid during the second and third years for each company.

(i) Calculate the total amount that an employee working for 10 years will
accumulate in each company.

(iii) Calculate the salary paid during the tenth year for each company.
b) Tim works at Kell and Merijayne works at YBO.
(i) When would Merijayne start earning more than Tim?

(ii)) What is the minimum number of years that Merijayne requires so that her
total earnings exceed Tim's total earnings?

61 A theatre has 24 rows of seats. There
are 16 seats in the first row and each R24
successive row increases by 2 seats, I
1 on each side.

a) Calculate the number of seats in //_\
the 24th row. A
b) Calculate the number of seats in R

the whole theatre. | |

62 The amount of €7000 is invested at 5.25% annual compound interest.
a) Write down an expression for the value of this investment after ¢ full years.

b) Calculate the minimum number of years required for this amount to become
€10 000.

c) For the same number of years as in part b), would an investment of the same
amount be better if it were at a 5% rate compounded quarterly?

63 With S, denoting the sum of the first n terms of an arithmetic sequence, we are given
that $; = 9and S, = 20.

a) Find the second term.
b) Calculate the common difference of the sequence.
c) Find the fourth term.




—xponential and
_ogarithmic Functions

Assessment statements

1.2 Exponents and logarithms.
Laws of exponents; laws of logarithms.
Change of base.

2.6 Exponential functions and their graphs.
x+—a* a>0; x+— e*

Logarithmic functions and their graphs.
x> log,x, x> 0; x = Inx, x > 0.

Relationships between these functions.
a* = e*na: Jog,a® = x; 8°%* = x, x > 0.

O Introduction

A variety of functions have already been considered in this text (see Figure
2.15 in Section 2.4): polynomial functions (e.g. linear, quadratic and cubic
functions), functions with radicals (e.g. square root function), rational
functions (e.g. inverse and inverse square functions) and the absolute value
functions. This chapter examines two very important and useful functions:
the exponential function and its inverse function, the logarithmic function.

O Exponential functions

Characteristics of exponential functions

We begin our study of exponential functions by comparing two algebraic
expressions that represent two seemingly similar but very different
functions. The two expressions x2 and 2* are similar in that they both
contain a base and an exponent (or power). In x2, the base is the variable
x and the exponent is the constant 2. In 2% the base is the constant 2 and
the exponent is the variable x. However, x? and 2* are examples of two
different types of functions.

® Hint: Another word for exponent The quadratic function y = x? is in the form ‘variable base®nstant power,

is index (plural: indices). where the base is a variable and the exponent is an integer greater than or
equal to zero (non-negative integer). Any function in this form is called a
polynomial (or power) function.

The function y = 2*is in the form ‘constant basevariable power yhere the base
is a positive real number (not equal to one) and the exponent is a variable.
Any function in this form is called an exponential function.




To illustrate a fundamental difference between exponential functions and
power functions, consider the function values for y = x? and y = 2* when
x is an integer from 0 to 10. Both a table and a graph (Figure 4.1) showing
these results display clearly how the values for the exponential function
eventually increase at a significantly faster rate than the power function.

YA
x y = x? y=2" 1000
0 0 1 900
1 1 2 800
2 4 700 y=2
3 9 8 600
y=x
4 16 16 500 -
5 25 32 400 A
6 36 64 300+
7 49 128 200+
8 64 256 1004
0 1+ + + T T
9 81 512 5 : ] 3 :
10 100 1024 A
Figure 4.1

Another important point to make is that polynomial, or power, functions
can easily be defined (and computed) for any real number. For any power
function y = x", where n is any positive integer, y is found by simply taking

x and repeatedly multiplying it # times. Hence, x can be any real number.

For example, for the power function y = x%,if x = 7, then y = 7° =
31.006276 68.... Since a power function like y = x3 is defined for all real
numbers, we can graph it as a continuous curve so that every real number

is the x-coordinate of some point on the curve. What about the exponential
function y = 2*? Can we compute a value for y for any real number x? Before
we try, let’s first consider x being any rational number and recall the following
laws of exponents (indices) that were covered in Section 1.3.

Laws of exponents
For b > 0and m, n € Q (rational numbers):

bm - _ 1
Z_=pm—n (bm)m:bmn bO:1 b—m=__

pm.pn = pm+n o

Also, in Section 1.3, we covered the definition of a rational exponent.

Rational exponent
For b > 0and m, n €Z (integers):

b7 = VB = (/D)

From these established facts, we are able to cczlr7npute b* (b > 0) when x

is any rational number. For example, b*7 = b10 represents the 10th root
of b raised to the 47th power i.e. V. Now, we would like to define b*
when x is any real number such as 77 or v2. We know that 7 has a non-
terminating, non-repeating decimal representation that begins 7 =
3.141592 653 589 793 ... Consider the sequence of numbers

b3, b3'1, b3.14, b3.141, b3.1415’ b3.14159’

O To demonstrate just how

quickly y = 2¥increases,
consider what would happen
if you were able to repeatedly
fold a piece of paper in half 50
times. A typical piece of paper
is about five thousandths of

a centimetre thick. Each time
you fold the piece of paper
the thickness of the paper
doubles, so after 50 folds the
thickness of the folded paper
is the height of a stack of 2°°
pieces of paper. The thickness
of the paper after being folded
50 times would be 2°0 X

0.005 cm — which is more than
56 million kilometres (nearly 35
million miles)! Compare that
with the height of a stack of
507 pieces of paper that would
be a meagre 123 cm - only
0.000 125 km.
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Every term in this sequence is defined because each has a rational
exponent. Although it is beyond the scope of this text, it can be proved that
each number in the sequence gets closer and closer to a certain real number
—defined as b™. Similarly, we can define other irrational exponents, thus
proving that the laws of exponents hold for all real exponents. Figure 4.2
shows a sequence of exponential expressions approaching the value of 27.

X 2% (12 s) Your GDC will give an approximate
- .

. RRGE value for 27 to at least 10 significant
- figures, as shown below.

3.1 857418770029
| 7

3141 8.82135330455

3.1415 882441108248

3.14159 8.824 961 595 06

3.141592 8.824973 82906 A

3.1415926 8.824 97749927 Figure 4.2

3.141 59265 882497780512

Graphs of exponential functions

Using this definition of irrational powers, we can now construct a complete
graph of any exponential function f(x) = b* such that b is a number
greater than zero and x is any real number.

Example 1

Graph each exponential function by plotting points.
a) f(x) =3 b) gx) = (3)°
Solution

We can easily compute values for each function for integral values of x
from —3 to 3. Knowing that exponential functions are defined for all real
numbers — not just integers — we can sketch a smooth curve in Figure 4.3,
filling in between the ordered pairs shown in the table.

x | foy=3% | gbo=F)
-3 > 27 -
-2 3 9
-1 3 3
0 1 1
1 3 :
2 9 3
3 27 >
Figure 4.3 B | 123




Remember that in Section 2.4 we established that the graph of y = f(—x)
is obtained by reflecting the graph of y = f(x) in the y-axis. It is clear
from the table and the graph in Figure 4.3 that the graph of function gis a
reflection of function fabout the y-axis. Let’s use some laws of exponents
to show that g(x) = f(—x).

R e

It is useful to point out that both of the graphs, y = 3*and y = (%)x, pass

through the point (0, 1) and have a horizontal asymptote of y = 0 (x-axis).
The same is true for the graph of all exponential functions in the form

y = b*given that b # 1.If b = 1, then y = 1* = 1 and the graph is a
horizontal line rather than a constantly increasing or decreasing curve.

Exponential functions

If b>0and b # 1, the exponential function with base b is the function defined by
fx) = b*

The domain of fis the set of real numbers (x € R) and the range of f is the set of

positive real numbers (y > 0). The graph of f passes through (0, 1), has the x-axis as a

horizontal asymptote, and, depending on the value of the base of the exponential

function b, will either be a continually increasing exponential growth curve or a

continually decreasing exponential decay curve.

YA YA

// © (0'1)\
X

0 x 0
fix) = b*for b > 1 fix) = b for0<b <1
asx — o, f(x) — oo asx — o, flx) — 0
fis an increasing function fis a decreasing function
exponential growth curve exponential decay curve

The graphs of all exponential functions will display a characteristic
growth or decay curve. As we shall see, many natural phenomena exhibit
exponential growth or decay. Also, the graphs of exponential functions
behave asymptotically for either very large positive values of x (decay
curve) or very large negative values of x (growth curve). This means that
there will exist a horizontal line that the graph will approach, but not
intersect, as either x — % or as x — —oo.

Transformations of exponential functions
Recalling from Section 2.4 how the graphs of functions are translated
and reflected, we can efficiently sketch the graph of many exponential
functions.
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Example 2

Using the graph of f(x) = 2% sketch the graph of each function. State the
domain and range for each function and the equation of its horizontal

asymptote.

a) glx)=2+3 b) h(x) =27* c) plx) =—2*
d) r(x) =2*"+4 e) v(x) = 3(2

Solution

a) The graph of g(x) = 2* + 3 can be
obtained by translating the graph of
f(x) = 2*vertically three units up. For
function g, the domain is x is any real
number (x € R) and the range is y > 3.
The horizontal asymptote for gis y = 3.

b) The graph of h(x) = 27*can be
obtained by reflecting the graph
of f(x) = 2*across the x-axis. For
function h, the domain is x € R and
the range is y > 0. The horizontal
asymptote is y = 0 (x-axis).

c¢) The graph of p(x) = —2* can be obtained V4
by reflecting the graph of f(x) = 2* across J ¥y=z
the x-axis. For function p, the domain 5
is x € R and the range is y < 0. The I 2,4
horizontal asymptote is y = 0 (x-axis).




d) The graph of r(x) = 2*~ % can be
obtained by translating the graph of
f(x) = 2*four units to the right. For
function r, the domain is x € R and
the range is y > 0. The horizontal
asymptote is y = 0 (x-axis).

e) The graph of v(x) = 3(2*) can be 5 é’ A
obtained by a vertical stretch of the .
graph of f(x) = 2% by scale factor 3. ] y=3(29
For function v, the domain is x € R s ]
and the range is ¥ > 0. The horizontal -
asymptote is y = 0 (x-axis). 1(2,12)
104
5 y=2
(0,3)] 2,4
-3 ,IZ ,I O_ 1| é :)I’ X

Note that for function p in part ¢) of Example 2 the horizontal asymptote
is an upper bound (i.e. no function value is equal to or greater than y = 0).
Whereas, in parts a), b), d) and e) the horizontal asymptote for each
function is a lower bound (i.e. no function value is equal to or less than
the y-value of the asymptote).

O Exponential growth and decay

Mathematical models of growth and decay

Exponential functions are well suited as a mathematical model for a wide
variety of steadily increasing or decreasing phenomena of many kinds,
including population growth (or decline), investment of money with
compound interest and radioactive decay. Recall from the previous chapter
that the formula for finding terms in a geometric sequence (repeated
multiplication by common ratio r) is an exponential function. Many
instances of growth or decay occur geometrically (repeated multiplication
by a growth or decay factor).
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Count A

12000 +

6000

Radioactive carbon (carbon-
14 or C-14), produced when
nitrogen-14 is bombarded by
cosmic rays in the atmosphere,
drifts down to Earth and is
absorbed from the air by
plants. Animals eat the plants
and take C-14 into their bodies.
Humans in turn take C-14 into
their bodies by eating both
plants and animals. When a
living organism dies, it stops
absorbing C-14, and the C-14
that is already in the object
begins to decay at a slow

but steady rate, reverting to
nitrogen-14. The half-life of
C-14is 5730 years. Half of the
original amount of C-14 in

the organic matter will have
disintegrated after 5730 years;
half of the remaining C-14 will
have been lost after another
5730 years, and so forth. By
measuring the ratio of C-14

to N-14, archaeologists are
able to date organic materials.
However, after about 50 000
years, the amount of C-14
remaining will be so small that
the organic material cannot be
dated reliably.

~Y

Exponential models

Exponential models are equations of the form A(t) = Ayb!, where Ay # 0,6 > 0and b # 1.
A(t) is the amount after time t. A(0) = A,b°® = Ay(1) = Ay, 50 Ay is called the initial
amount or value (often the value at time (t) = 0). If b > 1, then A(?) is an exponential
growth model. [f 0 < b < 1, then A(t) is an exponential decay model. The value of b,
the base of the exponential function, is often called the growth or decay factor.

Example 3

A sample count of bacteria in a culture indicates that the number of bacteria
is doubling every hour. Given that the estimated count at 15:00 was 12 000
bacteria, find the estimated count three hours earlier at 12:00 and write an
exponential growth function for the number of bacteria at any hour .

Solution

Consider the time at 12:00 to be the starting, or initial, time and label it

t = 0 hours. Then the time at 15:00 is = 3. The amount at any time 7 (in
hours) will double after an hour so the growth factor, b, is 2. Therefore,
A(f) = Ay(2)". Knowing that A(3) = 12000, compute Ay: 12000 = Ay(2)3
= 12000 = 84, = A, = 1500

A(t) = 1500(2)°

Radioactive material decays at exponential rates. The half-life is the

amount of time it takes for a given amount of material to decay to half of

its original amount. An exponential function that models decay with a

known value for the half-life, , will be of the form A(¢) = A, (%)k, where

the growth factor is § and k represents the number of half-lives that have

occurred (i.e. the number of times that A, is multiplied by %). If t

represents the amount of time, the number of half-lives will be 1. For

example, if the half-life of a certain material is 25 days and the amount

of time that has passed since measuring the amount A is 75 days, then the

number of half-lives is k = —}tl = % = 3, and the amount of material
S 13 _ Ao

remaining is equal to A, (5) =3

Half-life formula

If a certain initial amount, Ay, of material decays with a half-life of h, the amount of

material that remains at time t is given by the exponential decay model A(t) = AO(%)_;.

The time units (e.g. seconds, hours, years) for h and t must be the same.

Example 4

The half-life of radioactive carbon-14 is approximately 5730 years. How
much of a 10 g sample of carbon-14 remains after 15000 years?

Solution t
The exponential decay model for the carbon-14 is A(f) = AO(%)W.
What remains of 10 g after 15 000 years is given by

1 15000
1)~ 163

A(15000) = 10(



Compound interest

Recall from Chapter 3 that exponential functions occur in calculating
compound interest. If an initial amount of money P, called the principal,
is invested at an interest rate r per time period, then after one time period
the amount of interest is P X rand the total amount of money is

A =P+ Pr=P(1 + r). If the interest is added to the principal, the new
principal is P(1 + r), and the total amount after another time period is
A= P(1 + r)(1 + r) = P(1 + )% In the same way, after a third time
period the amount is A = P(1 + r)°. In general, after k periods the total
amount is A = P(1 + r)k, an exponential function with growth factor

1 + r. For example, if the amount of money in a bank account is earning
interest at a rate of 6.5% per time period, the growth factor is

1 + 0.065 = 1.065. Is it possible for r to be negative? Yes, if an amount
(not just money) is decreasing. For example, if the population of a town is
decreasing by 12% per time period, the decay factoris 1 — 0.12 = 0.88.

For compound interest, if the annual interest rate is r and interest is
compounded (number of times added in) » times per year, then each time
period the interest rate is %, and there are n X ftime periods in t years.

Compound interest formula

The exponential function for calculating the amount of money after t years, A(t), where
Pis the initial amount or principal, the annual interest rate is r and the number of times
interest is compounded per year is n, is given by

AR =P(1+5)"
Example 5

An initial amount of 1000 euros is deposited into an account earning 5;%
interest per year. Find the amounts in the account after eight years if interest
is compounded annually, semi-annually, quarterly, monthly and daily.

Solution

We use the exponential function associated with compound interest with
values of P = 1000, r = 0.0525 and ¢ = 8.

Compounding n Amount after 8 years < Table 4.1
Annual 1 1000(1 + O-O]ﬁ)g = 150583
Semi-annual 2 1000(1 + %325)2‘8) = 151374
Quarterly 4 1000(1 + 0-0225 )‘“8) = 1517.81
Monthly 12 1000(1 + 0'25225)12(8) = 152057
Daily 365 1000(1 + 0-22525)365“” = 1521.92
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Example 6

A new car is purchased for $22 000. If the value of the car decreases
(depreciates) at a rate of approximately 15% per year, what will be the
approximate value of the car to the nearest whole dollar in 4% years?

Solution

The decay rate for the exponential functionis 1 — r=1 — 0.15 = 0.85.In
other words, after each year the car’s value is 85% of what it was one year
before. We use the exponential decay model A(f) = Ayb* with values

Ay = 22000, b= 0.85and ¢ = 4.5.

A(4.5) = 22000(0.85)*> =~ 10588
The value of the car will be approximately $10 588.

Exercise 4.1 and 4.2

For questions 1-3, sketch a graph of the function and state its domain, range,
y-intercept and the equation of its horizontal asymptote.

1 fx)=3"+* 2g(x)=-2"+8 3h(x)=4%—1

4 If a general exponential function is written in the form f(x) = a(b)* ~ ¢ + d, state
the domain, range, y-intercept and the equation of the horizontal asymptote in
terms of the parameters g, b, cand d.

5 Using your GDC and a graph-viewing window with Xmin = —2, Xmax = 2,
Ymin = 0 and Ymax = 4, sketch a graph for each exponential equation on the
same set of axes.
a) y=2% b) y =4 Q y=8
d y=2"~ e) y=47" f) y=87"*

6 Write equations that are equivalent to the equations in 5 d), e) and f) but have an
exponent of positive x rather than negative x.

7 If 1 <a < b, which is steeper: the graph of y = a* or y = 6™?

8 The population of a city triples every 25 years. At time t = 0, the population is
100 000. Write a function for the population P(t) as a function of t. What is the
population after:

a) 50 years b) 70 years c) 100 years?

9 An experiment involves a colony of bacteria in a solution. It is determined that
the number of bacteria doubles approximately every 3 minutes and the initial
number of bacteria at the start of the experiment is 10% Write a function for the
number of bacteria N(t) as a function of t (in minutes). Approximately how many
bacteria are there after:

a) 3 minutes b) 9 minutes c) 27 minutes d) one hour?

10 If $10000 is invested at an annual interest rate of 11%, compounded quarterly,
find the value of the investment after the given number of years.
a) 5years b) 10 years c) 15 years

11 A sum of $5000 is deposited into an investment account that earns interest at a
rate of 9% per year compounded monthly.
a) Write the function A(t) that computes the value of the investment after t years.
b) Use your GDC to sketch a graph of A(t) with values of t on the horizontal axis
ranging from t = 0 years to t = 25 years.
Q) Use the graph on your GDC to determine the minimum number of years (to
the nearest whole year) for this investment to have a value greater than $20000.



12 If $10000 is invested at an annual interest rate of 11% for a period of five years,
find the value of the investment for the following compounding periods.
a) annually b) monthly c) daily d) hourly

13 Imagine a bank account that has the fantastic annual interest rate of 100%. If you
deposit $1 into this account, how much will be in the account exactly one year
later, for the following compounding periods?

a) annually b) monthly Q) daily d) hourly e) every minute

14 Each year for the past eight years, the population of deer in a national park
increases at a steady rate of 3.2% per year. The present population is approximately
248 000.

a) What was the approximate number of deer one year ago?
b) What was the approximate number of deer eight years ago?

15 Radioactive carbon-14 has a half-life of 5730 years. The remains of an animal are
found 20000 years after it died. About what percentage (to 3 significant figures)
of the original amount of carbon-14 (when the animal was alive) would you
expect to find?

16 Once a certain drug enters the bloodstream of a human patient, it has a half-life
of 36 hours. An amount of the drug, Ay, is injected in the bloodstream at 12:00
on Monday. How much of the drug will be in the bloodstream of the patient five
days later at 12:00 on Friday?

17 Why are exponential functions of the form f(x) = b* defined so that b > 07

18 You are offered a highly paid job that lasts for just one month — exactly 30 days.
Which of the following payment plans, | or Il, would give you the largest salary?
How much would you get paid?
| One dollar on the first day of the month, two dollars on the second day, three

dollars on the third day, and so on (getting paid one dollar more each day)
until the end of the 30 days. (You would have a total of $55 after 10 days.)

Il One cent (50.01) on the first day of the month, two cents ($0.02) on the
second day, four cents on the third day, eight cents on the fourth day, and so
on (each day getting paid double from the previous day) until the end of the
30 days. (You would have a total of $10.23 after 10 days.)

O The number e

Recalling the definition of an exponential function f(x) = b*, we recognize
that any positive number can be used as the base b. Given that our number
system is a base 10 system and that a base 2 number system (binary
numbers) has useful applications (e.g. computers), it is understandable
that exponential functions with base 2 or 10 are commonly used for
modelling certain applications. However, the most important base is

an irrational number that is denoted with the letter e. The value of e,
approximated to 6 significant figures, is 2.71 828. The importance of e will
be clearer when we get to calculus topics. The number 77 — another very
useful irrational number — has a natural geometric significance as the ratio
of circumference to diameter for any circle. Although not geometric, the
number e also occurs in a ‘natural’ manner. We can see this by revisiting
compound interest and considering continuous change rather than
incremental change.

O The discovery’of the

constant e is attributed to
Jakob Bernoulli (1654-1705).
He was a member of the
famous Bernoulli family of
distinguished mathematicians,
scientists and philosophers.
This included his brother
Johann (1667-1748), who
made important developments
in calculus, and his nephew
Daniel (1700-1782), who is
most well known for Bernoulli’s
principle in physics. The
constant e is of enormous
mathematical significance
—and it appears ‘naturally’in
many mathematical processes.
Jakob Bernoulli first observed
e when studying sequences
of numbers in connection to
compound interest problems.
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Continuously compounded interest

In the previous section and in Chapter 3, we computed amounts of
money resulting from an initial amount (principal) with interest being
compounded (added in) at discrete intervals (e.g. yearly, monthly, daily).
In the formula that we used, A(f) = P(l + %)”t, n is the number of times
that interest is compounded per year. Instead of adding interest only at
discrete intervals, let’s investigate what happens if we try to add interest
continuously — that is, let the value of n increase without bound (n — ).

Consider investing just $1 at a very generous annual interest rate of 100%.
How much will be in the account at the end of just one year? It depends on
how often the interest is compounded. If it is only added at the end of the
year (n = 1), the account will have $2 at the end of the year. Is it possible
to compound the interest more often to get a one-year balance of $2.50

or of $3.00? We use the compound interest formula with P = $1, r = 1.00
(100%) and ¢ = 1, and compute the amounts for increasing values of .

am=1(1+1

GDC by entering the equation y = (1 + %)x to display a table showing

)n' = (1 + %)n This can be done very efficiently on your

function values of increasing values of x.

Plotl Plot2 Plot3 TABLE SETUP X Y1 X Y1
\Y1E(1+1/X)°X TblStart=1 1 2 1 2
N/ AGBRET Auco pmEp| |1 | iy
\Y3= ndpnt: Auto E¥ SRR D
\%4: Depend: Ask 2
~NYE=
\YG:
\NY7= Y1=2.44140625 Y1=2.61303529022
X Y1 X Y1 X Y1 X Y1
1 2 1 2 1 2 2 2.25
2 2.25 2 2.25 2 2.25 4 2.4414
4 2.4414 4 2.4414 4 2.4414 12 2.613
12 2.613 12 2.613 12 2.613 365 2.7146
365 365 2.7146 365 2.7146 8760 2.7181
8760 | HEEEN 8760 |[2.7181 525600(2.7183
525600 3.15E7
Y1=2.71456748202 Y1=2.71812669063 Y1=2.7182792154 Y1=2.71828247254

As the number of compounding periods during the year increases, the
amount at the end of the year appears to approach a limiting value.

As n — %, the quantity of (1 + %)n approaches the number e. To 13
decimal places, e is approximately 2.718 281 828 4590.

Table 4.2 > Compounding n A(l) = (1 + %)n
Annual 1 2
Semi-annual .2 . 2.25
Quarterly . 4 244140625...
Monthly 12 261303529022. ..
Daily 365 | 271456748202...
Hourly 18760 271812669063. .
Every minute . 525600 . 2.7182792154...

Every second 31536000 | 2.71828247254...




O

O Leonhard Euler (1701-1783) was the dominant mathematical figure of the 18th century and is one of the most influential and
prolific mathematicians of all time. Euler’s collected works fill over 70 large volumes. Nearly every branch of mathematics has

significant theorems that are attributed to Euler.

n
Euler proved mathematically that the limit of (1 I %) as n goes to

infinity is precisely equal to an irrational constant which he labelled X
e. His mathematical writings were influential not just because of the ;‘
content and quantity but also because of Euler's insistence on clarity Ii
and efficient mathematical notation. Euler introduced many of the J_g?
common algebraic notations that we use today. Along with the gg

symbol e for the base of natural logarithms (1727), Euler introduced
f(x) for a function (1734), i for the square root of negative one (1777),

arfor pi, 2 for summation (1755), and many others. His introductory
algebra text, written originally in German (Euler was Swiss), is still available in English translation. Euler spent most of his
working life in Russia and Germany. Switzerland honoured Euler by placing his image on the 10 Swiss franc banknote.

Definition of e ]
. n
e= lim (1+7)
1
n

The definition is read as ‘e equals the limit of (1 F )n as n goes to infinity’.

As the number of compoundings, #, increase without bound, we approach
continuous compounding — where interest is being added continuously. In
the formula for calculating amounts resulting from compound interest,
letting m = %produces

A =P+ 5" = p(1+ )" = P+ )]
Now if n — o and the interest rate r is constant, then % = m — . From the

limit definition of e, we know that if m — o, then (1 + %)m — e
Therefore, for continuous compounding, it follows that

Aw = P(1+ &) = prepr.

This result is part of the reason that e is the best choice for the base of an

exponential function modelling change that occurs continually
(e.g. radioactive decay) rather than in discrete intervals.

Continuous compound interest formula

The exponential function for calculating the amount of money after t years, A(t), for
interest compounded continuously, where P is the initial amount or principal and r is the
annual interest rate, is given by A(t) = Pe’.

Example 7

An initial investment of 1000 euros earns interest at an annual rate of 7%%.
Find the total amount after five years if the interest is compounded

a) quarterly, and b) continuously.

Solution

45
a) A(j) = P(1+5)" = 1000(1 + 292]* = 1449.95 euros

b) A(t) = Pe" = 1000e%9755) = 1454.99 euros
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The natural exponential function and
continuous change

For many applications involving continuous change, the most suitable
choice for a mathematical model is an exponential function with a base
having the value of e.

The natural exponential function

The natural exponential function is the function defined as
f(x) = e*
As with other exponential functions, the domain of the natural exponential function is
the set of all real numbers (x € R), and its range is the set of positive real numbers
(y > 0). The natural exponential function is often referred to as the exponential function.

The formula developed for continuously compounded interest does not
apply only to applications involving adding interest to financial accounts.
It can be used to model growth or decay of a quantity that is changing
geometrically (i.e. repeated multiplication by a constant ratio, or growth/
decay factor) and the change is continuous, or approaching continuous.
Another version of a formula for continuous change, which we will learn
more about in calculus, follows.

Continuous exponential growth/decay

If an initial quantity C (when t = 0) grows or decays continuously at a rate r over a certain
time period, the amount A(t) after t time periods is given by the function A(t) = Ce’’.
If r> 0, the quantity is increasing (growing). If r < 0, the quantity is decreasing (decaying).

Example 8

A programme to reduce the number of rabbits has been taking place in a
certain Australian city park. At the start of the programme there were 230
rabbits. After ¢ years the number of rabbits, R, is modelled by R = 230e™%2",
How many rabbits are there after three years?

Solution

R = 230e™ %23 = 126.2. There are approximately 126 rabbits after three
years of the programme.

1 Use your GDC to graph the curve y = (1 F %)X and the horizontal line y = 2.72.
Use a graph window so that x ranges from 0 to 20 and y ranges from 0 to 3.

Describe the behaviour of the graph of y = (1 I %)x Will it ever intersect the
graph of y = 2.727 Explain.

2 Two different banks, Bank A and Bank B, offer accounts with exactly the same
annual interest rate of 6.85%. However, the account from Bank A has the
interest compounded monthly whereas the account from Bank B compounds
the interest continuously. To decide which bank to open an account with, you




calculate the amount of interest you would earn after three years from an
initial deposit of 500 euros in each bank’s account. It is assumed that you make
no further deposits and no withdrawals during the three years. How much
interest would you earn from each of the accounts? Which bank’s account earns
more —and how much more?

3 Dina wishes to deposit $1000 into an investment account and then withdraw
the total in the account in five years. She has the choice of two different
accounts. Blue Star account: interest is earned at an annual interest rate of 6.13%
compounded weekly (52 weeks in a year). Red Star account: interest is earned at
an annual interest rate of 5.95% compounded continuously. Which investment
account — Blue Star or Red Star — will result in the greatest total at the end of five
years? What is the total after five years for this account? How much more is it
than the total for the other account?

4 Strontium-90 is a radioactive isotope of strontium. Strontium-90 decays according
to the function A(t) = Ce=%923% where t is time in years and Cis the initial amount
of strontium-90 when t = 0. If you have 1 kilogram of strontium-90 to start with,
how much (approximated to 3 significant figures) will you have after:

a) 1year?

b) 10 years?
c) 100 years?
d) 250 years?

5 A radioactive substance decays in such a way that the mass (in kilograms)
remaining after t days is given by the function A(f) = 500347t

a) Find the mass (i.e. initial mass) at time t = 0.
b) What percentage of the initial mass remains after 10 days?

c) On your GDC and then on paper, draw a graph of the function A(t) for
0=<t=50.

d) Use one of your graphs to approximate, to the nearest whole day, the half-life
of the radioactive substance.

6 Which of the given interest rates and compounding periods would provide the
better investment?

a) 815% per year, compounded semi-annually
b) 81;% per year, compounded quarterly
C) 8% per year, compounded continuously

O Logarithmic functions

In Example 7 of the previous section, we used the equation A(f) = 1000¢%7>
to compute the amount of money in an account after ¢ years. Now suppose
we wish to determine how much time, ¢, it takes for the initial investment of
1000 euros to double. To find this we need to solve the following equation for
£:2000 = 1000e%975! = 2 = %0751 The unknown ¢1is in the exponent. At this
point in the book, we do not have an algebraic method to solve such an
equation, but developing the concept of a logarithm will provide us with the
means to do so.
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John Napier (1550-1617) was a Scottish landowner, scholar and mathematician who
‘invented’logarithms — a word he coined which derives from two Greek words: logos

— meaning ratio, and arithmos — meaning number. Logarithms made numerical
calculations much easier in areas such as astronomy, navigation, engineering and
warfare. English mathematician Henry Briggs (1561-1630) came to Scotland to work
with Napier and together they perfected logarithms, which included the idea of using
the base ten. After Napier died in 1617, Briggs took over the work on logarithms and
published a book of tables in 1624. By the second half of the 17th century, the use

of logarithms had spread around the world. They became as popular as electronic
calculators in our time. The great French mathematician Pierre-Simon Laplace (1749—
1827) even suggested that the logarithms of Napier and Briggs doubled the life of
astronomers, because it so greatly reduced the labours of calculation. In fact, without
the invention of logarithms it is difficult to imagine how Kepler and Newton could have
made their great scientific advances. In 1621, an English mathematician and clergyman,
William Oughtred (1574-1660) used logarithms as the basis for the invention of the slide
rule. The slide rule was a very effective calculation tool that remained in common use for over three hundred years.

The inverse of an exponential function

For b > 1, an exponential function with base b is increasing for all x, and
for 0 < b < 1 an exponential function is decreasing for all x. It follows
from this that all exponential functions must be one-to-one. Recall from
Section 2.3 that a one-to-one function passes both a vertical line test and a
horizontal line test. We demonstrated that an inverse function would exist
for any one-to-one function. Therefore, an exponential function with base
b such that b > 0 and b # 1 will have an inverse function, which is given in
the following definition. Also recall from Section 2.3 that the domain of a
function f(x) is the range of its inverse function f~!(x), and, similarly, the
range of f(x) is the domain of f~1(x). The domain and range are switched
around for a function and its inverse.

Definition of a logarithmic function
Forb > 0and b # 1, the logarithmic function y = log, x (read as 'logarithm with base
b of x’) is the inverse of the exponential function with base b.

y = log, x if and only if x = &

The domain of the logarithmic function y = log,, x is the set of positive real numbers
(x > 0) and its range is all real numbers (y € R).

Logarithmic expressions and equations

When evaluating logarithms, note that a logarithm is an exponent. This
means that the value of log, x is the exponent to which b must be raised to
obtain x. For example, log, 8 = 3 because 2 must be raised to the power of
3 to obtain 8 — that is, log, 8 = 3 if and only if 2° = 8.

We can use the definition of a logarithmic function to translate a
logarithmic equation into an exponential equation and vice versa. When
doing this, it is helpful to remember, as the definition stated, that in either
form — logarithmic or exponential — the base is the same.




logarithmic equation exponential equation

exponent exponent
y = log,(x) x = bl;’
baTse bale
Example 9

Find the value of each of the following logarithms.
a) log;49 b) log_:,(é) c) loggv6 d) log, 64 e) log;,0.001

Solution

For each logarithmic expression in a) to e), we set it equal to y and use the
definition of a logarithmic function to obtain an equivalent equation in
exponential form. We then solve for y by applying the logical fact that if
b>0,b# land I’ = brtheny = k.

a) Let y = log; 49 which is equivalent to the exponential equation 7V = 49.
Since 49 = 72, then 77 = 72. Therefore, y = 2 = log; 49 = 2.
1

b) Lety= logs(é) which is equivalent to the exponential equation 5/ =
Sinceé = 571 then 5” = 57 1. Therefore,y = —1 = log5(é) =—1.

c) Let y = logs v/6 which is equivalent to the exponential equation 6’ = V6.
Since V6 = 6%, then 6V = 6%. Therefore, y = % = logs V6 = %

d) Let y = log, 64 which is equivalent to the exponential equation 4’ = 64.
Since 64 = 43, then 47 = 43, Therefore, y = 3 = log, 64 = 3.

e) Let y =1log;, 0.001 which is equivalent to the exponential equation

. 1 1 _ _
Y — -+ 1 __ 3 Y — 3
10” = 0.001. Since 0.001 = 1000~ 10° 1077, then 10 = 107,

Therefore, y = —3 = log;, 0.001 = —3.

Example 10
Find the domain of the function f(x) = log,(4 — x?).

Solution

From the definition of a logarithmic function the domain of
y = log;, xis x > 0, thus for f(x) it follows that
4—x2>0=024+xQ2—x>0=>-2<x<2.

Hence, the domain is —2 < x < 2.

Properties of logarithms

As with all functions and their inverses, their graphs are reflections of
each other over the line y = x. Figure 4.4 illustrates this relationship for
exponential and logarithmic functions, and also confirms the domain and
range for the logarithmic function stated in the previous definition.
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Notice that the points (0, 1) and (1, 0) are mirror images of each other
over the line y = x. This corresponds to the fact that since b = 1

then log;, 1 = 0. Another pair of mirror image points, (1, b) and (b, 1),
highlight the fact that log, b = 1.

Notice also that since the x-axis is a horizontal asymptote of y = b*, the
y-axis is a vertical asymptote of y = log, x.

In Section 2.3, we established that a function fand its inverse function
f~! satisfy the equations

(%) = x for x in the domain of f
fif 1(x) = x for x in the domain of f~!
When applied to f(x) = b*and f~!(x) = log, x, these equations become
log,(b*) = x xER
bog, ¥ = x x>0

Properties of logarithms |

For b > 0and b # 1, the following statements are true:
1. logy1 =0 (becauseb® = 1)
because b' = b)
because b* = b*)

because logy, x is the power to which b must be raised to get x)

(i
2. logyb =1 (
3. logp® =x (
4 (

o bl =x

The logarithmic function with base 10 is called the common logarithmic
function. On calculators and on your GDC, this function is denoted by log.
The value of the expression log;, 1000 is 3 because 10° is 1000. Generally,
for common logarithms (i.e. base 10) we omit writing the base of 10. Hence,
if log is written with no base indicated, it is assumed to have a base of 10.
For example, log 0.01 = —2.

Common logarithm: logp x = log x

As with exponential functions, the most widely used logarithmic function
—and the other logarithmic function supplied on all calculators — is

the logarithmic function with the base of e. This function is known as

the natural logarithmic function and it is the inverse of the natural
exponential function y = e*. The natural logarithmic function is denoted
by the symbol In, and the expression In x is read as ‘the natural logarithm
of X’

Natural logarithm: log,x=1nx

Example11
Evaluate the following expressions:
a) log(l—lo) b) log(v10) c) log1 d) 10ls¥7 e) log50

f) Ine g) 1n(§) h) In1 i) elns i) 1n50



Solution

2) log(%) = log(10™) = —1 b) log(v10) = log(10%) = 1

c) log1 =1log(10° =0 d) 109847 = 47

e) log50=1.699 (using GDC) f) Ine=1

g) m%) = In(e3) = —3 h) In1=In(e% =0

i) elh5=5 j) In50 = 3.912 (using GDC)
Example 12

The diagram shows the graph of the line y = xand two curves. Curve A is
the graph of the equation y = log x. Curve Bis the reflection of curve A in
the line y = x.

a) Write the equation for curve B.

b) Write the coordinates of the y-intercept of curve B.

Solution

a) Curve A is the graph of y = log x, the common logarithm with base
10, which could also be written as y = log;, x. Curve B is the inverse of
y = logj x, since it is the reflection of it in the line y = x. Hence, the
equation for curve B is the exponential equation y = 10*.

b) The y-intercept occurs when x = 0. For curve B, y = 10° = 1. Therefore,
the y-intercept for curve Bis (0, 1).

The logarithmic function with base b is the inverse of the exponential
function with base b. Therefore, it makes sense that the laws of exponents
(Section 1.3) should have corresponding properties involving logarithms.
For example, the exponential property b° = 1 corresponds to the
logarithmic property log;, 1 = 0. We will state and prove three further
important logarithmic properties that correspond to the following three

exponential properties.
Lym-pt=pmtr
ﬂ — }ym—n
2. b b
3. (b =™

Properties of logarithms i

Given M > 0, N > 0 and k is any real number, the following properties are true for
logarithms with b > 0and b # 1.

Property Description
1. logy(MN) = log, M + log, N the log of a product is the sum of the logs of its factors

2. Iogb(%) = log, M — log, N the log of a quotient is the log of the numerator
minus the log of the denominator

3. logyMb) = klog, M the log of a number raised to an exponent is the
exponent times the log of the number

Any of these properties can be applied in either direction.
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@ Hint: The notation f(x)

uses brackets not to indicate
multiplication but to indicate the
argument of the function f. The
symbol fis the name of a function,
not a variable — it is not multiplying
the variable x. Therefore, f(x + ) is
NOT equal to f(x) + f(y). Likewise,
the symbol log is also the name of
a function. Therefore, logy(x + ) is
not equal to logy(x) + log,(y). Other
mistakes to avoid include incorrectly
simplifying quotients or powers of
logarithms. Specifically,

log, x X

1005 ¥ * Iog(y) and

(logy, %) # k(logy, x).

Proofs
Property 1: Let x = log, M and y = log, N.

The corresponding exponential forms of these two equations
are
b*=Mand bV =N

Then, log,(MN) = log,(b*b?) = log,(b**7) = x + y.

It’s given that x = log, M and y = log, N; hence,
x+ y=log, M + log;, N.

Therefore, log,(MN) = log, M + log;, N.

Property 2: Again, let x = log, M and y = log, N=- b*= Mand b’ = N.
Then, logb(%) = logb(%) =logy(b*~7) =x—y.
With x = log, M and y = log;, N, then x — y = log;, M — log;, N.
Therefore, logb(A—Ig) = log, M — log;, N.

Property 3: Let x = log, M = b*= M.
Now, let’s take the logarithm of M* and substitute b* for M:
log,(M¥) = log,[(b)¥] = logy(b*) = kx
It’s given that x = log;, M; hence, kx = klog;, M.
Therefore, log,(M*) = klog;, M.

Example 13

Use the properties of logarithms to write each logarithmic expression
as a sum, difference, and/or constant multiple of simple logarithms (i.e.
logarithms without sums, products, quotients or exponents).

a) log,(8x) b) ln(%) c) log(v7)
d) logh(;—z) ¢) In(5¢?) f) log(1)

Solution
a) log,(8x) = log, 8 + log, x =3 + log, x

b) ln(%) =ln3—Iny
) log(v7) = log(7%) = 2log7
x3\ _ 3 2y —
d) logb(?) = logy(x’) — logy(y*) = 3log, x — 2log, y

e) In(5¢?) =In5+In(e?) =In5+2Ilne=1In5+2(1) =2 + In5
(2 + In5 = 3.609 using GDC)

f) log(m;; n) = log(m + n) — log m

(remember log(m + n) # log m + log n)



Example 14

Write each expression as the logarithm of a single quantity.
a) log6 + log x b) log, 5 + 2log, 3
c) Iny—In4 d) log, 12 — 3 log;, 9
e) logs M + log; N — 2log; P f) log, 80 — log, 5

Solution
a) log6 + log x = log(6x)

b) log, 5 + 2log, 3 = log, 5 + log,(3%) = log, 5 + log, 9 = log,(5-9)
= log, 45

¢) Iny—1In4 = lng)

d) log, 12 — %logb9 = log, 12 — logb(9%) = log; 12 — log,(v/9)
= log, 12 — log; 3 = log, (13—2) = log, 4
e) logs M + logs N — 2logzP = logz;(MN) — log;(P?) = 10&(%])

f) log,80 — log,5 = logz(%) = log, 16 = 4 (because 2* = 16)

Change of base

The answer to part f) of Example 14 was log, 16 which we can compute to

be exactly 4 because we know that 2* = 16. The answer to part ) of Example
13 was 2 + In 5 which we approximated to 3.609 using the natural logarithm
function key (In) on our GDC. But, what if we wanted to compute an
approximate value for log, 45, the answer to part b) of Example 14? Our GDC
can only evaluate common logarithms (base 10) and natural logarithms (base
e). To evaluate logarithmic expressions and graph logarithmic functions to
other bases we need to apply a change of base formula.

Change of base formula

Let g, band x be positive real numbers such that a # 1 and b # 1.Then log, x can be
expressed in terms of logarithms to any other base a as follows:

_ log,x
logyx = 69, b
Proof
y =log,x= b’ = x convert from logarithmic form to exponential
form
log, x = log,(b”) if b7 = x, then log of each with same bases must
be equal
log,x = ylog, b applying the property log;, (M*) = klog, M
log, x . :
y= fog, b divide both sides by log, b
log,x .
log,x = fog,b substitute log, x for y
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To apply the change of base formula, let a = 10 or a = e. Then the
logarithm of any base b can be expressed in terms of either common
logarithms or natural logarithms. For example:

log, x = 28% | Inx
8% Jog2 In2
logs x = log x In x
8 log 5 In5
_logd5 _In45 _ ,
log, 45 g2  In2 5.492 (using GDC)
Example 15

Use the change of base formula and common or natural logarithms to
evaluate each logarithmic expression. Start by making a rough mental
estimate. Approximate your answer to 4 significant figures.

a) log;30

b) logy6

Solution

a)

b)

The value of log; 30 is the power to which 3 is raised to obtain 30.
Because 3° = 27 and 3* = 81, the value of log; 30 is between 3 and 4,
and will be much closer to 3 than 4 — perhaps around 3.1. Using the
change of base formula and common logarithms, we obtain

log 30
log 3
After computing the answer on your GDC, use your GDC to also check
it by raising 3 to the answer and confirming that it gives a result of 30.

log; 30 = ~ 3.096. This agrees well with the mental estimate.

log(30) /1log(3)
3.095903274
37Ans

30
|

The value of logy 6 is the power to which 9 is raised to obtain 6. Because
92 =9 = 3and 9! = 9, the value of logy 6 is between 1 and 1 -
perhaps around 0.75. Using the change of base formula and natural

logarithms, we obtain logy 6 = In6 _ ) 815. This agrees well with the

; In9
mental estimate.

In(6)/1n(9)

.8154648768
9"Ans :




In questions 1-9, express each logarithmic equation as an exponential equation.

1 log, 16 =4 2In1=0 3 log 100 =2
4 10g001 = —2 5 log,343 =3 6 In(l) =1
7 log50=y 8 Inx=12 9 In(x+2) =3

In questions10-18, express each exponential equation as a logarithmic equation.

10 2'0=1024 11 1074 = 0.0001 124 :=1
13 3% = 8] 14 100 =1 15 " =5
16 272 =10.125 17 ¢ =y 18 1071 =y

In questions 19-34, find the exact value of the expression without using your GDC.

19 log, 64 20 log, 64 21 Iogz(%) 22 l0g,(39)
23 logs 1 24 10096 25 |ogg(21_7) 26 Inv?
27 log 1000 28 In(ve) 29 In(é) 30 log 0.001
31 log, 2 32 309,18 33 logs(V/5) 34 100097

In questions 35-42, use a GDC to evaluate the expression, correct to 4 significant

figures.
35 log 50

39 log 25

36 log V3

1 +2\/§)

40 Iog(

37 In50

41 In 100

38 InV3

42 In(100%)

In questions 43-45, find the domain of the logarithmic function.

43 f(x) = log(x — 2)

44 g(x) = In(x?

45 h(x) = log(x) — 2

For questions 46-49, find the equation of the function that is graphed in the form

f(x) = logy, x.
46 v, 47 VA
2 2-
4,1
1 /’(/-)”* il
21 0 > 3 4 5X o A 2 3 4 s5x
1 =1 & =1
_2— _2_
48 ya 49 yA ©,2)
2 2
] //’(Ml_’ 14
=10 4 1567 80101x -19A234567891011%
_‘I- _1_
_2— _2_
y
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In questions 50-55, use properties of logarithms to write each logarithmic
expression as a sum, difference and/or constant multiple of simple logarithms (i.e.
logarithms without sums, products, quotients or exponents).

50 log,(2m) 51 Iog(%)
52 In(/x) =t loga]
54 log[10x(1 + '] 55 '”(ng)

In questions 56-61, write each expression as the logarithm of a single quantity.

56 log(x?) + Iog(%) 57 log;9 + 3 log; 2
58 4Iny —In4 59 log, 12 — 1log, 9
60 logp —logg —logr 61 2In6—1 e Hint: In(?) =1

In questions 62—65, use the change of base formula and common or natural
logarithms to evaluate each logarithmic expression. Approximate your answer to 3
significant figures.

62 log, 1000 63 log; 40 64 |og 40 65 logs(0.75)
2

In questions 66 and 67, use the change of base formula to evaluate f(20).

66 f(x) = log, x 67 f(x) = logs x
68 Use the change of base formula to prove the following statement.
_ 1
log,a = EERE

_ 1
69 Show thatloge = 10

70 The relationship between the number of decibels dB (one variable) and the
intensity / of a sound (in watts per square metre) is given by the formula
_ /
d6 = 1010g(~=Ls
form. Then find the number of decibels of a sound with an intensity of 1074
watts per square metre.

). Use properties of logarithms to write the formula in simpler

Exponential and logarithmic
equations
Solving exponential equations

At the start of the previous section, we wanted to find a way to determine
how much time ¢ (in years) it would take for an investment of 1000 euros
to double, if the investment earns interest at an annual rate of 7.5%. Since
the interest is compounded continuously, we need to solve this equation:
2000 = 1000e%075 = 2 = ¢9975! The equation has the variable ¢in the
exponent. With the properties of logarithms established in the previous
section, we now have a way to algebraically solve such equations. Along
with these properties, we need to apply the logic that if two expressions are
equal then their logarithms must also be equal. That is, if m = n, then

log, m = log, n.



Example 16

Solve the equation for the variable t. Give your answer accurate to 3
significant figures.

2 = e0.075t
Solution
2 = 0075t
In2 = 1n(e®7?)  take natural logarithm of both sides
In2 = 0.075¢ apply the property log,(b*) = xandIne =1
_In2 _
t= 0.075 9.24

With interest compounding continuously at an annual interest rate of
7.5%, it takes about 9.24 years for the investment to double.

This example serves to illustrate a general strategy for solving exponential
equations. To solve an exponential equation, first isolate the exponential
expression and take the logarithm of both sides. Then apply a property of
logarithms so that the variable is no longer in the exponent and it can be
isolated on one side of the equation. By taking the logarithm of both sides
of an exponential equation, we are making use of the inverse relationship
between exponential and logarithmic functions. Symbolically, this method
can be represented as follows — solving for x:

(i) fb=100re: y=b*=log,y=log, b*="log,y = x
(i) If b# 10 ore:

1
y=b"=log,y =log, b*=log,y = xlog, b= x= 08,y

log, b

Example17

Solve for x in the equation 3* ~ 4 = 24. Approximate the answer to 3
significant figures.

Solution
3 4=24
log(3*~ %) =log24  take common logarithm of both sides
(x — 4)log 3 = log 24 apply the property log,(M*) = klog, M

log 24 log 24
= 8 08 # log 8

x—4= fog 3 divide both sides by log 3 [note: log 3
_log24

T log 3

x=6.89 using GDC

Recall Example 10 in Section 3.3 in which we solved an exponential
equation graphically, because we did not yet have the tools to solve it
algebraically. Let’s solve it now using logarithms.

® Hint: We could have used natural
logarithms instead of common
logarithms to solve the equation
in Example 17. Using the same
method but with natural logarithms,
we get

In 2

x=102% L 4~ 680,
In3
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e Hint: Be sure to use brackets

appropriately when entering

B n
expression 2In 1015

Following the rules for order

the

on your GDC.

of

operations, your GDC will give an
incorrect result if entered as shown

here.

In(2) /41n(1.015)
.Q02579

missing bracket

99

S

Example 18

You invested €1000 at 6% compounded quarterly. How long will it take
this investment to increase to €20002

Solution

Using the compound interest formula from Section 4.2, A(f) = P(l + %)m,
with P = €1000, r = 0.06 and n = 4, we need to solve for t when A(t) = 2P.

_ 0.06 \4 .
2P=P(1 + T substitute 2P for A(?)

2 =1.015% divide both sides by P
In2 = In(1.015%) take natural logarithm of both sides

In2 = 4¢ln 1.015 apply the property log,(M*) = klog, M

__In2
41n 1.015 Tn(2)/(41n(1.015
t=11.6389 evaluated on GDC |)) 11.€3888141
The investment will double in 11.64 years — |
about 11 years and 8 months.

Example 19

The bacteria that cause ‘strep throat’ will grow in number at a rate of about
2.3% per minute. To the nearest whole minute, how long will it take for
these bacteria to double in number?

Solution

Let trepresent time in minutes and let A, represent the number of bacteria
att=0.

Using the exponential growth model from Section 4.2, A(f) = Ayb', the
growth factor, b, is 1 + 0.023 = 1.023 giving A(t) = Ay(1.023)". The same
equation would apply to money earning 2.3% annual interest with the
money being added (compounded) once per year rather than once per
minute. So, our mathematical model assumes that the number of bacteria
increase incrementally, with the number increasing by 2.3% at the end of
each minute. To find the doubling time, find the value of tso that

A(t) = 2A,.

2A, = Ay(1.023)! substitute 24, for A(?)

2 =1.023! divide both sides by A,
In2 = In(1.0237) take natural logarithm of both sides
In2 = tln 1.023 apply the property log,(M*) = klog, M
In2
“Intozz 0482

The number of bacteria will double in about 30 minutes.



Alternative solution

What if we assumed continuous growth instead of incremental growth? We
apply the continuous exponential growth model from Section 4.3:

A(t) = Ce with initial amount Cand r = 0.023.

2C = Ce0023¢ substitute 2C for A(?)
2 = 0023t divide both sides by C
In2 = In(e%92%) take natural logarithm of both sides
In2 = 0.023¢ apply the property log,(b*) = x
_In2 _
t= 0.023 30.137

Continuous growth has a slightly shorter doubling time, but rounded to
the nearest minute it also gives an answer of 30 minutes.

Example 20

$1000 is invested in an investment account that earns interest at an annual
rate of 10% compounded monthly. Calculate the minimum number of
years needed for the amount in the account to exceed $4000.

Solution
We use the exponential function associated with compound interest,

A(f) = P(1 + %)™ with P = 1000, r = 0.1 and 1 = 12.

4000 = 1000(1 + 91)"* = 4 = (1.0083)"2 = log 4 = log[(1.0083)'21] =

log 4

log4 = 12t1og(1.0083) = t = ——>——
°8 0g(1.0083) 12 log(1.0083)

=~ 13.92 years

The minimum number of years needed for the account to exceed $4000 is
14 years.

Example 21

A 20 g sample of radioactive iodine decays so that the mass remaining after
t days is given by the equation A(f) = 20e %% where A(t) is measured
in grams. After how many days (to the nearest whole day) is there only 5 g

remaining?
Solution
5= 20e 00t = 2 = ¢ "0 =5 1 0.25 = In(e ) =
In0.25 = —0.087t = = 1—1100(')%357 ~ 15.93

After about 16 days there is only 5 g remaining.
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Solving logarithmic equations

A logarithmic equation is an equation where the variable appears within
the argument of a logarithm. For example, log x = 1 or In x = 4. We

can solve both of these logarithmic equations directly by applying the
definition of a logarithmic function (Section 4.4):

y = log, xif and only if x = b”

The logarithmic equation log x = % is equivalent to the exponential equation
x = 10% = /10, which leads directly to the solution. Likewise, the equation
In x = 4 is equivalent to x = e* = 54.598. Both of these equations could
have been solved by means of another method that makes use of the
following two facts:

(i) ifa= bthen n* = n% and (ii) b&%* = x

To understand (ii) above, remember that a logarithm is an exponent.
The value of log;, x is the exponent to which b is raised to give x. And b is
being raised to this value; hence, the expression b'°%* is equivalent to x.
Therefore, another method for solving the logarithmic equation In x = 4
is to exponentiate both sides, i.e. use the expressions on either side of the
equal sign as exponents for exponential expressions with equal bases. The
base needs to be the base of the logarithm.

Inx=4= e x=¢t= x=¢*

Example 22
Solve for x: log;(2x — 5) =2

Solution
logs(2x — 5) = 2 = 3l08,(2x = 5) = 32
2x—5=9
2x =14
x=7
Example 23

Solve for xin terms of k:  log,(5x) =3 + k

Solution
log,(5x) =3+ k=-218,3% = 237k exponentiate both sides with base = 2
5x =232k law of exponents b+ b"* = b * "used
‘in reverse’
x =32

For some logarithmic equations, it is necessary to first apply a property,
or properties, of logarithms to simplify combinations of logarithmic
expressions before solving.




Example 24
Solve for x:  log, x + log,(10 — x) = 4

Solution
log, x + log,(10 — x) = 4
log,[x (10 — x)] =4 property of logarithms:
log, M + log, N = log,(MN)
10x — x> = 2* changing from logarithmic form to

exponential form
x2—10x+ 16 =0

(x—2)(x—8) =0

x=2o0orx=38

When solving logarithmic equations, you should be careful to always
check if the original equation is a true statement when any solutions are
substituted in for the variable. For Example 24, both of the solutions

x = 2 and x = 8 produce true statements when substituted into the
original equations. Sometimes ‘extra’ (extraneous) invalid solutions are
produced, as illustrated in the next example.

Example 25
Solve for x: In(x—2) +In(2x —3) =2Inx

Solution
In(x —2) + In(2x — 3) = 2Inx
In[(x — 2)(2x — 3)] = In ¥ properties of logarithms

In(2x2 — 7x + 6) = In x2
eln2x* —7x+6) = gln x’ exponentiate both sides
2x2—7x+ 6 = x?
x?—=7x+6=0
(x—6)(x—1)=0 factorize
x=6orx=1

Substituting these two possible solutions indicates that x = 1 is not a valid
solution. The reason is that if you try to substitute 1 for x into the original
equation, we are not able to evaluate the expression In(2x — 3) because we
can only take the logarithm of a positive number. Therefore, x = 6 is the
only solution. x = 1 is an extraneous solution that is not valid.

Solving, or checking the solutions to, a logarithmic equation on your GDC
will help you avoid, or determine, extraneous solutions. To solve Example

25 on your GDGC, a useful approach is to first set the equation equal to zero.

Then graph the expression (after setting it equal to y) and observe where
the graph intersects the x-axis (i.e. y = 0).
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Graphical solution for Example 25:
In(x—2) +In(2x —3) =2Inx=1In(x—2) + In2x— 3) —2Inx=0

Graph the equation y = In(x — 2) + In(2x — 3) — 2 In x on your GDC and
find x-intercepts.

Plotl Plot2 Plot3 WINDOW Y1= ln X-2)+In(2x-3) -2In(X
\YiIE In (X-2) +1n (2 Xmin=-1
X-3)-21n(X) Xmax=10
~Yo= Xscl=1
\Y3= Ymin=-3
\Ya= Ymax=1
\Ys5= Yscl=1
~Ye= Xres=1

The graph only intersects the x-axis at x = 6 and not at x = 1. Hence,
x = 6 is the only valid solution and x = 1 is an extraneous solution.

In questions 1-12, solve for x in the exponential equation. Give x accurate to 3
significant figures.

1107=5 2 4=32 3 86 =¢0
D 2= 5 ()" =22 6 e*=15

7 10*=¢e 8 3%~ 1 =35 9 X+l —=73x—1
10 20'%* = 19 11 62=5 % 12 (1 +%)12x_3

13 $5000 is invested in an account that pays 7.5% interest per year, compounded
quarterly.
a) Find the amount in the account after three years.
b) How long will it take for the money in the account to double? Give the
answer to the nearest quarter of a year.

14 How long will it take for an investment of €500 to triple in value if the interest is
8.5% per year, compounded continuously. Give the answer in number of years
accurate to 3 significant figures.

15 Asingle bacterium begins a colony in a laboratory dish. If the colony doubles
every hour, after how many hours does the colony first have more than one
million bacteria?

16 Find the least number of years for an investment to double if interest is
compounded annually with the following interest rates.
a) 3% b) 6% Q) 9%

17 A new car purchased in 2005 decreases in value by 11% per year. When is the
first year that the car is worth less than one-half of its original value?

18 Uranium-235 is a radioactive substance that has a half-life of 2.7 X 10° years.
a) Find the amount remaining from a 1 g sample after a thousand years.
b) How long will it take a 1 g sample to decompose until its mass is 700
milligrams (i.e. 0.7 g)? Give the answer in years accurate to 3 significant
figures.




19 The stray dog population in a town is growing exponentially with about 18%
more stray dogs each year. In 2008, there are 16 stray dogs.
a) Find the projected population of stray dogs after five years.
b) When is the first year that the number of stray dogs is greater than 70?

20 Initially a water tank contains one thousand litres of water. At the time t = 0
minutes, a tap is opened and water flows out of the tank. The volume, V litres,
which remains in the tank after t minutes is given by the following exponential
function: () = 1000(0.925)".

a) Find the value of V after 10 minutes.

b) Find how long, to the nearest second, it takes for half of the initial amount of
water to flow out of the tank.

c) The tank is considered empty’when only 5% of the water remains. From
when the tap is first opened, how many whole minutes have passed before
the tank can first be considered empty?

21 The mass m kilograms of a radioactive substance at time t days is given by
= =0
a) What is the initial mass?
b) How long does it take for the substance to decay to 0.5 kg? Give the answer
in days accurate to 3 significant figures.

In questions 22-32, solve for x in the logarithmic equation. Give exact answers and
be sure to check for extraneous solutions.

22 log,3x —4) =4 23 log(x — 4) =2

24 Inx=—3 25 logsx =3

26 logvVx+2 =1 27 In(x?) =16

28 log,(x? + 8) = log, x + log, 6 29 logs(x — 8) + logs x = 2
30 log 7 — log(4x + 5) + log2x — 3) =0 31 logs x + logs(x —2) =1

32 log x® = (log x)*

Practice questions

1 Solve for x in each equation.

a) log, 16 = 4 b) log; 27 = x
) loggx = —% d) log(x + 2) + log(x — 2) = log 5
2 Solve for x in each equation.
a) 4 =36 b) 5x 3" =18
0 8% = (%)3 d) 6*=0.25%""
3 Write each expression as the logarithm of a single quantity.
a) log; x% — log, x + 2 log, 3 b) |n3+%|n(x—4)—|nx
4 If log, M = 5.42 and log, N? = 3.78, find the following:
4
a) log, N b) lo N—)
) log, ) gb(m

5 Pablo invested 2000 euros at an annual rate of 6.75%, compounded annually.
a) Find the value of Pablo’s investment after four years. Give your answer to the nearest
euro.
b) How many years will it take for Pablo’s investment to double in value?
c) What should the interest rate be if Pablo’s initial investment were to double in value
in 10 years?
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6 LetlogP = x,logQ = yandlogR = z
P\,
Express log(——— | in terms of x, y and z.
res g o) /
7 $1000 is deposited into a bank account that earns interest at an annual rate of 4%
compounded annually. After three years, the annual interest rate is increased to 7% for
a further four years.
a) How much money is in the account after the seven years?
b) Find what constant rate of annual interest compounded annually would have given
the same amount of money in the seven years. Give your answer as a percentage to
1 decimal place.

8 Express each of the following expressions as simply as possible.
a) log; 5 X logs 2
b) log, 8
C) 4Iog2 6

9 At the start of the year 2000 there were 500 elephants in a game reserve. After tyears,
the number of elephants £ is given by 500(1.032)".
a) Find the number of elephants at the start of 2006.
b) After how many full years will the number of elephants first become greater than
750?

10 The half-life of radioactive radium is 1620 years. What percentage of an initial amount
of radioactive radium will remain after 100 years?

11 A car, when purchased new, had an initial value of $25 000. After one year, the car had
decreased in value to $22 000.
a) After one year, what percentage of the initial value is the new value of the car?
b) If the car continues to decrease in value at the same annual rate, what is the car’s
value after six years? Give your answer to the nearest dollar.
¢) If the car was purchased in 2002 in which year is the car first worth less than $8000?

12 Consider the function f:x — e* = 2.
a) Write down the domain and range of f.
b) Write down the coordinates of any y-intercept, and the equation of any asymptotes
for the graph of f.
c) Find =1,
d) Write down the domain and range of 7=,

13 A population of a certain insect grows at a rate of 6% per month. Initially there are 500
insects.
a) Find the size of the population after four months.
b) Find the size of the population after sixteen months.
c) Let the size of the population after t months be given by the function #(f) = Ayb®.
Write down
(i) the value 4,
(ii) the value of b.
An alternative way of modelling the size of the insect population is given by the
function g(t) = 500eX".
d) By equating £() and g(#), find the value of . Give your answer correct to 5 decimal
places.




14 State the domain for each of the following two functions.

15

a) f(x) = Iog(x)_c 2)
b) g(x) = log x — log(x — 2)

Solve each of the following equations.

9 loQ(x)—C 2) -2
d) log x — log(x — 2) = =2

An experiment is designed to study a certain type of bacteria. The number of bacteria
after tminutes is given by an exponential function of the form A(t) = Ce*’, where
Cand k are constants. At the start of the experiment (when t = 0) there are 5000
bacteria. After 22 minutes, the number of bacteria has increased to 17 000.

a) Find the exact value of Cand an approximate value of k (to 3 significant figures).

b) How many bacteria does the exponential function predict there will be after one
hour?




Vatrix Algebra

Although matrix algebra is an interesting and very useful area of
mathematics, this material is not in the IB Mathematics Standard Level
syllabus. Thus, this chapter can be skipped without any loss of preparation
for the Mathematics Standard Level exams.

However, it is highly recommended that you review Sections 5.1 and 5.2
because of their important applications. In Section 5.3, the information
about using matrix methods to solve a system of equations may be helpful
when working through Section 12.3, even though it is not required for
examination purposes. Remember that in exams, any ‘mathematically
sound’ method will be accepted.

. Introduction

Matrices can be found anywhere and everywhere. If you have ever used a
spreadsheet such as Excel or Lotus, or have ever created a table, then you
have used a matrix. Matrices make the presentation of data understandable
and help make calculations easy to perform. For example, your teacher’s
grade book may look something like this:

Student | Quiz1 | Quiz2 | Test1 Test 2 Homework | Grade
Tim 70 80 86 82 95 A
Maher 89 56 80 60 55 C

If we want to know Tim’s grade on Test 2, we simply follow along the row
‘Tim’ to the column “Test 2’ and find that he received a score of 82. Take a
look at the matrix below about the sale of cameras in a store according to
location and type.

City Donau Neubau Moedling
Nikon 153 98 74 56
Canon 211 120 57 29
Olympus 82 31 12 5
Other 308 242 183 107

If we want to know how many Canon cameras were sold in the Neubau
shop, we follow along the row ‘Canon’ to the column ‘Neubau’ and find
that 57 Canons were sold.



@ Basic definitions

What is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic
expressions or numbers.

Matrix [A] is denoted by

ap apn e ay,\ <
_ ay; ayp e dy, | <
A= . . . . 1M TOWS
Aml A2 Ann) <
n columns
Row iof A has nelementsandis (a;; ap ... aj,).
alj
, | R
Column j of A has m elements and is
amj

The number of rows and columns of the matrix define its size (order). So,
a matrix that has m rows and » columns is said to have an m X n (m by n)
size (order). A matrix A with m X n order (size) is sometimes denoted as
[A],, x ,or [A],,, to show that A is a matrix with m rows and # columns.
(Some authors use [a;] to represent a matrix.) The sales matrix hasa 4 X 4
order. When m = n, the matrix is said to be a square matrix with order #, so
the sales matrix is a square matrix of order 4.

Every entry in the matrix is called an entry or element of the matrix, and
is denoted by a;;, where iis the row number and j is the column number
of that element. The ordered pair (3, ) is also called the address of the
element. So, in the grades matrix example, the entry (2, 4) is 60, the
student Maher’s grade on Test 2, while (2, 4) in the sales matrix example is

29, Canon’s sales in the Moedling shop.

O Arthur Cayley (1821-1895)

Arthur Cayley entered Trinity College, Cambridge in 1838. While still an undergraduate, he

published three papers in the Cambridge Mathematical Journal. Cayley graduated as Senior

Wrangler in 1842 and won the first Smith’s prize. Winning a fellowship enabled him to

teach for four years at Cambridge. He published 28 papers in the Cambridge Mathematical

Journal during these years. Since a fellowship had limited tenure, Cayley needed to find a
profession. He spent 14 years as a lawyer but, although very skilled in his legal specialty,

he always considered it as a means to make money so that he could pursue mathematics.

During these 14 years as a lawyer he published around 250 mathematical papers.

His published work comprises over 900 papers and notes covering several fields of
modern mathematics. The most important aspect of his work was in developing the
algebra of matrices.
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Vectors

A vector is a matrix that has only one row or one column. There are two
types of vectors — row vectors and column vectors.
Row vector

If a matrix has one row, it is called a row vector.
B= (b, b, ... b,) is a row vector with dimension .

B = (12) could represent the position of a point in a plane and is an
example of a row vector of dimension 2.

Column vector
If a matrix has one column, it is called a column vector.
a

Q. . . .
C = | . | is a column vector with dimension #.

Cn

C= (;) again could represent the position of a point in a plane and is an

example of a column vector of dimension 2.

As you see, vectors can be represented by row or column matrices.

Submatrix
If some row(s) and/or column(s) of a matrix A are deleted, the remaining
matrix is called a submatrix of A.

For example, if we are interested in the sales of the three main types of
cameras in the central part of the city, we can represent them with the
following submatrix of the original matrix:

153 98

211 120

82 31

Zero matrix
A matrix for which all entries are equal to zero (a;; = 0 for all i and j).

(0 0), (8 8), (8 8 8 ) are zero matrices.
Diagonal

A square matrix where all entries except the diagonal entries are zero is
called a diagonal matrix.

In a square matrix, the entries 4,1, 5, ..., d,,, are called the diagonal
elements of the matrix. Sometimes the diagonal of the matrix is also called
the principal or main of the matrix.

153 0 O 0
0 120 O 0
0 0 12 0
0 0o 0 107

What is the diagonal in our sales matrix? Here, a;;, = 153, a,, = 120,
a3 = 12 and a4 = 107.



Triangular matrix

You can use a matrix to present data showing distances between different

cities.
Graz Salzburg | Innsbruck Linz A Table 5.1
Vienna 191 298 478 185
Graz 282 461 220
Salzburg 188 135
Innsbruck 320

The data in Table 5.1 can be represented by a triangular matrix (upper
triangular in this case).
191 298 478 185
0 282 461 220

0 0 188 135
0 0 0 320

In a triangular matrix, the entries on one side of its diagonal are all zero.

Definition of a triangular matrix

A triangular matrix is a square matrix with order n for which a; = 0 when i > j (upper
triangular) or, alternatively, when i < j (lower triangular).

@ Matrix operations

When are two matrices considered to be equal?

Two matrices A and B are equal if the size of A and B is the same (number
of rows and columns are the same for A and B) and a;; = b;; for all i and ;.

2 3 2 X oo
For example, (5 7) and (xz ~ 4 7) can only be equal if x = 3 and

x? — 4 = 5, which can only be true if x = 3.

How do you add/subtract two matrices?

Two matrices A and B can be added only if they have the same size. If Cis
the sum of the two matrices, then we write

C=A+B
where ¢; = a;; + by, i.e. we add ‘corresponding’ terms, one by one.

i = i

For example,
2 3+x y=(2+x 3+)/)
5 7 a b/ \5+a 7+0D
Subtraction is done similarly:
(2 3 1)_(x y S)Z(Z—x 3—y —7)
5 7 0 a b 2 5—a 7—-b -2
The operations of addition and subtraction of matrices obey all rules of

addition and subtraction of real numbers. That is,
A+B=B+AA+(B+CO)=A+B +CGA—(B+C) =A—B—C
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How do we multiply a scalar by a matrix?

A scalar is any object that is not a matrix. The multiplication by a scalar is
straightforward. You multiply each term of the matrix by the scalar.

If Ais an m X n matrix, and cis a scalar, the scalar product of cand A is
another matrix B = cA such that every entry b;; of Bis a multiple of its
corresponding A entry, i.e. b;; = ¢ X a;;

It is often convenient to rewrite O
the scalar multiple cA by

factoring ¢ out of every entry in

the matrix. For instance, in the

following example, the scalar 3 Matrix muItipIication
has been factored out of the . . .
matrix At first glance, the following definition may seem unusual. You will see
i later, however, that this definition of the product of two matrices has many
(§ f) = % (; _? ) practical applications.
2 2

Matrix multiplication

If A = (ay) is an m X n matrix and B (b;) is an n X p matrix, the product AB is an m X p
matrix, AB = (c;), where n
G= Za/.kbkj = dpby; + dpby + ... + aiby,
k=1
Foreachi=1,2,...mandj=1,2,....,n

This definition means that each entry with an address 7 in the product
ABis obtained by multiplying the entries in the ith row of A by the
corresponding entries in the jth column of B and then adding the results.
The following shows the process in detail:

by;
— 7 —
Cj = (aﬂ ap ... ain) . = a; bl] + aizsz + ...+ ﬂ,‘nb i

n
by

Example 1

3 =2 1 5
Find C = ABif A = (3 > 2) and B =( 5 8 —4 0].
2 17 -9 10 5 3
Solution
Aisa2 X 3 matrix and Bis a 3 X 4 matrix, so the product must bea 2 X 4
matrix. Every entry in the product is the result of multiplying the entries in
the rows of A and columns of B. For example:

> b, -2
f2 = Zalkbkz =(ay ap ap)|bp|=0GB -5 2)| 8
e bs, 10
=3X(=2)—5X8+2X10=—-26
or
> by 1
@237~ Zazkbka =(ay ayp a3)|bys|=02 1 7)|—4
e bss 5

=2X14+1X(—4)+7X5=33




The operation is repeated eight times to get

—34 —26 33 21

C=AB=1_5, 74 33 31

This product can also be found using a GDC.

[A] [B]
[[-34 -26 33 21..
.[—52 -74 33 31..

For the product of two matrices to be defined, the number of columns in
the first matrix should be the same as the number of rows in the second
matrix.

X >

B = AB
Xp mXp
¢

T L equal J

Lorder of ABJ

Examples — matrix multiplication

o (200 )6

2X3 3X2 2 X2

o560 )

2X2 2X2 2 X2

1 _5 3
50 3 = Tz 7 1 0
Ol=-2 1 2|]-10 -9 -% =0 1 0
7 7
2 1 3 DL s 0 0 1
7 7 7
3X3 3% 3 3X3

As you see from part b) above, the matrix (1 0) does not create a new

0 1

value when it is multiplied by another matrix. This is why it is called the
identity matrix of order 2.

The identity matrix
A diagonal matrix where a; = 1 is called the identity matrix of order n.

|

Examples — identity matrices

a b c\f1 0 0 a b
a)|d e fll0 1 0] =1|d e
g h i/10 0 1 g h

=N
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1 0 0\ f(fa b ¢ a b ¢
b){o0 1 0/|d e fl=1{d e f
0 0 1y\g h i g h i
a b ¢ m\ [l 0 0 O a b ¢ m
o) d e f n 01 0 0 _|(d e f n
g h i pll0O 0O 1 0 g h i p
j k1 q 0 0 01 i k 1 q

Sometimes, the identity matrix is denoted by I,, where # is the order. So, in
parts a) and b) above, the identity is I, and in ¢) it is I,.

Examples — comparing AB with BA

2
a) 2 -1 3)|5]=@0n
4

1X3 3X1 1X1

2 4 =2 6
b) {52 -1 3)=|{10 -5 15

4 8§ —4 12
3X1 1X3 3X3

Notice the difference between the products in parts a) and b). Matrix
multiplication, in general, is not commutative. It is usually not true that
AB = BA.

(3 6 (-2 3 (3 6\ (-2 3\ _( 0 39
LetA—(5 2)andB—( 1 5),thenAB—(5 2)( 1 5)_(—8 25)

but

(=2 3\ (3 6\ _[9 -6
BA—( | 5) (5 2)—(28 16):>AB¢BA

However, if we let

3 6 2 6 3 6)\[2 6 36 24
A=(5 2)andB=(5 1),thenAB=(5 2) (5 1)=(20 32)and

2 6\ (3 6\ (36 24
BA_(S 1) (5 2)_(20 32):>AB_BA

Thus, in general, AB # BA. However, for some matrices A and B, it may
happen that AB = BA.

Example 2

Find the average sales in each of the regions (City, Donau, Neubau and
Moedling), given the following information.

City Donau Neubau | Moedling
Nikon 153 98 74 56
Canon 21 120 57 29
Olympus 82 31 12 5
Other 308 242 183 107

The average selling price for each make of camera is as follows:
Nikon €1200, Canon €1100, Olympus €900, Other €600



Solution

We set up a matrix multiplication in which the individual camera sales are
multiplied by the corresponding price. Since the rows represent the sales of
the different makes of camera, create a row matrix of the different prices
and perform the multiplication.

153 98 74 56

211 120 57 29|_
8 31 12 5 (674300 422700 272100 167800)

308 242 183 107

(1200 1100 900 600)

So, the regions’ sales are:

City Donau Neubau Moedling

Sales 674300 422700 272100 167800

Remember that we are multiplying a 1 X 4 matrix with a 4 X 4 matrix and
hence we geta 1 X 4 matrix.

Exercise 5.1 and 5.2

1 Consider the following matrices

=2 x\,_ f[(x+1 =3
A_(y—1 3)’8_(4 y—2)

a) Evaluate each of the following
() A+B (i) 3A-B.
b) Find x and y such that A = B.
¢) Find x and y such that A + B is a diagonal matrix.
2 Solve for the variables.

d) Find ABand BA.
3 0)\[x) _ 6 2 p\(4 18
25 30)-(d) 06 96
3 The diagram on the right shows the
European cities: Vienna (V/), Munich Frankfurt

major highways connecting some

(M), Frankfurt (F), Stuttgart (S), %

Zurich (Z), Milano (L) and Paris (P). / _Stljtt}. Munich
ris @

a) Write the number of direct Pﬂ
routes between each pair of ./J BVienna
cities into a matrix as started Zurich
below:
v m FS Z L P Milar®
Vio 1 0 0 1 2 O
M
F
S
Z
L
P L J
b) Multiply the matrix from part a) by itself and interpret what it signifies.
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4

10

Consider the following matrices

2 5 7 m x=1 5 y
A=|0 -3 2|8= 3m ,C— 0 —x  y+1

7 0 -1 3 2x+y x—=3y 2y—x
a) FindA + C b) Find AB. c) Find BA.
d) Solveforxand yifA = C e) Find B + C.

—1 m2
f) Solveformif3B+2(—5 2 |= 17 1
1 =1 2m+2 7

Find g, b and ¢ so that the following equation is true:
5.9~ 1T b 3 =1} (=5 5
c+2 3) o 57| 8 c+9
Find x and y such that:
2 =3 fx=11 1=x)_(1 O
=5 /=5 x+ 2y 0 1
Find m and n if
m’—1 m+2)_(3 n+1
5 =2 5 =5
There are two supermarkets in your area. Your shopping list consists of 2 kg of
tomatoes, 500 g of meat and 3 litres of milk. Prices differ between the different
shops, and it is difficult to switch between stores to make certain you are paying
the least amount of money. A better strategy is to check and see where you pay

less on average! The prices of the different items are given below. Which shop
should you go to?

Product Price in shop A | Price in shop B
Tomato €1.66/kg €1.58/kg
Meat €2.55/100 g €2.6/100g
Milk €0.90/litre €0.95/litre

Consider the matrices

[ 2 0, (3 —1 _[=3 5
A—(_5 1),8—(] 4)andC—( 5 7),

a) FindA+ B+ Qand(A+ B) + C.

b) Make a conjecture about the addition of 2 X 2 matrices observed in a) above
and prove it.

c) Find A(BC) and (AB)C.

d) Make a conjecture about the multiplication of 2 x 2 matrices observed in c)
above and prove it.

A company stores and sells air conditioning units, electric heaters and
humidifiers. Row matrix A represents the number of each unit sold last year, and
matrix B represents the profit margin for each unit. Find AB and describe what
the product represents.

€120
A=(235 562 117),B=]| €95
€56



11 Find rand s such that the following equation is true: rA + B = A, where

[z 3 [ -4 -6
A_(S 7)and8_(s—8 —14)'

11
12 LetA—(O 1).

a) Find:
(i) A2 (i) A3 (iii) A% (iv) A"
s 3
LetB = (O 3]‘
b) Find:
(i) B2 (i) B (iii) B* (iv) B"

@ Applications to systems

There is a wide range of applications of matrices in solving systems of
equations. Recall from your algebra that the equation of a straight line can
take the form

ax+ by=c

where a, b and c are constants and x and y are variables. We call this
equation a linear equation in two variables. Similarly, the equation of a
plane in three-dimensional space has the form

ax+by+cz=4d

where a, b, cand d are constants. We call this equation a linear equation in
three variables.

A solution of a linear equation in # variables (in this case two or three) is
an ordered set of real numbers (x, ¥, Z,) so that the equation in question is
satisfied when these values are substituted for the corresponding variables.
For example, the equation

x+2y=4
is satisfied when x = 2 and y = 1. Some other solutions are x = —4 and y = 4,
x=0andy=2,andx= —2and y = 3.

The set of all solutions of a linear equation is its solution set, and when this
set is found, the equation is said to have been solved. To describe the entire
solution set we often use a parametric representation as illustrated in the
following examples.

Example 3

Solve the linear equation x + 2y = 4.

Solution
To find the solution set of an equation in two variables, we solve for one
variable in terms of the other. For instance, if we solve for x, we obtain

x=4—2y.
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In this form, y is free, in the sense that it can take on any real value, while
x is not free, since its value depends on that of y. To represent this solution
set in general terms, we introduce a third variable, for example, ¢, called a
parameter, and by letting y = t we represent the solution set as

x =4 — 21,y = t, tis any real number.

Particular solutions can then be obtained by assigning values to the
parameter t. For instance, t = 1 yields the solution x = 2 and y = 1, and
t = 3 yields the solution x = —2 and y = 3.

Note that the solution set of a linear equation can be represented
parametrically in several ways. For instance, in this example, if we solve
for y in terms of x, the parametric representation would take the following
form

1 .
x=m,y =2 — 5m, mis areal number.

Also, by choosing m = 2, one particular solution would be (x, y) = (2, 1),
and by choosing m = —2, another particular solution would be (-2, 3).

Example 4

Solve the linear equation 3x + 2y — z = 3.

Solution
Choosing x and y as the free variables, we solve for z.
z=3x+2y—3

Letting x = pand y = g, we obtain the parametric representation:
xX=p,y= g z=3x+ 2y — 3, pand g any real numbers.
A particular solution (x, y, z) = (1, 1, 2).

Parametric representation is very important when we study vectors and
lines later on in the book.

Systems of linear equations - refresher

A system of k equations in n variables is a set of k linear equations in the
same 7 variables. For example,

2x+ 3y =3
x—y =4

is a system of two linear equations in two variables, while
x—2y+3z=9
x—3y =4

is a system with two equations and three variables, and
x—2y+3z=9
x—3y =4
2x =5y + 5z =17

is a system with three equations and three variables.



A solution of a system of equations is an ordered set of numbers Xy, ¥,
... which satisfy every equation in the system. For example, (3, —1) is a
solution of

2x+3y =3
x—y=4
Both equations in the system are satisfied when x = 3 and y = —1 are

substituted into the equations. On the contrary, (0, 1) is not a solution of
the system, even though it satisfies the first equation, as it does not satisfy
the second.

As you already know, there are several ways of finding solutions to systems.
In this book, we will consider using matrix methods to solve systems of
equations.

Taking our example above, notice how we can write the system of
equations in matrix form:

2x+3y=3:>2 3\ (x)\_(3
x—y=4"\1 —-1)\y/] \4
The representation of the system of equations in this way enables us to use
matrix operations in solving systems. This matrix equation can be written

2 3V (x\_ (3 _
(1 —1)()/)_(4) = AX=C
where A is the coefficient matrix, X is the variables’ matrix and Cis the
constants’ matrix. However, to solve this equation, the inverse of a matrix

as

has to be defined as the solution of the system in the form
X=A"IC

where A7 ! is the inverse of the matrix A.

Matrix inverse

To solve the equation 2x = 6 for x, we need to multiply both sides of the
equation by %;

%X 2x=%>< 6=x= 3.Thisisso,because%>< 2=2 X%= 1.

1

2
in a similar manner and plays a similar role in solving a matrix equation,

such as AX = C.

is called the multiplicative inverse of 2. The inverse of a matrix is defined

Inverse of a matrix
A square matrix B is the inverse of a square matrix A if AB = BA = [, where [ is the identity
matrix.

The notation A~ is used to denote the inverse of a matrix A. Thus,
B = A~!. Note that only square matrices can have multiplicative inverses.
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Example — matrix inverse

(7 5 [ 3 -5 o .
A= ( 4 3) and B = (_ 4 7) are multiplicative inverses since

5)( 3 —5):(21——20 —35—+35):(1 o]
3/\-4 7/ \1i2—12 —20+21) \o 1

BA::( 3 ——ﬂ(7 5):( 21 — 20 15——15)2(1 0)
—4 7)\a 3)7\-28+28 —20+21/"\0 1

Finding the inverse can also be achieved using a GDC.

~ N

AB=(

[A]-2

%34§5h
Al1[A
(A=Al [[1 0]
[0 111
i

There are a few methods available for finding the inverse of a 2 X 2 matrix.
We will be using the following method only, since the other methods are
beyond the scope of this textbook.

Let A= (Lcl Z) and assume A”! = (; i] and then solve the following

matrix equation for ¢, f, gand hin terms of a, b, cand d.

(a b)(e f):(l O):(ae+ bg af + bh]:(l 0)

c dj\g h/ V0 1 ce+dg of+dh] \0 1

Now we can set up two systems to solve for the required variables, i.e.:

(ae+ bg af+ bh):(l 0)

cet+dg cf+dh/ \0 1
ae+bg=1} dae+dbg=d} _d . —c
cet+dg=0 :>bce+bdg=0 “ad— b8 T ad— be
af + bh = 0) daf+dbh=0} R _a
o+ dh=1]" bef+ bdh=b O Y X e
d —b
-1 — |ad — bc ad— bc a__ 1 [ d —)
Therefore, A —c a orA T be (—c )
ad — bc ad — bc
Example 5

Find the inverse of (;1 ;)



Solution
Herea=4,b=7,c=3and d = 5,50 ad — bc = —1. Thus,

gl 4203
ad — bc\—¢ a —1\-3 4 3 —4)

/Al
(4 7]
g [3 511
LR,
m

The determinant

b
The number ad — bcis called the determinant of the 2 X 2 matrix A = (Z d )

The notation we will use for this number is det A, so det A = ad — bc.

The determinant plays an important role in determining whether a matrix
has an inverse or not.

If the determinant is zero, i.e. ad — bc = 0, the matrix does not have an inverse. If a
matrix has no inverse, it is called a singular matrix; if it is invertible, it is called non-
singular.

Example 6
Solve the system of equations.
2x+ 3y =3
x—y=4
Solution

In matrix form, the system can be written as

i )G)=E)-)=G ) G

x\_ 1 (—1 —3\(3

=(;)=35 736

x\_ 1 (—15\_( 3

=)=
(Al [C] (3]
[-11]
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Solving systems of equations in three variables follows similar procedures.
However, finding the inverse of a 3 X 3 matrix will be delegated to the
GDC at this level. As in the case of a 2 X 2 matrix, the existence of an
inverse for a 3 X 3 matrix depends on the value of its determinant.

The determinant of a 3 X 3 matrix A can be achieved in one of two ways:

a b c
.LA=|d e f):>detA=a(ei—fh)—b(di—fg)+c(dh—eg)
g h i
For example, if
5 1 —4
A=12 —3 —5]:>detA=5(18+10)—1(—12+35) —4(4 +21) =17
7 2 —6
A
(] [[5 1 -4]
[2 -3 -5]
[7 2 -6]1]
det ([A]) 17
[ |

2. A practical method is to use a ‘special’ set up as follows:

a b cla b
N W 7 : -
detA=|d e f|d e = aei+ bfg+ cdh— gec— hfa— idb
£ X N
g h i|g h
NN N

This is done by ‘copying’ the first two columns and adding them to the
end of the matrix, multiplying down the main diagonals and adding the
products, and then multiplying up the second diagonals and subtracting
them from the previous product, as shown. In the example above:

S5pq lo==4l[5 .1

i
2 -3 -5[2 -3
e
7 2 =67 2
NN N

= 5(=3)(—=6) +1(=5)(7) + (—4)-2-2 - 7(-3)(—4) —2(=5) 5 —(-6) - 2-1
=90 —-35-16—84 + 50 + 12
=152 — 135
=17
In fact, this arrangement is simply a reordering of the calculations
involved in the previous method.

Example 7

Solve the system of equations.
S5x+y—4z=5
2x—=3y—5z=2
7x+2y—6z=5



Solution

We write this system in matrix form:

£ 2

Since det A # 0, we can find the solution in the same way we did for the
2 X 2 matrix, i.e.

5 1 —4\[x\ (5\ [x\ [5 1 —4\'[5
2 -3 =s5||yl=l2|=|y|=l2 -3 -5| [2
7 2 —6)\z)] \s] \z) \7 2 —¢/ \s

Using a GDC: [A]1[C]

[[3

[-2
[2

—a

]

To check your work, you can store the answer matrix as D and then
substitute the values into the system:

5 1 —4 3 15—2—- 8 5
2 —3 —5||-2|=| 6+6—10|=|2],0r
7 2 —6 2 21 —4—12 5

(a] [D]

1 Consider the matrix M which satisfies the matrix equation

3 7 2
(2 )= 3)
a) Write out the inverse ofmatrix( i ;)

b) Hence, write M as a product of two matrices.
¢) Evaluate M.
d) Now consider the equation containing the matrix N:
3 7\ _[2 1
N(—4 —9) B (3 5)

(i) Write N as a product of two matrices.
(i) Evaluate N.

e) Write a short paragraph describing your work on this problem.




Matrix Algebra

2 Find the matrix £ in the following equation:

636 96 )

2 —3 1
3 a) Prove that the matrix A = | 1 1 —3|should have an inverse.
3 =2 =3

b) Write out A=".

c) Hence, solve the system of equations:
2Xx—3y+z =42
x+ty—3z =-11
3x—2y—3z=29

4 Find the inverse for each matrix.

V3o

o 2 2

M=l
2 2

0)8 = a 1
a+?2 % + 1
5 For what values of x is the following matrix singular?

[ x+1 3
A_(3x—1 ><+3)

2 -1 4 —2 -3 4
6 Findnsuchthat [2n 2 0 | istheinverseof | 1 2 =2
2 1 4n 3n 2 —=5n

7 Consider the two matrices A = (g 2) and B = (2 1 )

=3 3 5
a) Find X such that XA = B.
b) Find Y such that AY = B.
Q) Is X = Y? Explain.

8 Consider the two matrices

2 0 -1 3.1 1
P=|3 5 4| ando=|4 0 O]
10 —1 12 -1

a) Find PQand QP
b) Find =1, Q= ", P7'Q~ ", QP71 (PQ)~', and (QP) .
c) Write a few sentences about your observations in parts a) and b).

Practice questions

1 Solve each system of equations using matrix methods.
Xx+y+3z=3 x+2y—z=1
a)s x+y+6z=3 b) y—2z=-3
Xx+2y+4z=7 3Xx—y+22=6




2 For what value(s) of a, if any, is each of the following matrices singular? For all other

values, find the inverse.
3 a
b
)(Za az)

a) ( a a)
—a a
3a 2a 7 _
9 (5 %) iy
3IfA= (32X * ]and det A = 2, find the possible values of x.
x—1
4 let A= (/3( 31 ) where kE Z.

a) Find AZin terms of .

b) If AZis equal to (133 130), find the value of k.

) Using the value of k found in b), find A=" and hence solve the system of equations:
2x+3y =13
3x—y=3

5 Mand Nare two 2 X 2 matrices. M = (; ;)and MN = (g z) Find .

6 /= ((1) ?)is the identity matrix for 2 X 2 matrix multiplication. Consider matrix

A= (;1 _;) Find the possible values of the real number k such that the matrix
(A — ki) is singular.

7 Recall that for two matrices A and B to be inverses of each other AB = |, where /is the
identity matrix.
a) Find the values of m and n so that matrices A and B are inverses of each other:

I =i m 2 0 1
A= 2 =3 2 |, B=|2 n 0
—1 2 -2 T =1 =1

b) Hence, for the values of m and n found above, solve the system of equations:
x—y+tz=4
2x—3y+2z2=9
—x+2y—2z=-7
8 Find all values of m so that the following system is inconsistent.
(m—4)x+3y=17
=2+ (m+ 1)y =12

9 Matrices A and B are given such that AB = BA. Find the values of m and n.

(026
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1 -2 2
10 Find x such that the matrix (1 +2x —2 0 |issingular.
=1 2 1

11 Consider the matrices A, Band C which are given by

2 1 m n 2 9
a=(p o= o= 3)

Find the values of m, n, pand g such that AB + B = C.

12 Consider the matrix M = (6‘33: 1 f) a#0.
i —1
a) Flnd./.\/l . . 5 -
b) Additionally, you are given a = 1, N = 5 3 and P = 5 7

Solve the equation XM + N = Pfor X.

- Q

1 3
13 Consider the matrix M=| 2 2
—-a 2

N

a) Find asuch that det M = 7.
b) Write down the inverse of M for the values of a found above.

¢) Hence, solve the system of equations:
x+3y—z=7
2x+2y+z=35
X+2y—-2z2=14

14 IfA—( L 3) and det A = 14, find x.
—4x x

a 2
15 LetM=(2 _1),Wherea€Z.

a) Find M2 in terms of a.
. 5 4\ .
b) If M?is equal to _a c , find the value of a.

Using this value of g, find =" and hence solve the system of equations:

—Xx+2y=-3
x—y=3

, ,h_52d_112),d

16 Two matrices are given, where A = 5 o)an BA = A48 . Find B.

17 The matrices A, Band Xare given, where

3 1 4 8 a b\ .
A_(—S 6),3—(0 _3)andX—(C d),wnha,b,c,dE[RE.

Find the values of a, b, cand d such that AX + X = B.




5
18 A=
A(7

_?) isa2 X 2 matrix.

a) Write out A=,
b) (i) If XA+ B = B, where B, Cand Xare 2 X 2 matrices, express X in terms of
A= Band C.

R (R (-5 0
(ii) F|ndX|fB—(5 _z)andC—(_8 7).

19 GenA=(? Nands=(" ?),
c 1 d ¢

a) write out A + B
b) find AB.

1T =3 1
20 a) Write out the inverse of the matrix A = > 2 1]

b) Hence, solve the system of simultaneous equations:

X—3y+z=1
X+ 2y—2z=2
X—5y+3z=3

21 The two matrices C and D are given, where

-2 4 5 2
C—( | 7)andD—(_1 a)'
The matrix Qs given such that 3Q = 2C—D.
a) Find Q.

b) Find CD.
¢) Find D~

Questions 14-18, 20-21: © International Baccalaureate Organization




Irigonometric Functions
and eguations

Assessment statements

3.1 The circle: radian measure of angles; length of an arc; area of a sector.
3.2 Definition of cos 8 and sin @ in terms of the unit circle.

Definition of tan @ as siné
cos 6

Exact values of trigonometric ratios of 0, %T 7ZT 7§T 777 and their multiples.

3.3 Pythagorean identity cos? 6 + sin2 § = 1.
Double angle indentities for sine and cosine.
The relationship between trigonometric ratios.

3.4 The circular functions sinx, cosx and tanx: their domains and ranges;
amplitude; their periodic nature; and their graphs.
Composite functions of the form f(x) = asin(b(x + ¢)) + d.
Transformations of the graphs of trigonometric functions.

3.5 Solution of trigonometric functions in a finite interval, both graphically
and analytically.
Equations leading to quadratic equations in, sinx, cosx or tanx

. Introduction

The word trigonometry comes from two Greek words, trigonon and

metron, meaning ‘triangle measurement’. Trigonometry developed out of
the use and study of triangles, in surveying, navigation, architecture and
astronomy, to find relationships between lengths of sides of triangles and
measurement of angles. As a result, trigonometric functions were initially
defined as functions of angles — that is, functions with angle measurements
as their domains. With the development of calculus in the seventeenth
century and the growth of knowledge in the sciences, the application

of trigonometric functions grew to include a wide variety of periodic
(repetitive) phenomena such as wave motion, vibrating strings, oscillating
pendulums, alternating electrical current and biological cycles. These
applications of trigonometric functions require their domains to be sets of
real numbers without reference to angles or triangles. Hence, trigonometry
can be approached from two different perspectives — functions of angles,
or functions of real numbers. The first perspective is the focus of the next
chapter where trigonometric functions will be defined in terms of the
ratios of sides of a right triangle. The second perspective is the focus of
this chapter where trigonometric functions will be defined in terms of a




real number that is the length of an arc along the unit circle. While it is

possible to define trigonometric functions in these two different ways, they

assign the same value (interpreted as an angle, an arc length, or simply a
real number) to a particular real number. Although this chapter will not
refer much to triangles, it seems fitting to begin by looking at angles and
arc lengths — geometric objects indispensable to the two different ways of
viewing trigonometry.

@ Angles, circles, arcs and sectors

Angles

An angle in a plane is made by rotating a ray about its endpoint, called the
vertex of the angle. The starting position of the ray is called the initial side
and the position of the ray after rotation is called the terminal side of the
angle (Figure 6.1). An angle having its vertex at the origin and its initial side
lying on the positive x-axis is said to be in standard position (Figure 6.2). A
positive angle is produced when a ray is rotated in an anticlockwise
direction, and a negative angle when a ray is rotated in a clockwise
direction. Two angles in standard position that have the same terminal sides
— regardless of the direction or number of rotations — are called coterminal
angles. Greek letters are often used to represent angles, and the direction of
rotation is indicated by an arc with an arrow at its endpoint. The x- and
y-axes divide the coordinate plane into four quadrants (numbered with
Roman numerals). Figure 6.3 shows a positive angle « (alpha) and a
negative angle 3 (beta) that are coterminal in quadrant III.

YA YA

II I

terminal \ a/,_\
side /

0 initial X \ -' 3
side /
| 5
III IV
' A
Figure 6.2 Standard position of Figure 6.3 Coterminal angles.

an angle.

Measuring angles: degree measure and radian
measure

Perhaps the most natural unit for measuring large angles is the revolution.
For example, most cars have an instrument (a tachometer) that indicates the
number of revolutions per minute (rpm) at which the engine is operating.
However, to measure smaller angles, we need a smaller unit. A common unit

terminal
side

Flgure 6.1

initial
side




A
Figure 6.4 Different circles

with the same central angle
subtending different arcs, but the
ratio of arc length to radius remains
constant.

Trigonometric Functions and Equations

for measuring angles is the degree, of which there are 360 in one revolution.
Hence, the unit of one degree (1°) is defined to be 1/360 of one anticlockwise
revolution about the vertex.

O The convention of having 360 degrees in one revolution can be traced back around
4000 years to ancient Babylonian civilizations. The number system most widely used
today is a base 10, or decimal, system. Babylonian mathematics used a base 60, or
sexagesimal, number system. Although 60 may seem to be an awkward number to
have as a base, it does have certain advantages. It is the smallest number that has 2,
3,4, 5 and 6 as factors — and it also has factors of 10, 12, 15, 20 and 30. But why 360
degrees? We're not certain but it may have to do with the Babylonians assigning 60
divisions to each angle in an equilateral triangle and exactly six equilateral triangles
can be arranged around a single point. That makes 6 X 60 = 360 equal divisions in
one full revolution. There are few numbers as small as 360 that have so many different
factors. This makes the degree a useful unit for dividing one revolution into an equal
number of parts. 120 degrees is % of a revolution, 90 degrees is % of a revolution, 60
degrees is 3, 45 degrees is 3, and so on.

There is another method of measuring angles that is more natural. Instead
of dividing a full revolution into an arbitrary number of equal divisions
(e.g. 360), consider an angle that has its vertex at the centre of a circle

(a central angle) and subtends (or intercepts) a part of the circle, called

an arc of the circle. Figure 6.4 shows three circles with radii of different
lengths (r; < r, < r;) and the same central angle 6 (theta) subtending
(intercepting) the arc lengths s;, s, and s;. Regardless of the size of the circle
(i.e. length of the radius), the ratio of arc length (s) to radius (r) for a

. . . - s; S S
given circle will be constant. For the angle 6 in Figure 6.4, r—i = r—; = r—z
Because this ratio is an arc length divided by another length (radius), it is

just an ordinary real number and has no units. 5

Minor and major arcs

If a central angle is less than 180°, the subtended arc is referred to as a minor arc. If a
central angle is greater than 180°, the subtended arc is referred to as a major arc.

The ratio % indicates how many radius lengths, 7 fit into the length of the
arc s. For example, if ; = 2, the length of s is equal to two radius lengths.



This accounts for the name radian and leads to the following definition.

Radian measure

One radian is the measure of a central angle 0 of a circle that subtends an arc s of the
circle that is exactly the same length as the radius r of the circle. That is, when 6 = 1
radian, arc length = radius.

A
¢ 6 = 1 radian
A\s =y
r S
v\
0 r X

The unit circle

When an angle is measured in radians it makes sense to draw it, or
visualize it, so that it is in standard position. It follows that the angle will

be a central angle of a circle whose centre is at the origin, as shown above.

As Figure 6.4 illustrated, it makes no difference what size circle is used.
The most practical circle to use is the circle with a radius of one unit so
the radian measure of an angle will simply be equal to the length of the
subtended arc.

Radian measure: 6 = —i If r=1,then 6 = f =

The circle with a radius of one unit and centre at the origin (0, 0) is called
the unit circle (Figure 6.5). The equation for the unit circle is x> + y? = 1.
Because the circumference of a circle with radius ris 27, a central angle
of one full anticlockwise revolution (360°) subtends an arc on the unit
circle equal to 27 units. Hence, if an angle has a degree measure of 360°,
its radian measure is exactly 2. It follows that an angle of 180° has a
radian measure of exactly 7. This fact can be used to convert between
degree measure and radian measure, and vice versa.

Conversion between degrees and radians
Because 180° = arradians, 1° = % radians, and 1 radian = @ An angle with a radian

measure of 1 has a degree measure of approximately 57.3° (to 3 significant figures).

Example 1

The angles of 30° and 45°, and their multiples, are often encountered in
trigonometry. Convert 30° and 45° to radian measure and sketch the
corresponding arc on the unit circle. Use these results to convert 60° and
90° to radian measure.

O When the measure of an angle

is, for example, 5 radians,

the word radians’ does not
indicate units (as when

writing centimetres, seconds
or degrees) but indicates the
method of angle measurement.
If the measure of an angle

is in units of degrees, we

must indicate this by word or
symbol. For example,

0 = 5 degreesor 6 = 5°.
However, when radian measure
is used it is customary to

write no units or symbol. For
example, a central angle 6

that subtends an arc equal to
five radius lengths (radians) is
simply given as 6 = 5.

A

=¥

(-1,0 0 (1,0)

0, =1

Figure 6.5 The unit circle.




e Hint: [tis very helpful to be able
to quickly recall the results from

Example 1:
o _ M gco _ T zro_ T
30° = 6,45 —4,60 3

and 90° = g Of course, not all

angles are multiples of 30° or 45°
when expressed in degrees, and not
all angles are multiples of%r or 7ZT
when expressed in radians.
However, these ‘special angles
often appear in problems and
applications. Knowing these four
facts can help you to quickly
convert mentally between degrees
and radians for many common
angles. For example, to convert
225°to radians, apply the fact that

225° = 5(45°). Since 45° = g, then
o — 5(45%) = g(T\ = 57
225 —5(45)—5(4) - And

another example, convert Mg

6
degrees: HTTT =11 (%T)

=11(30°) = 330~

e Hint: All GDCs will have a
degree mode and a radian mode.
Before doing any calculations with
angles on your GDC, be certain
that the mode setting for angle
measurement is set correctly.
Although you may be more familiar
with degree measure, as you
progress further in mathematics

- and especially in calculus - radian
measure is far more useful.

Trigonometric Functions and Equations

Solution

(Note that the ‘degree’ units cancel.)

YA
©,1)
/ 30°=¢
o _ of T _ 30° _ T .
30%=30 (180°)_ 180°7 ~ 6 HIO)! = J(1,0)x
©0,—1)
YA
©,1)
/‘ 45° =7
o = o T = 450 :E \ >
457 =45 (180°) 180°7 ~ 4 “*”\i 00X
©0,—1)

Since 60° = 2(30°) and 30° = 7, then 60° = 2(%) = 3. Similarly,
o — o o — 7_T o — E — E
90° = 2(45°) and 45° = 7., 50 90 2(4) 5

Example 2

a) Convert the following radian measures to degrees. Express exactly, if
possible. Otherwise, express accurate to 3 significant figures.

(i) 4777 (i) —3777 (iii) 5 (iv) 1.38

b) Convert the following degree measures to radians. Express exactly, if
possible. Otherwise, express accurate to 3 significant figures.

(i) 135° (i) —150° (i) 175° (iv) 10°
Solution
2 () %77 = 4(F) = 4(60°) = 240°
1 37T = —é = —é ) = — °
(ii) -5 = 2(7'r) 2(180 ) 270

(iii) 5(18%) ~ 286.479° ~ 286°

180°
T

(iv) 1.38( ) ~ 79.068° =~ 79.1°



b) (i) 135°=3(45°) =3(7) = 3777

(i) —150° = —5(30°) = —5(%7)

(iii) 175°(1 g)) ~ 3.0543 ~ 3.05

180°

(iv) 10°( m )z 0.17453 =~ 0.175

5

6

Because 27 is approximately 6.28 (3 significant figures), there are a little
more than six radius lengths in one revolution, as shown in Figure 6.6.

A
2 radians ‘

=

r

3 radians?{

r\d{dian

r

\,

\

r

4 radhs\r

Arc length

For any angle 6, its radian measure is given by § = % Simple rearrangement
of this formula leads to another formula for computing arc length.

Arc length

For a circle of radius r, a central angle 6 subtends an arc of the circle of length s given by

>
X

;;radians

e

r
5 radians

s=r6

where @is in radian measure.

Example 3

A circle has a radius of 10 cm. Find the length of the arc of the circle

subtended by a central angle of 150°.

Solution

To use the formula s = 76, we must first convert 150°

to radian measure.

150° = 150°( ™ )

180° 180

_ 1507 _

5
6

Given that the radius, r, is 10 cm, substituting into

the formula gives

5_77') _ 25m
3

s=r0:>s=10(6

The length of the arc is approximately 26.18 cm (4 significant figures).

~26.17994

Note that the units of the product r6 are the same as the units of r because

in radian measure 6 has no units.

< Figure 6.6
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Example 4

The diagram shows a circle of centre O with
radius r = 6 cm. Angle AOB subtends the minor
arc AB such that the length of the arc is 10 cm.
Find the measure of angle AOB in degrees to 3
significant figures.

Solution

From the arc length formula, s = r6, we can state that

6= ; Remember that the result for 8 will be in radian measure. Therefore,
angle AOB = %O = gor 1.6 radians. Now, we convert to degrees: g(uzg )

~ 95.492 97°. The degree measure of angle AOB is approximately 95.5°.

Geometry of a circle

It is helpful to recall some fundamental properties of a circle (Figure 6.7).

Figure 6.7
v
]
The angle inscribed in a The line segment from the centre A tangent to a circle is perpendicular to the
semicircle is a right angle. perpendicular to a chord also radius drawn to the point of tangency.

bisects the chord. .
If two tangents share an external point,

the distances from the external point
to the point of tangency are equal.

Sector of a circle

A sector of a circle is the region bounded by an arc of the circle and the

two sides of a central angle (Figure 6.8). The ratio of the area of a sector

A to the area of the circle (7rr?) is equal to the ratio of the length of the
subtended arc to the circumference of the circle (27rr). If sis the arc length
and A is the area of the sector, we can write the following proportion:

(%)

2
% = 2%77 Solving for A gives A = %ﬂ: = %rs. From the formula for
T
& arc length we have s = r, with 6 the radian measure of the central angle.
Figure 6.8 Sector of a circle. Substituting 76 for s gives the area of a sector to be A = %rs = %r( rf) = %rZG.

This result makes sense because, if the sector is the entire circle, 0 = 2

and area A = %TZO = %rZ(Z ar) = arr?, which is the formula for the area of a

circle.




Area of a sector
In a circle of radius r, the area of a sector with a central angle 8 measured in radians is
1,2
A==r
5 0

Example 5

A circle of radius 9 cm has a sector whose central angle has radian measure
2?77. Find the exact values of the following: a) the length of the arc subtended
by the central angle, and b) the area of the sector.

Solution
a)5=r0:>5=9(2777)=677 “
. e Hint: The formula for arc length,
The length of the arc is exactly 677 cm. s = 16, and the formula for areagofa
_ 1.
b) A= Lag_a= 1(9)2(2_77) =270 sector, A = 5r* 6, are true only when
2 2 3 fis in radians.

The area of the sector is exactly 277 cm?.

In questions 1-9, find the exact radian measure of the angle given in degree measure.

1 60° 2 150° 3 —2/0°
4 36° 5 135° 6 50°
7 —45° 8 400° 9 —480°

In questions 10-18, find the degree measure of the angle given in radian measure. If
possible, express exactly. Otherwise, express accurate to 3 significant figures.

37 A
10 =T 11 > 12 2
/T . S5
13 5 14 —25 15 =
T 8
16 ] 17 157 18 3

In questions 19-24, the measure of an angle in standard position is given. Find two
angles — one positive and one negative — that are coterminal with the given angle. If
no units are given, assume the angle is in radian measure.

19 30° 20 37” 21 175°
_m Bl
22 -1 23 2 24 325

In questions 25 and 26, find the length of the arc s in the figure.
25 s 26

N
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27 Find the angle 6in the figure in both
radian measure and degree measure.

28 Find the radius r of the circle in the figure. 5

—_
N
_

In questions 29 and 30, find the area of the sector in each figure.
29 30

o

31 Anarc of length 60 cm subtends a central angle e in a circle of radius 20 cm.
Find the measure of ain both degrees and radians, approximate to 3 significant
figures.

32 Find the length of an arc that subtends a central angle with radian measure of 2
in a circle of radius 16 cm.

33 The area of a sector of a circle with a central angle of 60° is 24 cm?. Find the
radius of the circle.

The unit circle and trigonometric
functions

Several important functions can be described by mapping the coordinates
of points on the real number line onto the points of the unit circle. Recall
from the previous section that the unit circle has its centre at (0, 0), it has a
radius of one unit and its equation is x> + y? = 1.

A wrapping function: the real number line and
the unit circle

Suppose that the real number line is tangent to the unit circle at the point
(1, 0) — and that zero on the number line matches with (1, 0) on the circle,
as shown in Figure 6.9. Because of the properties of circles, the real number
line in this position will be perpendicular to the x-axis. The scales on the
number line and the x- and y-axes need to be the same. Imagine that the
real number line is flexible like a string and can wrap around the circle,
with zero on the number line remaining fixed to the point (1, 0) on the




unit circle. When the top portion of the string moves along the circle, the tA
wrapping is anticlockwise (# > 0), and when the bottom portion of the 34
string moves along the circle, the wrapping is clockwise (< 0). As the VA

string wraps around the unit circle, each real number ¢ on the string is -2

mapped onto a point (x, ) on the circle. Hence, the real number line from ;

0 to t makes an arc of length ¢ starting on the circle at (1, 0) and ending at ) D 5
the point (x, y) on the circle. For example, since the circumference of the N
unit circle is 2, the number ¢ = 27 will be wrapped anticlockwise around Y . (OB
the circle to the point (1, 0). Similarly, the number t = 7 will be wrapped K‘ /
anticlockwise halfway around the circle to the point (—1, 0) on the circle. —11
And the number t = — %T will be wrapped clockwise one-quarter of the
way around the circle to the point (0, —1) on the circle. Note that each —27
number fon the real number line is mapped (corresponds) to exactly one

_3

point on the unit circle, thereby satisfying the definition of a function
(Section 2.1) — consequently this mapping is called a wrapping function.

A
Before we leave our mental picture of the string (representing the real Figure 6.9
number line) wrapping around the unit circle, consider any pair of points

on the string that are exactly 277 units from each other. Let these two points
represent the real numbers #; and #; + 2. Because the circumference of

the unit circle is 27, these two numbers will be mapped to the same point

on the unit circle. Furthermore, consider the infinite number of points

whose distance from ¢, is any integer multiple of 27, i.e. t; + k- 27, kE Z,

and again all of these numbers will be mapped to the same point on the

unit circle. Consequently, the wrapping function is not a one-to-one

function as defined in Section 2.3. Output for the function (points on the

unit circle) are unchanged by the addition of any integer multiple of 27 to

any input value (a real number). Functions that behave in such a repetitive

(or cyclic) manner are called periodic. We are surrounded by periodic
functions. A few examples
include: the average daily
temperature variation during
the year; sunrise and the day
of the year; animal populations
over many years; the height of
tides and the position of the
Moon; and your height above

Definition of a periodic function

A function f such that f(x) = f(x + p) is a periodic function. If p is the least positive
constant for which f(x) = f(x + p) is true, p is called the period of the function.

Trigonometric functions

From our discussions about functions in Chapter 2, it is customary for a ground when riding a Ferris
function to have a domain (input) and range (output) that are sets having WEee: and the rotation of the
whneel.

individual numbers as elements. We use the individual coordinates x and
y of the points on the unit circle to define a certain set of functions called
trigonometric functions. For this course, we define three trigonometric
functions: the sine function, the cosine function and the tangent function.
The names of these functions are often abbreviated in writing (but not
speaking) as sin, cos and tan, respectively. When the real number #is
wrapped to a point (x, y) on the unit circle, the value of the y-coordinate is
assigned to the sine function; the x-coordinate is assigned to the cosine

function; and the ratio of the two coordinates % is assigned to the tangent
function.

173




@ Hint: When sine, cosine and
tangent are defined as circular
functions based on the unit

circle, radian measure is used.

The values for the domain of the
sine and cosine functions are real
numbers that are arc lengths on
the unit circle. As we know from the
previous section, the arc length on
the unit circle subtends an angle
in standard position, whose radian
measure is equivalent to the arc
length (see definition box above).
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The trigonometric functions: sine, cosine and tangent

Let t be any real number and (x, y) a point on the unit circle to which tis mapped. Then
the function definitions are:

o _ _sint _JY
sint=y Cost=Xx tanr——cost—x,xaﬁo
YA
1I I
. (cost,sint) .
sine+ t sine+
cosine— cosine+
tangent— tangent+
T
R
0 (1,0) X
sine— sine—
cosine— cosine+
tangent+ tangent—
III v

On the unit circle:x = cost, y = sin t.

Signs of the trigonometric functions depend on the quadrant where the arc t
terminates.

Because the definitions for the sine, cosine and tangent functions given here
do not refer to triangles or angles, but rather to a real number representing
an arc length on the unit circle, the name circular functions is also given

to them. In fact, from this chapter’s perspective that these functions are
functions of real numbers rather than functions of angles, ‘circular’ is a more
appropriate adjective than ‘trigonometric’. Nevertheless, trigonometric is
the more common label and will be used throughout the book.

Let’s use the definitions for these three trigonometric, or circular, functions
to evaluate them for some ‘easy’ values of .

Example 6

Evaluate the sine, cosine and tangent functions for the following values of t.
a) t=0 b) r=7% o t=m

d) t= 3777 e) t=21

Solution

Evaluating the sin, cos and tan functions for any value of ¢ involves finding
the coordinates of the point on the unit circle where the arc of length ¢ will
‘wrap to’ (or terminate), starting at the point (1, 0). It is useful to remember
that an arc of length 7 is equal to one-half of the circumference of the unit
circle. All of the values for tin this example are positive, so the arc length
will wrap along the unit circle in an anticlockwise direction.

a) An arc of length t = 0 has no length so it ‘terminates’ at the point (1, 0).
Therefore, by definition

sin0 =y=0
cos) =x=1
y_0
X 1

tan0 =Z=-=0



b) An arc of length ¢ = g is equivalent to YA < Figure 6.10
one-quarter of the circumference of

the unit circle (Figure 6.10), so it t=3
terminates at the point (0, 1). By
definition:
sinT =y=1 >
2 7 0 (1,0) X
7T = =
cos5 = x 0
tan = = y_1 which is undefined
2 X 0
¢) An arc of length t = 7 is equivalent VA < Figure 6.11

to one-half of the circumference of
the unit circle (Figure 6.11), so it
terminates at the point (—1, 0). By
definition:

sinm=y=0 =10 0
cosm=x=—1
tan7‘r=)§/=_il=0

d) An arc of length ¢ = %‘T is
equivalent to three-quarters of the
circumference of the unit circle
(Figure 6.12), so it terminates at the
point (0, —1).

=
e
<y

<
»

< Figure 6.12

2

2NV N

XY

(1,0

LN

By definition:

sin 3m_  _ 1
3 y
37 _

cosT—x—O 01
30 _ )V _ —1 S

tan 5 =% which is undefined

e) Anarcof length t = 27 is V4 < Figure 6.13

equivalent to the circumference of ¢ =9
the unit circle (Figure 6.13), so it /
terminates at the point (1, 0). By
definition:
sin2r=y=0
cos2m=x=1 27
tan2m = %; = % =0

=
=)
<y

(4N s
\J/
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Domain and range of trigonometric functions

Because every real number f corresponds to exactly one point on the unit

circle, the domain for both the sine function and the cosine function is the

set of all real numbers. From Example 6, parts b) and d), where the value
VA of tan fis undefined, it is clear that the domain for the tangent function is

not all real numbers. Given the definitions tan t = %, x # 0,and cos t = x,

it is clear that any value of ¢ that corresponds to a point on the unit circle
with an x-coordinate equal to zero cannot be in the domain of the tangent
function (division by zero is undefined). From Example 6, we can see that

cost=0fort= %T, t= 3%Tandthenfor t= 5777-,21ndfor t= 7777-,andso
on. What about negative values for ¢ (arc lengths wrapped in a clockwise

a
3 2
same as when t = 777, as shown in Figure 6.14. And cos t = 0 also for

direction)? Clearly an arc length of t = —=- will terminate at (0, —1), the

Figure 6.14
_ 3w ,_ _5m .
t= —5 t= —5 and so on. Therefore, the domain of the tangent
function is all real numbers but not including the infinite set of numbers
T
>
To determine the range of the sine and cosine functions,

consider the unit circle shown in Figure 6.15. Because

generated by adding any integer multiple of 7 to
YA

sin t = yand cos t = xand (x, y) is on the unit circle, we
can see that —1 < y < 1 and —1 < x < 1. Therefore,
—1=<sint=<1land —1 < cos t < 1. The range for the
tangent function will not be bounded as for sine and
cosine. As t approaches values where x = cos t = 0, the

r—lsy=<1

(=1,0)

value of% = tan f will become very large — either negative

or positive, depending on which quadrant #is in.

Therefore, —o < tan t < o5 or, in other words, tan ¢ can be

E v ” any real number.
—1s=sx=1
A
Figure 6.15 Domain and range of sine, cosine and tangent functions
f(t) = sint domain: {t:t € R} range: —1 < f() <1
f(t) = cost  domain:{t:t € R} range: —1 <f(t) <1
f(t) =tant  domain: {r:re R,t#%+k7r,k€2} range: f(t) ER

From our previous discussion of periodic functions, we can conclude that
all three of these trigonometric functions are periodic. Given that the sine
and cosine functions are generated directly from the wrapping function,
the period of each of these functions is 2. That is,

sint=sin(t+ k*2m),k €EZ and cost=cos(t + k-2m), k €EZ

Initial evidence from Example 6 indicates that the period of the tangent
function is 7. That is,

tant=tan(t+ k- m),k €7

We will establish these results graphically in the next section. Also note that
since these functions are periodic then they are not one-to-one functions.




Evaluating trigonometric functions

In Example 6, the unit circle was divided into four equal arcs corresponding
T 3T
b 2 b b 2
functions for further values of ¢ that would correspond to dividing the
unit circle into eight equal arcs. Let’s also make use of the symmetry of the
unit circle. That is, any points on the unit circle which are reflections about
the x-axis will have the same x-coordinate (same value of cosine), and any
points on the unit circle which are reflections about the y-axis will have the

to t values of 0 and 2. Let’s evaluate the sine, cosine and tangent

(=x,¥,)

same y-coordinate (same value of sine), as shown in Figure 6.16.

Example 7

Evaluate the sine, cosine and tangent functions for t = 727, and then use that

3w t—5—77andt=7—77.

result to evaluate the same functions for t = T t= 7

. A
Solution Figure 6.16

m
4
(1, 0), it will terminate at a point (x;, ;) in quadrant I that is equidistant

from (1, 0) and (0, 1). Since the line y = x is a line of symmetry for the
unit circle, (x;, y;) is on this line. Hence, the point (x;, y;) is the point of
intersection of the unit circle x> + y% = 1 with the line y = x. Let’s find the
coordinates of the intersection point by solving this pair of simultaneous
equations by substituting x for y into the equation x? + y? = 1.

When an arc of length t = - is wrapped along the unit circle starting at

x2+y2=1:>x2+x2=1:>2x2=1:>x2=%:>x=i\/%ZiL

Rationalising the denominator gives x = ig and, since the

point is in the first quadrant, x = @ Given that the point is on
the line y = x then y = g . Therefore, the arc of length ¢ = ?ZT

V2 V2
272
the symmetry of the unit circle, we can also determine the points

will terminate at the point ( on the unit circle. Using

37, 3T o dr=1T

ERA" 4
terminate. These arcs and the coordinates of their terminal points
are given in Figure 6.17.

on the unit circle where arcs of length ¢t =

Using the coordinates of these points, we can now evaluate the

. . . . Figure 6.17
trigonometric functions for t = 727, %T, STW and 7777 By definition:
V2
t=T sinT= :Q cosLT:x:Q tanLT:Z:z:l
¢ Sy =)V =5 4 2 4 x A
2
A
t:3_7TS S_W-:y:Q COS3_:x:—\/§ tan37T—y_ 2 :—1
45 2 4 - Ay 2
2
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_V2
t=¥:sin¥=y=—gcos%=x=—g tan¥=§——22=1
2
2
t=7—77:sin7—7-r=y= Qcosﬁzng an’T=2=—2 - _
4 4 2 4 2 4 x V2
2

We can use a method similar to that of Example 7 to find the point on the
T
6
Then we can again apply symmetry about the line y = x and the y- and
x-axes to find points on the circle corresponding to arcs whose lengths are
%T, e.g. 2?77 =1 dm _ 2777, etc. Arcs whose lengths are multiples

of %T and %T correspond to eight equally spaced points and twelve equally

unit circle where an arc of length t = - terminates in the first quadrant.

multiples of

spaced points, respectively, around the unit circle, as shown in Figures
6.18 and 6.19. The coordinates of these points give us the sine, cosine and
tangent values for common values of .

YA YA

0,—1) (0,-1)

A A
Figure 6.18 Arc lengths that are multiples of 7ZT Figure 6.19 Arc lengths that are multiples ofg
divide the unit circle into eight equally spaced divide the unit circle into twelve equally spaced
points. points.

You will find it very helpful to know from memory the exact values of sine

and cosine for numbers that are multiples of %T and %T . Use the unit circle

diagrams shown in Figures 6.18 and 6.19 as a guide to help you do this and
to visualize the location of the terminal points of different arc lengths. With
the symmetry of the unit circle and a point’s location in the coordinate plane
telling us the sign of x and y (see definition box page 174), we only need to
remember the sine and cosine of common values of ¢in the first quadrant
and on the positive x- and y-axes. These are organized in Table 6.1.

178




. 4 Table 6.1 The sine, cosine and

t sint cost tant
tangent of common values of t.

0 0 1 0
7 1 V3 V3
3 2 3
T V2 V2 .
4 2 2

V3 1
T vo i
3 2 2 V3
757 1 0 undefined

If tis not a multiple of one of these common values, the values of the
trigonometric functions for that number can be found using your GDC.

Example 8

Find the following function values. Find the exact value, if possible.
Otherwise, find the approximate value accurate to 3 significant figures.

a) sin2—77 b) coss—ﬂ- ) tanM d) sin13—77 e) cos3.75
3 4 6 6
Solution
a) The terminal point for 2%7 is in the second quadrant and is the
reflection in the y-axis of the terminal point for %T, whose
y-coordinate is ? Therefore, sin 2777 = ?
A
Figure 6.20
b) Eluy is in the third quadrant. Hence, its x-coordinate and Yy

4
cosine must be negative. All of the odd multiples of 7ZT

have terminal points with x- and y-coordinates of =

5 V2

Therefore, oS~ = — 5.

2

A
Figure 6.21
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ya c) %T is in the fourth quadrant, so its tangent will be negative. Its

terminal point is the reflection in the x-axis of the terminal point for %T,

whose coordinates are <\2F ;) Therefore,
tan LT — 7 _ 2 _1_ .3

6 X & /3 3"

2
d) BTW is more than one revolution. Because 1367T = E + 2 and the

period of the sine function is 277 [i.e. sint = sin(t + k- 27), k€ Z] then
s1n13—77 =sinZ = 1

6 6 2

e) An arc of length 3.75 will have its terminal point in the third quadrant

since T~ 3.14 and— ~ 4.71, meaning 7 < 3.75 < 7 Hence,

A
Figure 6.22 cos 3.75 must be negative. To evaluate cos 3.75 you must use your

GDC. Be certain that it is set to radian mode. To an accuracy of 3
significant figures, cos 3.75 = —0.821.

NOSUN SCI  ENG cos (3.75)
¥l 0123456789 -.8205593573

SET CLOCK NEVIEVI ANV}

In questions 1-9, tis the length of an arc on the unit circle starting from (1, 0)

a) State the quadrant in which the terminal point of the arc lies. b) Find the
coordinates of the terminal point (x, y) on the unit circle. Give exact values for x and
y, if possible. Otherwise, approximate values to 3 significant figures.

=7 — o7 =/
1:=2 2 =2 3 =2
_3m - -_m
4= 5 (=2 6 t=-7
7 t=—1 8 r=—5777 9 =352

In questions 10-18, state the exact value (if possible) of the sine, cosine and tangent
of the given real number.

™ Sw _ 3w
107 127 12 -2
137 14 —4?77 15 37

37 _Jm —
16 27 17 -2 18 1= 1257

In questions 19-22, use the periodic properties of the sine and cosine functions to
find the exact value of sinx and cos x.

_ 3w _lom
19 x A 20 x 3
21 x =127 22 x=1.7




@ Graphs of trigonometric functions

The graph of a function provides a useful visual image of its behaviour. For
example, from the previous section we know that trigonometric functions
are periodic, i.e. their values repeat in a regular manner. The graphs of the

trigonometric functions should provide a picture of this periodic behaviour. sin(2.53)
In thi " a1 h the si . dt t functi d . .5741721484
n this section, we will graph the sine, cosine and tangent functions an sin (2.53+2m)

transformations of the sine and cosine functions. . .5741721484
NI EE ISP

Graphs of the sine and cosine functions '

Since the period of the sine function is 2, we know that two values of ¢ A

(domain) that differ by 27 (e.g. %T and BT”T in Example 8) will produce The period of y = sin x is 2.

the same value for y (range). This means that any portion of the graph of X

y = sin t with a t-interval of length 27 (called one period or cycle of the (cos t, sin 1) 4

graph) will repeat. Remember that the domain of the sine function is all real .

numbers, so one period of the graph of y = sin ¢ will repeat indefinitely in the

positive and negative direction. Therefore, in order to construct a complete "

graph of y = sint, we need to graph just one period of the function, that is, y (1, 0)x

from ¢ = 0 to t = 277, and then repeat the pattern in both directions.

We know from the previous section that sin ¢ is the y-coordinate of the

terminal point on the unit circle corresponding to the real number ¢ A

(Figure 6.23). In order to generate one period of the graph of y = sint, we Figure 6.23

need to record the y-coordinates of a point on the unit circle and the

corresponding value of ¢ as the point travels anticlockwise one revolution,

Figure 6.24 Graph of the sine
function for 0 < t < 27 generated

. . . . from a point travelling along the
6.24 illustrates this process in a sequence of diagrams. unit circle.

v

starting from the point (1, 0). These values are then plotted on a graph
with ¢ on the horizontal axis and y (i.e. sin #) on the vertical axis. Figure

h
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Trigonometric Functions and Equations

As the point (cos t, sin t) travels along the unit circle, the x-coordinate (i.e.
cos t) goes through the same cycle of values as the y-coordinate (sin £) does.
The only difference is that the x-coordinate begins at a different value in the
cycle—when t = 0, y = 0, but x = 1. The result is that the graph of y = cost

is the exact same shape as y = sin ¢ but it has been shifted to the left T units.
The graph of y = costfor 0 < ¢ < 27 is shown in Figure 6.25.

Figure 6.25 | 4 i
! '\ / y=cost
¢ z 7 i P
2 2
_‘I .

The convention is to use the letter x to denote the variable in the domain
of the function. Hence, we will use the letter x rather than ¢ and write the
trigonometric functions as y = sinx, y = cosxand y = tan x.

Because the period for both the sine function and cosine function is 2,
to graph y = sinx and y = cos x for wider intervals of x we simply need to
repeat the shape of the graph that we generated from the unit circle for

0 < x < 2 (Figures 6.24 and 6.25). Figure 6.26 shows the graphs of
y=sinxand y = cosxfor —47 < x < 4.

Figure 6.26 | 4 A
14
—4n :3)5\/27[ - 7(1) | Uﬂ 3Mﬂ X

y =sinx

. T . N . W . VP 0

—14

y = Cosx

Aside from their periodic behaviour, these graphs reveal further properties

of the graphs of y = sinxand y = cosx. Note that the sine function has a
T
2
valueof y= —1forallx= — KLU 211, k € Z. The cosine function has

a maximum value of y = 1 for all x = k- 27, k€ Z, and has a minimum
value of y = —1forall x = 7 + k-2, k€ Z. This also confirms — as
established in the previous section — that both functions have a domain of all
real numbers and arange of —1 < y=< 1.

maximum value of y = 1 for all x = =- + k- 27, k€ Z, and has a minimum

Closer inspection of the graphs, in Figure 6.26, shows that the graph of
y = sinx has rotational symmetry about the origin — that is, it can be rotated
one-half of a revolution about (0, 0) and it remains the same. This graph

symmetry can be expressed with the identity: sin(—x) = —sinx. For example,
in(—7\ = —Lond —lsin(T\] = = L] = —1L - -
sm( G ) 3 and [sm( G )] [2] 3 . A function that is




symmetric about the origin is called an odd function. The graph of y = cosx
has line symmetry in the y-axis — that is, it can be reflected in the line x = 0
and it remains the same. This graph symmetry can be expressed with the

identity: cos(—x) = cosx. For example, cos(— %T ) = ? and cos% = ?

A function that is symmetric about the y-axis is called an even function.

0Odd and even functions
A function is odd if, for each x in the domain of f, f(—x) = —f(x).

The graph of an odd function is symmetric with respect to the origin (rotational
symmetry).

A function is even if, for each x in the domain of f, f(—x) = f(x).

The graph of an even function is symmetric with respect to the y-axis (line symmetry).

Graphs of transformations of the sine and
cosine functions

In Section 2.4, we learned how to transform the graph of a function

by horizontal and vertical translations, by reflections in the coordinate
axes, and by stretching and shrinking — both horizontal and vertical. The
following is a review of these transformations.

Review of transformations of graphs of functions
Assume that a, b, c and d are real numbers.

To obtain the graph of: From the graph of y = f(x):

y=1fx)+d Translate d units up for d > 0, d units down for d < 0.
y=Fflx+q Translate ¢ units left for ¢ > 0, ¢ units right for ¢ < 0.
y=—fx) Reflect in the x-axis.

y = af(x) Vertical stretch (@ > 1) or shrink (0 < a < 1) of factor a.
y=f(—x) Reflect in the y-axis.

y = f(bx) Horizontal stretch (0 < b < 1) or shrink (b > 1) offactor%.

In this section, we will look at the composition of sine and cosine functions
of the form

f(x) = asin[b(x+ ¢)] + d and f(x) = acos[b(x+ ¢)] +d

Example 9
Sketch the graph of each function on the interval —7 < x < 3.
a) f(x) =2cosx

b) g(x) = cosx+ 3

¢) h(x) =2cosx+ 3

d) p(x) = %sinx -2
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Solution

a) Since a = 2, the graph of y = 2 cos x is obtained by vertically stretching
the graph of y = cos x by a factor of 2.

YA
- 0 7 2 37 X
11 y = cosx
—24 y = 2cosx

b) Since d = 3, the graph of y = cosx + 3 is obtained by translating the
graph of y = cos x three units up.

VA

¢) We can obtain the graph of y = 2cosx + 3 by combining both of the
transformations to the graph of y = cos x performed in parts a) and b)
—namely, a vertical stretch of factor 2 and a translation 3 units up.

VA

y=2cosx+3

>

X

y = cosx




d) The graph of y = %sinx — 2 can be obtained by vertically shrinking the
graph of y = sinx by a factor of % and then translating it down 2 units.

YA

1 m: sinx

In part a), the graph of y = 2 cos x has many of the same properties as the
graph of y = cosx: same period, and the maximum and minimum values
occur at the same values of x. However, the graph ranges between —2 and

2 instead of —1 and 1. This difference is best described by referring to the
amplitude of each graph. The amplitude of y = cosxis 1 and the amplitude
of y = 2cosxis 2. The amplitude of a sine or cosine graph is not always
equal to its maximum value. In part b), the amplitude of y = cosx + 3

is 1; in part c), the amplitude of y = 2 cosx + 3 is 2; and the amplitude

of y = %sinx —2is % For all three of these, the graphs oscillate about

the horizontal line y = d. How high and low the graph oscillates with
respect to the mid-line, y = d, is the graph’s amplitude. With respect to the
general form y = af(x), changing the amplitude is equivalent to a vertical
stretching or shrinking. Thus, we can give a more precise definition of
amplitude in terms of the parameter a.

Amplitude of the graph of sine and cosine functions
The graphs of f(x) = asin[b(x + ¢)] + d and f(x) = acos[b(x + c)] + d have an
amplitude equal to |a|.

Example 10

Waves are produced in a long tank of water. di
The depth of the water, d metres, at tseconds, ;|
at a fixed location in the tank, is modelled by 11

the function d(f) = M cos(%t) + K,where M 4 | (8,9.7)
and K are positive constants. On the right is o4
the graph of d(¢) for 0 < ¢t < 12 indicating g
that the point (2, 5.1) is a minimum and the -
point (8, 9.7) is a maximum. 6e
a) Find the value of K and the value of M. 5 201
b) After t = 0, find the first time when the 41
depth of the water is 9.7 metres. =
2 ol
‘] -
0 T T T T T T T T T T T T >
0 1 2 3 4 5 6 7 8 9 10 11 12t
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Solution

a) The constant K is equivalent to the constant d in the general form of a
cosine function: f(x) = acos[b(x + ¢)]| + d. To find the value of K and
the equation of the horizontal mid-line, y = K, find the average of

9.7 +5.1 _
f =74,

The constant M is equivalent to the constant a whose absolute value is

the function’s maximum and minimum value: K =

the amplitude. The amplitude is the difference between the function’s
maximum value and the mid-line: |M| = 9.7 — 7.4 = 2.3. Thus,

M =23o0r M= —2.3.Try M = 2.3 by evaluating the function at one
of the known values:

d(2) = 23c0s(3(2)) + 7.4 = 23cosm + 7.4 = 2.3(~1) + 74 =5.1.
This agrees with the point (2, 5.1) on the graph. Therefore, M = 2.3.

b) Maximum values of the function (d(8) = 9.7) occur at values of ¢ that
differ by a value equal to the period. From the graph, we can see that
the difference in ¢ values from the minimum (2, 5.1) to the maximum
(8,9.7) is equivalent to one-and-a-half periods. Therefore, the period is
4 and the first time after t = 0 at which d = 9.7 is t = 4.

All four of the functions in Example 9 had the same period of 27, but the

function in Example 10 had a period of 4. Because y = sin x completes

one period from x = 0 to x = 2, it follows that y = sin bx completes one

period from bx = 0 to bx = 2. This implies that y = sin bx completes one
2

period from x = 0 to x = 5 This agrees with the period for the function
dit) =23 cos(%t) + 7.4 in Example 10: period = 27;7 = %T = 2T777% = 4.

Note that the change in amplitude and vertical translation had no effect
on the period. We should also expect that a horizontal translation of a sine
or cosine curve should not affect the period. The next example looks at a
function that is horizontally translated (shifted) and has a period different
from 2.

Example11

Sketch the function f(x) = sin(2x + ZTW )

Solution

To determine how to transform the graph of y = sinx to obtain the graph

of y = sin<2x + 2%7 ), we need to make sure the function is written in the

form f(x) = asin[b(x + ¢)] + d. Clearly, a = 1 and d = 0, but we will need

to factorize a 2 from the expression 2x + ZTW to get f(x) = sin [2 (x + %T ) ]

According to our general transformations from Chapter 2, we expect that
the graph of fis obtained by first performing a horizontal shrinking of

factor % to the graph of y = sin x and then a translation to the left %T units

(see Section 2.4).




The graphs below illustrate the two-stage sequence of transforming

y=sinxtoy= sin[Z(x + g)]

1~ |
/N =sinx

_H\A ;I\/n SIH *
-1

y
1 = = .
/\ i \/\ />\ sy =sinx
Ts ~ >
LRV B VR v Vo
~- XA LT

y = sin(2x)

Note: A horizontal translation of a sine or cosine curve is often referred to

as a phase shift. The equations y = sin(x + %T ) and y = sin [2 (x + %T )]
7_T.

both underwent a phase shift of — 3

Period and horizontal translation (phase shift) of sine and cosine functions
Given that b'is a positive real number, y = asin[b(x + )] + dand y = acos[bx+ )] + d

have a period of%r and a horizontal translation (phase shift) of —c.

Example12

The graph of a function in the form YA
y = acos bx is given in the diagram right. 12:
a) Write down the value of a. 124
b) Calculate the value of b. 10
8 -
Solution j:
a) The amplitude of the graph is 14. 5]

Therefore, a = 14. 0 -

. . 3

b) From inspecting the graph we can —2+ JZT % Tﬂ i
see that the period is 7ZT 4
_6 .
Period = 27 = T —81
b 4 ~10+

bm =8m=b=28.

— ‘I 2 .
— ’I 4 =
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Example 13

For the function f(x) = 2 cos(%C ) - %:

a) Sketch the function for the interval — 7 < x < 5. Write down its
amplitude and period.

b) Determine the domain and range for f(x).

c) Write f(x) as a trigonometric function in terms of sine rather than
cosine.

Solution
a) a=2= amplitude =2; b = %:> period = ZTW = 417. To obtain the

2

graphof y =2 cos(g) - %, we perform the following transformations
on y = cosx: (i) a horizontal stretch by factor 1 - 2, (i) a vertical

1
2

stretch by factor 2, and (iii) a vertical translation down % units.

VA
2
y=2cos(§) — 2
1 (47, 1)
/-:\
4

@, —1)

b) The domain is all real numbers. The function will reach a maximum

valueof d + a = —% + 2= %, and a minimum value of
=3 _5__7

d—a= > 2 5

H . 7 1
ence, the range is —3Sys<s

¢) The graph of y = cos x can be obtained by translating the graph of

y = sinx to the left %T units. Thus, cosx = sin(x + I ), or, in other

2
words, any cosine function can be written as a sine function with a
phase shift = —%T. Therefore, f(x) = 2 cos(%) - % = Zsin(%C + %T) — %
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Horizontal translation (phase shift) identities
The following are true for all values of x:

cosx=sin(x+g) sinx=cos(x—g)
cosx=sin(g—x) sinx=cos(g—x)
O The identity cosx = sin(x I 777) is equivalent to the identity WINDOW
cosx = sin(% - x) because sin(g - x) = sin[— (x = g)] %%égz?’% '.141592"-
and the graph of y = sin[— (x = g)] can be obtained by first §35%2}15g07963
: . T ) Ymax=1.5
translating y = sinx to the r|ght§ units, and then reflecting Yscl=1
Xres=1

the graph in the y-axis. This produces the same graph as
y = cosx. This can be confirmed nicely on your GDC as shown.

& Plotl Plot2 Plot3
Therefore, cosx = sin(j = x). In fact, it is also true that \%15 cos (X)
NYo=
sinx = cos(7—7 - x). Clearly, x + (7—7 - x) =T |f the domain NY3= /\ /\
2 2 2 Yo
(x) values were being treated as angles, then x and %T - X \Ys= / \/ \
would be complementary angles. :%gf i
This is why cosine is considered the co-function of sine.
Two trigonometric functions fand g are co-functions if the Plotl Plot2 Plot3
: \Yi=
fo|7|;)vvmg are true for all x: f(x) = g(g = x) and s)YzE gin (- (X-Tt/2)
7 -%) =9 Ay
NYa=
\Ys=
\Ye=

Graph of the tangent function

From work done earlier in this chapter, we expect that the behaviour of the
tangent function will be significantly different from that of the sine and
cosine functions. In Section 6.2, we concluded that the function f(x) = tanx

has a domain of all real numbers such that x # %T + ki, k€ Z, and that its

range is all real numbers. Also, the results for Example 6 in Section 6.2 led

us to speculate that the period of the tangent function is 7. This makes

Sin x
COS X

whenever sin x = 0, which occurs at values of x that differ by 7 (visualize
arcs on the unit circle whose terminal points are either (1, 0) or (—1,0)).
The values of x for which cosx = 0 cause tan x to be undefined (‘gaps’

in the domain) also differ by 7 (the points (0, 1) or (0, —1) on the unit
circle). As x approaches these values where cos x = 0, the value of tan x will
become very large — either very large negative or very large positive.

informs us that tan x will be zero

sense since the identity tan x =

Thus, the graph of y = tan x has vertical asymptotes at x = %T + km ke Z.

Consequently, the graphical behaviour of the tangent function will not
be a wave pattern such as that produced by the sine and cosine functions,
but rather a series of separate curves that repeat every 7 units. Figure 6.27
shows the graph of y = tanx for —27 < x < 2.




Trigonometric Functions and Equations

YA : 5 The graph gives clear
! ' confirmation that the period
57 of the tangent function is r,
4 that is, tanx = tan(x + k- m),
3. I I y=tanx kELZ.
2 The graph of y = tan x has
. | rotational symmetry about
/ the origin — that is, it can
/Zn b 2 1z — A '3_7 7 > Dbe rotated one-half of a
2 2 2 £2 revolution about (0, 0) and it
. remains the same. Hence, like
the sine function, tangent is an
—37 odd function and
—4 tan(—x) = —tanx.
. | . g
A Although the graph of y = tan x can undergo a vertical stretch or shrink, it

Figure 6.27 . . . . . . .
- is meaningless to consider its amplitude since the tangent function has no

maximum or minimum value. However, other transformations can affect
the period of the tangent function.

Example 14
Sketch each function.
a) f(x) = tan2x b) g(x) = tan[Z(x - %)]
Solution
a) An equation in the form y = f(bx) indicates a horizontal shrinking of
f(x) by a factor of % Hence, the period of y = tan2x s % s = g
‘ ya o
| ]
5 sl | y=ton2x
a Ny
IS RS ALY A R R Y S R
f i f 0 lE ] T f / >
2 ) fE o ;4 Y LA £ S X
[ L
/NN I N
/N I I O
' {5




b) The graph of y = tan [2 (x - % )] is obtained by performing a horizontal

shrinking of the graph of y = tanx by a factor of% and then translating
the graph to the right %T units. As for f(x) = tan2x in part a), the period

of glx) = tan[2<x— %)] is %T

(=)
e - - -

i e e i b & [

|
I
L

In questions 1-9, without using your GDC, sketch a graph of each equation on the
interval —7 < x < 3.

1 y=2sinx 2 y=cosx— 2
3 y=1cosx 4 y = sin( _g)
5 y = cos(2x) 6 y=1+tanx
7 y=sin(§) 8 y=tan(x+g)

9 y= cos(Zx — 717)

For each function in questions 10-12:

a) Sketch the function for the interval —ar < x < 5. Write down its amplitude and
period.

b) Determine the domain and range for f(x).
10 f(x) =1 cosx — 3 11 g(x) = 3sin(3x) — 3

12 g(x) = 1.2sin(§) +43
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In questions 13 and 14, a graph of a trigonometric equation is shown, on the interval

0 = x = 12 that can be written in the form y = Asin(%x) + B.Two points — one a

minimum and the other a maximum - are indicated on the graph. Find the value of
A and B for each.

13 YA

124

114

104

94

8_

74

6

54

44

34

2

14

(2,10)

(6,4)

x¥

o0 1 2 3 4 5 6 7 8 9 10 11 12
14 YA
12
114
104
9. 2,86)
84
7.
6.
5.
44
3—
2
'I_

(6,3.2)

XY

of 1 2 3 4 5 6 7 8 9 10 11 12

15 A graph of a trigonometric equation is shown below, on the interval
0 < x < 12, that can be written in the form y = Acos(Z x ) + B.Two points —
one a minimum and the other a maximum - are indicated on the graph. Find
the value of A and B for each.
YA
121
11
10
94
g
7
6-
5
41
3.
21 (4,2.4)
14

(8,6.2)

0 T T T T T T T T T T T T




16 The graph of a function in the form y = p cosgx is given in the diagram below.
a) Write down the value of p. b) Calculate the value of g.

Y A
10

84
6 -
44

24

0 T T

N Q-+
<Y

Y
4
6
e

i

Solving trigonometric equations
and trigonometric identities

The primary focus of this section is to examine methods for solving
equations that contain the sine, cosine and tangent functions. For example,
the following are trigonometric equations:

. 1 . sin x . .
sinx =3 3cosx=5sinx tanx= g5y 1 +sinx=3cos’x sin*x+ cos’x =1

The equations tan x =

sin x
Cos X
equations called identities. As we learned in Section 1.6, an identity is an
equation that is true for all possible values of the variable. The other
equations are true for only certain values of x. Identities can be helpful in
solving trigonometric equations by allowing us to simplify some

and sin?x + cos?x = 1 are examples of special

trigonometric expressions. Equations that contain trigonometric functions
often can be solved using the same graphical and algebraic methods that
solve other equations.

The unit circle and exact solutions to
trigonometric equations

When you are asked to solve a trigonometric equation, there are two
important questions you need to consider:

1. Is it possible, or required, to express any solution(s) exactly?

2. For what interval of the variable (usually x) are all solutions to be found?
With regard to the first question, exact solutions are only attainable, in
most cases, if they are an integer multiple of %T or 7ZT The variable for
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which we are trying to solve in trigonometric equations is a real number

that can be interpreted as the length of an arc on the unit circle. As

T

4
commonly occur and it is important to be familiar with the sine, cosine

explained in Section 6.2, arc lengths that are multiples of %T or

and tangent of these numbers.

Concerning the second question, for most trigonometric equations there
are infinitely many values of the variable that satisfy the equation. In order
to restrict the number of solutions, we are asked for the solutions to be
contained within a suitable interval. For example, we may search for all

the values of x that solve an equation such that 0 < x < 2. Although it is
certainly possible to write a general expression using a parameter (i.e. the
general solution) that specifies the infinite values that solve a trigonometric
equation, it is not required for this course. A solution interval will always
be given, as in the example below.

Example 15

Find the exact solution(s) to the equation sinx = % for0 < x<2m.

Solution

Recalling the definition of the sine function, this equation can be interpreted
as asking for the length, x, of arcs along the unit circle that have a terminal

point with a y-coordinate equal to % We know, from Section 6.2, that arc

T ST
lengths of 13 and G

are clearly an infinite number of arcs — both positive and negative — that

have terminal points with y-coordinates of % There

will terminate at the same points which can be written as x = 2 + k-« 27

6
and x = S%T + k-2, k€ Z. However, we are only asked for the solutions in
the interval 0 < x << 247. Therefore, x = %T orx = 5?77
VA
23/ (£.4)
3
% .
0 (1,0) x
unit circle

Another way to see that the equation sinx = % has infinitely many solutions
is to graph the equations y = sinxand y = % (Figure 6.28) and search for
intersection points, i.e. where the two equations are equal.




<
Il
[NTE

ol f-----

=¥

y = sinx

The graphs of the two equations will intersect repeatedly as they extend
indefinitely in both directions.

Your GDC can be a very effective tool for searching for solutions
graphically. However, it can be limited when exact solutions are requested.
The sequence of GDC images below show a graphical solution for the

equation in Example 15.

PYlotl Plot(2 )plotz WINDOW |

\Y1Esin (X Xmin=0 '

\Yeg1/2 Xmax=6.2831853... TN
“Ya= Xscl=1/2 N\
\Ya= Ymin=-1.5
\Ys5= Ymax=1.5
\Ye= Yscl=1
NY7= Xres=1
CALCULATE
1:value [
2:zero N N
3:minimum X N
4 :maximum
BRintersect
6 3d¥/ dx Intersection Intersection
7:Jf (x)dx X=.52359878 Y=.5 X=2.6179939 Y=.5

The GDC gives two solutions in the interval 0 < x < 27 as x = 0.523 59878
and x = 2.617 9939. These values are approximations (to 8 significant

figures) of two irrational numbers: x = %T and x =

£k . Therefore, if you

6

wish, or need, to find exact solutions, you will need to remember the

trigonometric function values for the multiples of %T and % (see Figures
6.18 and 6.19 in Section 6.2).

Example 16

Find the exact solution(s) to the equation tan(x) + 1 = 0for —m <= x < 7.

Solution

It’s important to note that the solution interval is different than for
Example 15. The possible values of x include negative values (from 0 to
— ) and positive values (from 0 to 7). With respect to the unit circle, the

solutions will correspond to points in any of the quadrants (as for Example

15) but points in quadrants III and IV will correspond to arcs rotating

clockwise (negative direction). Solutions to this equation are values of x such

4 Figure 6.28

e Hint: The expressiontanx + 1

is not equivalent to tan(x + 1).In
the first expression, x alone is the
argument of the function, and in
the second expression, x + 1'is

the argument of the function. It

is a good habit to use brackets to
make it absolutely clear what is, or
is not, the argument of a function.
For example, there is no ambiguity if
tanx + 1 iswritten astan(x) + 1, or

as 1 + tanx.
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sin x
COS X
to the y-coordinate and x-coordinate, respectively, on the unit circle, then

any solutions will be in quadrants II and IV where the x- and y-coordinates

that tanx = —1. Given tanx = and since sin x and cos x correspond

have opposite signs. The arcs terminating midway in the quadrants will
terminate at points having opposite values for x and y. Therefore, as shown

in the figure, the solutions are exactly x = —%T orx = 3T7T
VA
-2.9)
3z
4
0 (1,00 x

|
INH

,—\
NS
|
LS
2

unit circle

It is possible to arrive at exact answers that are not multiples of Tor T 3
the next example illustrates.

Example 17

Find the exact solution(s) to the equation cosz(x - %T ) = % for0 < x<2m.

Solution

. . 2
The expression cosz(x - %T ) can also be written as [cos(x - %T )] . The
first step is to take the square root of both sides — remembering that every
positive number has two square roots — which gives

cos(x — 7—7) = i\/% =+1 = ig. All of the odd integer multiples of

3 V2
T _3g _mm 3T : V2 V2
§o TR TP 4,...haveacosmeequaltoelther 5 Or — =5~
That is, x — 737 %T + k= Now, solve for x.
T, T T_
x=gt3+ k- 5 = 12 LU The last step is to substitute in different

integer values for k to generate all the possible values for xso that 0 < x < 2.

Whenk=0:x=7—g;whenk—1 x—71—g+61—727—113277;

when k= 2: x = ﬁ+%7— 11927T;
whenk=3:x—ﬁ+%r—215;,. how ever,%>2 ..but
when k= —1:x= 71—727 - 61—72T 17 There are four exact solutions in the

7 7w 137 197

interval 0 < x < 27 and they are: x = 1 1 %1




e Hint: Check the solutions to trigonometric equations with your GDC. The sequence of GDC images here verifies that x = % is the
first solution to the equation in Example 17.

Plotl Plot2 Plot3 WINDOW 71:/12

\Y1g (cos (X-1/3) ) | | Xmin=0 EANC N .2617993878
2 Xmax=6.283 ¢

\Yom1/2 Xscl=1.570 L N\

\Y3= Ymin=-1.5

\Ya= Ymax=1.5

\Y5= Yscl=1 Intersection

\Ye= Xres=1 X=.26179939 Y=.5

When entering the equation y = cosz(x - %T) into your GDC (as shown in the first GDC image), you will have to enter it in the form

y= [cos(x - g)]z Be aware that cos’ (x - 7§T> is not equivalent to cos (x - %r)z The expression cos(x - %T)z indicates that the

quantity x — %T is squared first and then the cosine of the resulting value is found. However, the expression y = cos? (x - g) indicates

that the cosine of x — %T is found first and then that value is squared.

Graphical solutions to trigonometric equations

If exact solutions are not required then a graphical solution using your
GDC is a very effective way to find approximate solutions to trigonometric
equations. Unless instructed to do otherwise, you should give approximate
solutions to an accuracy of 3 significant figures.

Let’s solve the equation in Example 16 again. If the instructions do not
explicitly ask for exact solutions, approximate solutions are acceptable.

Example 18

Find the solution(s) to the equation tan(x) + 1 = 0 for — < x < .

Solution

Graph the equation y = tan(x) + 1 and find all of its zeros (x-intercepts)
in the interval —7m < x < 7.

Plotl Plot2 Plot3 WINDOW
“YiEtan (X) +1 Xmin=-3.141592.. /
YYo= Xmax=3.1415926...
\Y3= Xscl=1.5707963... P
Ymin=-5
Ymax=5
Yscl=1
Xres=1
X
1 / -.7853981634
ANS+T
3. -~ 2.35619449
4 :maximum
Z:én;grsect
: X Z
7: J“% (x)dx Koo 7853982 Y=0
This sequence of GDC images indicates an approximate solution x = —0.785

between 0 and — 7. Since we know that the period of y = tanx + 1is 7
(same as for y = tan x ), we can simply add 7 to this first solution to find
the one between 0 and 7, as shown in the final GDC image. Therefore, two
solutions for x in the interval — 7 < x < 7rare x = —0.785 and x = 2.36
(accuracy to 3 significant figures).
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A graphical approach is effective and appropriate when it is not possible, or
very difficult, to find exact solutions.

Example 19

The peak height, h metres, of ocean waves during a storm is given by the

equation h =9 + 4 sin(%), where tis the number of hours after midnight.

A tsunami alarm is triggered when the peak height goes above 12.5 metres.
Find the value of # when the alarm first sounds.

Solution
Graph the equations y = 9 + 4sin(§) and y = 12.5 and find the first point
of intersection for x > 0.

YA
14 4

134 o P y=12.5
12
11
10 4

y=9+4sin(3)

2 intersection:
x=2.1308716 y=125

O 123256 7 8 91011121314151617 18 19 20 21 22 23 24 X
Using the Intersect command on the GDC indicates that the first point

of intersection has an x-coordinate of approximately 2.13. Therefore, the
alarm will first sound when ¢ = 2.13 hours.

Analytic solutions to trigonometric equations

In this section, we will see how general algebraic techniques and
trigonometric identities can be applied to solve trigonometric equations.
An analytical approach requires you to devise a solution strategy utilizing
algebraic methods that you have applied to other types of equations — such
as quadratic equations. Often, trigonometric equations that demand an
analytic approach will result in exact solutions, but not always. Although
our approach for equations in this section focuses on algebraic techniques,
it is important to use graphical methods to support or confirm our
analytical solutions.




Example 20

Solve 2sin’x — sinx=0for — 7 < x< .
Solution

We can factorize and apply the rule that if a- b = 0 then eithera=0or b = 0.

2sinx — sinx = 0 = sinx(2sinx — 1) = 0 = sinx = 0 or sinx = %
Forsinx=0:x= —W,O,mforsinx=%:x=g,5%7.
Therefore, x = —, 0, %T, 5?77, T

e Hint: Although exact answers were not demanded in Example 20, [ plot1 plot2 plot3

given our knowledge of the unit circle and familiarity with \IYIEZ (sin(X))2-s

the sine of common values (i.e. multiples of% and %T), we are 3,132(5)

able to give exact answers without any difficulty. It would have “Y3=

been acceptable to give approximate solutions, but it is worth :%‘éf /\
recognizing that this would have required considerable more effort \Yg; = A~y

than providing exact solutions. Entering and graphing the equation
y= 2sin”x — sinx on your GDC (see GDC images) would not be the most efficient or appropriate solution method, but, if sufficient
time is available, it is an effective way to confirm your exact solutions.

The next example illustrates how the application of a trigonometric
identity can be helpful to rewrite an equation in a way that allows us to
solve it algebraically.

Example 21

Solve 3sinx + tanx=0for0 < x < 2.

Solution

Since the structure of this equation is such that an expression is set equal
to zero, it would be nice to be able to use the same algebraic technique as
the previous example — that is, factorize and solve for when each factor is
zero. However, it is not possible to factorize the expression 3 sinx + tanx,
and rewriting the equation as 3 sinx = —tan x does not help. Are there
any expressions in the equation for which we can substitute an equivalent
expression that will make the equation accessible to an algebraic solution?
We do not have any equivalent expressions for sin x, but we do have an

identity for tan x. From the definition of tan x, we know that tanx = ggls fc
Let’s see what happens when we substitute 23;3; for tan x.
. _ . sinx _
3sinx + tanx = 0= 3sinx + Cosx =

Now, multiply both sides by cos x while recognising that cos x # 0
(x# 3 + k- mkEZ).

3sinx + (S:g;}acc =0=3sinxcosx+ sinx=0=sinx(3cosx+ 1) =0=
sinx = 0 or cosx = -1

3
Forsinx=0:x= 0, 1, 2.

We know that (1, 0) and (—1, 0) are the points on the unit circle that
correspond to sin x = 0 giving the three exact solutions above. Although




e Hint: A strategy that often

proves fruitful is to try and rewrite a
trigonometric equation in terms of
just one trigonometric function. If
that is not possible, try and rewrite it
in terms of only the sine and cosine
functions. This strategy was used in

Trigonometric Functions and Equations

we know that the points on the unit circle that correspond to

cosx = —% will be in the second and third quadrants, we do not know

their exact coordinates. So, we will need to use our GDC to find

approximate solutions to cos x = —% for0<x<2m.

YA

i y = CosX

%\ T /% 2

y=-

w= xY¥

o

(4.3725521, —0.3333333)
—14 (1.9106332, —0.3333333)

Thus, for cosx = —%: x = 1.91 or x = 4.37 (three significant figures).

Therefore, the full solution set for the equation is x = 0, m, 27; x = 1.91,
4.37.

Trigonometric identities

As Example 21 illustrated, sometimes an analytical method for solving a
trigonometric equation relies on a trigonometric identity providing a
useful substitution. There are a few trigonometric identities, other than

tan x = %, required for this course which can be used to help simplify

trigonometric expressions and solve equations.

At the start of this section, it was stated that the equation sin?x + cos?x = 1
is an identity; that is, it’s true for all possible values of x. Let’s prove that
this is the case.

Recall from Section 6.1 that the equation for the unit circle is

x? + y? = 1. That is, the coordinates (x, y) of any point on the
circle will satisfy the equation x? + y? = 1. Also, in Section 6.2, we
learned that the sine and cosine functions are defined in terms of
the coordinates of the terminal point of an arc on the unit circle
starting at (1, 0), as shown in Figure 6.29. If tis any real number
that is the length of an arc on the unit circle that terminates at (x, y),
then x = cos tand y = sin t. Substituting directly into the equation

Example 21.
YA
(cost, sint)
t
&—\
0 (1,0) X
unit circle

X =cos t, y=sint

for the circle gives sin? t + cos® f = 1. As mentioned in Section 6.3,
the convention is to use x to denote the domain variable rather than
t. Therefore, the equation sin?x + cos?x = 1 is true for any real
number x.

< Figure 6.29



The Pythagorean identities for sine and cosine
The following equations are true for all real numbers x:
sinx + cos?x = 1 sinx = 1 — cos?x cos’x =1 —sin’x

Another useful set of trigonometric identities are referred to as the double
angle identities because they are equations involving sin 2x and cos 2x. As
discussed back in Section 6.1, the argument of a trigonometric function (x
in sin x, 6 in cos ) can be interpreted as an angle (in degrees or radians), or
as just a real number. Even though these identities are called double angle
identities they apply for either interpretation.

Double angle identities for sine and cosine

The following equations are true for all real numbers x:
sin2x = 2sinx cosx

cos? x — sin’x
€os2x =92cos?x — 1

1 — 2sin’x

It is quite easy to verify the double WINDOW

angle identities by means of graphical %ﬁéﬁigu

analysis on your GDC. Xsc¢l=.78539816...
Ymin=-1.5
Ymax=1.5

Yscl=1

Xres=1

Plotl Pllot2 Plot3
\YiEsin (2X)
\Y2:

\Y3=

\Y4= — . . /\ a
VARV
“Ye=

\Y7=

Plotl Plot2 Plot3

\)YlE 2sin (X) cos (X
\Y2=

Sl I AN
VARV
\YS:

“Ye=

The GDC screen images shown here illustrate that sin 2x is equivalent
to 2sinx cosx. Use your GDC to verify that cos2x is equivalent to
cos? x — sin? x. Once the identity cos2x = cos®x — sin® x is established we
can use one of the Pythagorean identities to rewrite it in terms of only sine
or cosine; thus, establishing the other two double angle identities for cosine.
cos2x = cos’>x — sin’x
cos2x = cos’x — (1 — cos?x) substitute 1 — cos? x for sin® x
cos2x = 2cos’x — 1

Similar steps can be performed to show that cos2x = 1 — 2sin’x.
Now let’s see how these identities can help us with algebraic solutions of
trigonometric equations.

O The identity sinx + cos?x = 1
is often referred to as a
Pythagorean identity because,
as we will see in the other
chapter on trigonometry, sin x
and cos x can represent the legs
of a right-angled triangle with a
hypotenuse equal to one.
Substituting into the
Pythagorean theorem gives
sin?x + cos?x = 1.
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Example 22
Solve the equation cos2x + cosx = 0 for 0 < x < 2.
Solution YA
14 Yy = €COs2X + cosx
0 X

Taking an initial look at the graph of y = cos2x + cos x suggests that

there are possibly three solutions in the interval x€ [0, 277]. Although the
expression cos2x + cosx contains terms with only the cosine function, it

is not possible to perform any algebraic operations on them because they
have different arguments. In order to solve algebraically, we need both cosine
functions to have arguments of x (rather than 2x). There are three different
double angle identities for cos2x. It is best to have the equation in terms of
one trigonometric function, so we choose to substitute 2 cos? x — 1 for cos2x.

cos2x + cosx=0=2cos’x— 1+ cosx=0=-2cos?x+ cosx—1=0

(2cosx— 1)(cosx+ 1) = 0= cosx = %orcosxz -1
=Ll _mom, =
Forcosx—z.x 3,3,f0rcosx l:x= .

Therefore, all of the solutions in the interval 0 < x < 27 are: x = g, T, 5—77.

3

Example23

a) Express 2 cos?x + sin x in terms of sin x only.
b) Solve the equation 2 cos? x + sinx = —1 for xin the interval 0 < x < 2,
expressing your answer(s) exactly.

Solution
a) 2cos?x + sinx = 2(1—sin?x) + sin x using Pythagorean identity
cos’x =1 —sin’x
=2 — 2sin’x + sinx
b) 2cos?x + sinx = —1
2 — 2sin’x + sinx = —1 substitute result from a)
2sin? x — sinx —3 =0 [alternatively: let sinx = y,

then 2y? — y — 3 = 0]
(2sinx — 3)(sinx+ 1) =0 factorize [alt: 2y — 3)(y + 1) = 0]

—

sinx = %or sinx =—1 [alty=

[\ST{O)

ory= —1:>sinx=%or
]

sinx = —1




For sinx = %z no solution because % is not in the range of the sine function.

Forsinx=—1:x= 37? Therefore, only one solution in 0 < x < 27: x = 3711-

Use your GDC to check this result by rewriting 2 cos’>x + sinx = —1 as
2cos? x + sinx + 1 = 0 and then graph y = 2cos? x + sinx + 1;

confirming a single zero at x = 3T in the interval x € [0, 27].

2

Plotl Plot2 Plot3 WINDOW
Y182 (cos (X) ) 2+s Xmin=0
in(X)+1 Xmax=6.2831853...
\Y2= Xscl=m/21
\Y3= Ymin=-1
\Ya= Ymax=4
\Ys5= Yscl=1
\Ye= Xres=1

4.712388457

X
3m/2
4.71238898

Ea

Zero
X=4.7123885 Y=0

Example 24

Solve the equation 2sin2x = 3cosxfor 0 < x < .

Solution

2sin2x = 3cosx
2(2sinx cosx) = 3 cos x using double angle identity for sine
4sinxcosx = 3 cosx do not divide by cos x as solution(s) may
be eliminated

4sinxcosx — 3cosx =0 set equal to zero to prepare for solving by
factorization
cosx(4sinx—3) =0 factorize

_ . _3
cosx—Oorsmx—Z

Forcosx = 0: x = %T
For sinx = é: x == 0.848 or 2.29.

4

Approximate solutions found using Intersect command on GDC. All
solutions in the interval 0 < x < mrare: x = = and x ~ 0.848, 2.29.

2
VA
(0.84806208, 0.75) (2.2935306, 0.75)
1 \/—\/
y=3
y =sinx
0 x : I x X
4 2 4




Trigonometric Functions and Equations

The final example illustrates how trigonometric identities can be applied to
find exact values for trigonometric expressions.

Example 25

Given that cosx = i and 0 < x < %T, find the exact values of
a) sinx b) sin2x.

Solution

a) Given 0 < x < T it follows that sin x > 0, because the arc with length x
will terminate in the first quadrant. The Pythagorean identity is useful
when relating sin x and cos x.

sinfx=1— cos’x = sinx =v1 — cos’x = sinx = /; _(l>2
15 _ v15 4

16 4

JI5)(1) /15
4 /\4 8

b) sin2x = 2sinxcosx = 2(—)(—

Summary of fundamental trigonometric identities

. . _ sinx
Definition of tangent function:  tanx = =5
Odd/even function identities:  sin(—x) = —sinx COS(—X) = cosx
tan(—=x) = —tanx
Co-function identities: sin(g = x) = COSX cos(g = x) =sinx
Pythagorean identities: sinx 4+ cos?x = 1
sinx =1 — cos’x cos’x =1 —sin’x
Double angle identities: Sin2x = 2sinx cosx
CoS2x = cos’x — sin’x
cos2x = 2cos’x — 1 cos2x =1 —2sin’x

In questions 1-10, find the exact solution(s) for 0 < x < 24r. Verify your solution(s)

with your GDC.

1 cosx =1 2 2sinx+1=0
31—tanx=0 4 /3 =2sinx
5 2sin’x =1 6 4cos’x =3

7 tan’x—1=0 8 4cos’x =1

9 tanx(tanx + 1) =0 10 sinxcosx =0

In questions 11-16, use your GDC to find approximate solution(s) for 0 < x < 2.
Express solutions accurate to 3 significant figures.

11 sinx =04 12 3cosx+1=0
13 tanx =2 14 sin2x = 0.85
15 cos(x — 1) = —0.38 16 3tanx = 10



In questions 17-20, given that k is any integer, list all of the possible values for x that
are in the specified interval.

17 x=Z+k-m —3u<x<3m

2
18 x=%7+k-277,—27r$xS27T
19 x=%7+k-77,0$xs27r
20 x=7ZT+k-7ZT,O$x<27T

In questions 21-24, find the exact solutions for 0 < x < 2.

_my - ]
21 cos(x 6) 3
22 tanlx+m =1
23 sin2x=§
a2 ) _ 3
24 sm(x+2) 7}

25 The number, N, of empty birds'nests in a park is approximated by the function
N=74+42 sin(%r), where tis the number of hours after midnight.
Find the value of t when the number of empty nests first equals 90.

Approximate the answer to 1 decimal place.
26 In Edinburgh, the number of hours of daylight on day Dis modelled by the

function H= 12 + 7.26 sin[%{D = 80)], where Dis the number of days after

December 31 (e.g. January 1is D = 1, January 2 is D = 2, and so on).
Do not use your GDC on part a).

a) Which days of the year have 12 hours of daylight?
b) Which days of the year have about 15 hours of daylight?
c) How many days of the year have more than 17 hours of daylight?

In questions 27-34, solve the equation for the stated solution interval. Find exact
solutions, if possible. Otherwise, give solutions to 3 significant figures. Verify solutions
with your GDC.

27 2cos’x+ cosx=0,0<x<2w

28 2sin’x —sinx—1=0,0<x<2m

29 2cosx+sin2x =0, —wmsxsm

30 2sinx =Cos2x;, —msS XS

31 tanzx—tanx=2;—g

32 sin’x=cos’x;,0sx<m

33 2sin’x +3cosx —3=0,0<x<27

34 2sinx=3cosx;0=x<2m

35 Giventhatsinx=%andO<x<g,ﬁndtheexactvaluesof
a) Cosx b) cos2x C) sin2x.

2

3

a) sinx b) sin2x C) CoSs2x.

36 Giventhatcosx= —=and 777 < x < r, find the exact values of
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Practice questions

1 A toy on an elastic string is attached to the top of a doorway. It is pulled down and
released, allowing it to bounce up and down. The length of the elastic string, L
centimetres, is modelled by the function L = 110 + 25cos(27rt), where tis time in
seconds after release.

a) Find the length of the elastic string after 2 seconds.

b) Find the minimum length of the string.

) Find the first time after release that the string is 85 cm.
d) What is the period of the motion?

2 Find the exact solution(s) to the equation 2sinx — cosx + 1 = 0for 0 < x < 2.

3 The diagram shows a circle of radius 6 cm.
The perimeter of the shaded sector is 25 cm.
Find the radian measure of the angle 6.

4 Consider the two functions f(x) = cos4x and g(x) = cos(%).

a) Write down: (i) the minimum value of the function f
(i) the period of g.
b) For the equation f(x) = g(x), find the number of solutions in the interval 0 < x < .
5 A reflector is attached to the spoke of a bicycle wheel. As the wheel rolls along the

ground, the distance, d centimetres, that the reflector is above the ground after ¢
seconds is modelled by the function

d = p + gcos2a\mt, where p, g and m are constants.

The distance d'is at a maximum of 64 cm at t = 0 seconds and at t = 0.5 seconds, and
is at a minimum of 6 cm at t = 0.25 seconds and at t = 0.75 seconds. Write down the
value of:
a) p b) ¢ <) m.

6 Find all solutions to 1 + sin3x = cos(0.25x) such that x € [0, .

7 Find all solutions to both trigonometric equations in the interval x € [0, 2. Express
the solutions exactly.

a) 2cos’x + 5cosx +2=0 b) sin2x — cosx =0

8 The value of x is in the interval g < x < qand cos?x = % Without using your GDC,
find the exact values for the following:
a) sinx b) cos2x c) sin2x

9 The depth, d metres, of water in a harbour varies with the tides during each day. The
first high (maximum) tide after midnight occurs at 5:00 a.m. with a depth of 5.8 m. The
first low (minimum) tide occurs at 10:30 a.m. with a depth of 2.6 m.

a) Find a trigonometric function that models the depth, d, of the water t hours after
midnight.

b) Find the depth of the water at 12 noon.

c) Alarge boat needs at least 3.5 m of water to dock in the harbour. During what time
interval after 12 noon can the boat dock safely?




10 Solve the equation tan?x + 2tanx — 3 = 0 for 0 < x < 7. Give solutions exactly, if
possible. Otherwise, give solutions to 3 significant figures.

11 The following diagram shows a circle of centre O and radius 10 cm. The arc ABC
subtends an angle of% radians at the centre O.
a) Find the length of the arc ACB. A
b) Find the area of the shaded region.

o

12 Consider the function f(x) = §cos 2x —

f(x) = k have no solutions?

777) For what values of k will the equation
13 A portion of the graph of y = k + asinx is shown below. The graph passes through the

points (0, 1) and (3777 3). Find the value of kand a.
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Figure 7.1

e Hint: In IB notation, [AC] denotes
the line segment connecting points
A and C. The notation AC represents
the length of this line segment.
Also, the notation ABC denotes the
angle with its vertex at point B, with
one side of the angle containing
the point A and the other side
containing point C.
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Figure 7.2

[rangle lrigonometry

Assessment statements
3.6 Solution of triangles.
The cosine rule: 2 = a2 + b%2 —2abcosC.

- ._ . a _ b _ c
Thesmerule.—SinA sinB  sinC’

Area of a triangle as % absin C.

including the ambiguous case.

. Introduction

In this chapter, we approach trigonometry from a right triangle
perspective where trigonometric functions will be defined in terms of

the ratios of sides of a right triangle. Over two thousand years ago, the
Greeks developed trigonometry to make helpful calculations for surveying,
navigating, building and other practical pursuits. Their calculations were
based on the angles and lengths of sides of a right triangle. The modern
development of trigonometry, based on the length of an arc on the unit
circle, was covered in the previous chapter. We begin a more classical
approach by introducing some terminology regarding right triangles.

Right triangles and trigonometric
functions
Right triangles

The conventional notation for triangles is to label the three vertices with
capital letters, for example A, Band C. The same capital letters can be used
to represent the measure of the angles at these vertices. However, we will
often use a Greek letter, such as « (alpha), 8 (beta) or 6 (theta) to do so.
The corresponding lower-case letters, a, b and ¢, represent the lengths of
the sides opposite the vertices. For example, b represents the length of the
side opposite angle B, that is, the line segment AC, or [AC] (Figure 7.1).

In a right triangle, the longest side is opposite the right angle (i.e. measure
of 90°) and is called the hypotenuse, and the two shorter sides adjacent to
the right angle are often called the legs (Figure 7.2). Because the sum of the
three angles in any triangle in plane geometry is 180°, then the two non-
right angles are both acute angles (i.e. measure between 0 and 90 degrees).
It also follows that the two acute angles in a right triangle are a pair of
complementary angles (i.e. have a sum of 90°).



Trigonometric functions of an acute angle

We can use properties of similar triangles and the definitions of the sine,
cosine and tangent functions from Chapter 6 to define these functions in
terms of the sides of a right triangle.

VA

(cos 6, sin 6)

] sin 6
N[ )

- side opposite 6
O| cos® (1,0) x

side adjacent 0

The right triangles shown in Figure 7.3 are similar triangles because
corresponding angles have equal measure — each has a right angle and an
acute angle of measure 6. It follows that the ratios of corresponding sides
are equal, allowing us to write the following three proportions involving
the sine, cosine and tangent of the acute angle 6.

sin _ _opposite cos@ _ adjacent tan @ _ sin § _ Opposite
1 hypotenuse 1 hypotenuse 1 cos® adjacent

The definitions of the trigonometric functions in terms of the sides of a
right triangle follow directly from these three equations.

Right triangle definition of the trigonometric functions

Let 0 be an acute angle of a right triangle, then the sine, cosine and tangent functions
of the angle 6 are defined as the following ratios in the right triangle:

side opposite angle 6

sin0 = hypotenuse
050 = side adjacent angle 6
hypotenuse
) — side opposite angle 6

" side adjacent angle 6

It follows that the sine, cosine and tangent of an acute angle are positive.

It is important to understand that properties of similar triangles are the
foundation of right triangle trigonometry. Regardless of the size (i.e.
lengths of sides) of a right triangle, so long as the angles do not change, the
ratio of any two sides in the right triangle will remain constant. All the right
triangles in Figure 7.4 have an acute angle with a measure of 30° (thus, the
other acute angle is 60°). For each triangle, the ratio of the side opposite
the 30° angle to the hypotenuse is exactly % In other words, the sine of 30°
is always 1. This agrees with results from the previous chapter knowing

that an angle of 30° is equivalent to %T in radian measure.

% Figure 7.3

O Thales of Miletus (circa 624-547)

was the first of the Seven
Sages, or wise men of ancient
Greece, and is considered by
many to be the first Greek
scientist, mathematician and
philosopher. Thales visited
Egypt and brought back
knowledge of astronomy

and geometry. According

to several accounts, Thales,
with no special instruments,
determined the height of
Egyptian pyramids. He applied
formal geometric reasoning.
Diogenes Laertius, a 3rd-
century biographer of ancient
Greek philosophers, wrote:
‘Hieronymus says that [Thales]
even succeeded in measuring
the pyramids by observation
of the length of their shadow
at the moment when our
shadows are equal to our
own height’ Thales used the
geometric principle that the
ratios of corresponding sides of
similar triangles are equal.
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Figure 7.4

4

16 20 1 P |3
12 6 8 0
0°| | 30°) | 0°} , 30°

For any right triangle, the sine ratio for 30° is always %: sin30° = %

The trigonometric functions of acute angles are not always rational
numbers such as % We will see in upcoming examples that the sine of 60°

: V3
is exactly >

Evaluating trigonometric functions for 30°, 45°
and 60°

We can use Pythagoras’ theorem and properties of triangles to find the
exact values for the most common acute angles: 30°, 45° and 60°.

Example 1

Find the values of sin45°, cos45° and tan 45°.

Solution

1 1 hypotenuse = V12 + 12 = V2

Consider a square with each side equal to one unit. Draw a diagonal of
the square, forming two isosceles right triangles. From geometry, we know
that the diagonal will bisect each of the two right angles forming two
isosceles right triangles, each with two acute angles of 45°. The isosceles
right triangles have legs of length one unit and, from Pythagoras’ theorem,
a hypotenuse of exactly v2 units. The trigonometric functions are then
calculated as follows:

..o _ opposite | 2 . V2 . .
sin45° = hypotenuse ~ vZ 2 [multiplying by 7 to rationalize
the denominator]

450 — adjacent 1 /2

coston T hypotenuse 2 2
it
tan45°:M:l_l
adjacent 1
Example 2

Find the values of the sine, cosine and tangent functions for 30° and 60°.



Solution

longleg =v22 — 12 =

Start with a line segment of length two units. Using each endpoint as a
centre and the segment as a radius, construct two circles. The endpoints of
the original line segment and the point of intersection of the two circles are
the vertices of an equilateral triangle. Each side has a length of two units
and the measure of each angle is 60°. From geometry, the altitude drawn
from one of the vertices bisects the angle at that vertex and also bisects the
opposite side to which it is perpendicular. Two right triangles are formed
that have acute angles of 30° and 60°, a hypotenuse of two units, and a
short leg of one unit. Using Pythagoras’ theorem, the long leg is v'3 units.
The trigonometric functions of 30° and 60° are then calculated as follows:

) opposite V3 ) opposite 1
sin60° = —— = — sin30°P= ——M ==
hypotenuse 2 hypotenuse 2
adjacent 1 adjacent V3
c0860° = ——— =3 €0830° = - =
hypotenuse 2 hypotenuse 2
o opposite . @ . o opposite _ 1 _ @ rationalizing the
tan 60 adjacent 1 V3 tan30 adjacent /3 3 denominator

The geometric derivation of the values of the sine, cosine and tangent
functions for the ‘special’ acute angles 30°, 45° and 60°, in Examples 1 and
2, agree with the results from the previous chapter. The results for these
angles — in both degree and radian measure — are summarised in the box

below.
Values of sine, cosine and tangent for common acute angles ¢ Hint: [tis |mp9rtant that you are
1 3 3 able to recall — without a calculator
sin30° = sing =5 cos30° = cosg =5 tan30° = tan% =3 — the exact trigonometric values for
these common angles.
sin45° =sin7—T=Q cos45° =cos7—T=Q tan45° = tan = = 1
4~ 72 4~ 72 4
in60° = sinT = Y3 o= osT=1 o —tan® =
sin60° = sin 3 5 cos60° = cos 373 tan60° = tan 3 V3
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Figure 7.5 | 4

Observe that sin 30° = cos60° = %, sin60° = cos30° = ? and
sin45° = cos45° = g Complementary angles (sum of 90°) have equal

function values for sine and cosine. That is, for all angles x measured in
degrees, sinx = cos(90° — x) or sin(90° — x) = cosx. As noted in Chapter
6, it is for this reason that sine and cosine are called co-functions.

Solution of right triangles

Every triangle has three sides and three angles — six different parts. The
ancient Greeks knew how to solve for all of the unknown angles and sides
in a right triangle given that either the length of two sides, or the length
of one side and the measure of one angle, were known. To solve a right
triangle means to find the measure of any unknown sides or angles. We
can accomplish this by applying Pythagoras’ theorem and trigonometric
functions. We will utilize trigonometric functions in two different ways
when solving for missing parts in right triangles — to find the length of

a side, and to find the measure of an angle. Solving right triangles using
the sine, cosine and tangent functions is essential to finding solutions

to problems in fields such as astronomy, navigation, engineering and
architecture. In Sections 7.3 and 7.4, we will see how trigonometry can also
be used to solve for missing parts in triangles that are not right triangles.

Angles of depression and elevation

An imaginary line segment from an observation point O to a point P
(representing the location of an object) is called the line of sight of P. If P
is above O, the acute angle between the line of sight of P and a horizontal
line passing through O is called the angle of elevation of P. If P is below O,
the angle between the line of sight and the horizontal is called the angle of
depression of P. This is illustrated in Figure 7.5.

I angle of

angle of

ﬁeIevation
1

Example 3
Solve triangle ABC given ¢ = 8.76 cm and angle A = 30°, where the right
angle is at C. Give exact answers when possible, otherwise give to an
accuracy of 3 significant figures.



Solution

Knowing that the conventional notation is to use a lower-case letter

to represent the length of a side opposite the vertex denoted with the
corresponding upper-case letter, we sketch triangle ABC indicating the
known measurements.

From the definition of sine and cosine functions, we have

130° — opposite 4 300 = adjacent
SR hypotenuse ~ 8.76 o8 = hypotenuse ~ 8.76
a = 8.765sin 30° b = 8.76 cos 30°
a=876(3) =438 b=&%@§)z%%&&&ﬁzzw

Therefore, a = 4.38 cm, b = 7.59 cm, and it’s clear that angle B = 60°.

We can use Pythagoras’ theorem to check our results for a and b.
a’+b*=c*=va’+ b>=1876

Be aware that the result for a is exactly 4.38 cm (assuming measurements
given for angle A and side c are exact), but the result for b can only be
approximated. To reduce error when performing the check, we should use
the most accurate value (i.e. most significant figures) for b possible. The
most effective way to do this on our GDC is to use results that are stored to
several significant figures, as shown in the GDC screen image.

8.76 (V(3)/2)
7.586382537

Ans»B
7.586382537

V(4 .382+B2) 26

Example 4

A scientist involved in forest management wants to measure the height of a
tree without climbing it. From a point 34.5 m from the base of a large tree,
the scientist determines that the angle of elevation from horizontal ground
to the top of the tree is 52.4°. What is the height of the tree, approximated
to the nearest tenth of a metre?

Solution

opposite
tan52.4° = JEPONC b} 34 5tan50.40

adjacent  34.5
adjacen h =~ 34.5(1.2985)

h = 44.799 16
The height of the tree is approximately 44.8 m.

In both Examples 3 and 4, one of the acute angles of a right triangle was
given so the third angle is easily determined from the fact that the sum of
the angles is 180°. Let’s look at how we can use trigonometric functions to
solve a right triangle for which the lengths of two of the sides are known,
but the measure of both acute angles are unknown.
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Example 5

Solve triangle PQR given QR = 9 cm and PQ = 12 cm, where the right
angle is at R. Give exact answers when possible, otherwise give to an
accuracy of 3 s.f.

Solution
Using Pythagoras’ theorem: PR = V122 — 9% = V63 = 37 =~ 7.94.

Both of the acute angles, 2 Pand £ Q, are unknown. We know the lengths of
all three sides, so it is possible to evaluate any of the trigonometric functions
12cm for either of these angles. For example, it is clear that sin P = % = (0.75.To
determine the acute angle that has a sine ratio of 0.75, we need to perform
the inverse of the sine function (written as sin~!). We can do this by
R P solving the equation sin x = 0.75 graphically, as we did in Section 6.4.
(See GDC screen images at bottom of page.) Using a graphical method
is particularly suitable if x represents a real number, or perhaps an angle
in radian measure, and there is more than one solution for x. For triangle
PQR, there is only one solution for P in the equation sin P = 0.75 and it
must be between 0° and 90°. Your GDC (in ‘degree’ mode) can be used
to find the acute angle P, either graphically or by directly computing
the inverse sine of 0.75. Although, as we will realize, there are an infinite
number of angles with a sine ratio of 0.75, your GDC is programmed so
that the inverse sine (sin~!) computation gives only the one acute angle
with a sine ratio of 0.75. The GDC screen images illustrate that having your
GDC compute an inverse trigonometric value is the most efficient method
for finding an acute angle.

9cm

SCI  ENG sin-1(.75)
- 48.59037789

jQUNe  PAR POL SEQ

NN a+bi re”oi
QAN HORIZ G-T

SET CLOCK FHEVIEVIRERT]
Thus, /P = 48.6° from which it follows that 2 Q = 90° — 48.6° = 41.4°.

Therefore, the missing parts of triangle PQR are PR =~ 7.94 cm, £ P = 48.6°
and £ Q = 41.4°.

Graphical solution:

e Hint: As mentionéd in Sgction STt STtoblots WINDOW
2.3, the notation for indicating the “YiEsin (X) Xmin=-90
inverse of a function is a superscript ~YoB. 75 Xmax=180
of negative one. For example, the 3= Xscl=45

. 4 e “Ya= Ymin=-1.5
inverse of the cosine function is “Ys= Ymax=1.5
written as cos™'. The negative one “Ye6= Yscl=1

is not an exponent, so it does not NY7= Xres=1
denote reciprocal. Do not make
thi ccos—T x % 1 And CALCULATE

is error: cos™' X # =55 And as 1:value L

stated in Section 2.3, if f(a) = b then % 1 Zero \

~1(h) = . :minimum
f~1(b) = a.For exam?/lg, for the sine 4 :maximum
function, if sin60° = v3 then én;grsect

/3 2 . % X Intersection

Smﬂ(T) - 60° 7: 5t (x)dx X=48.590378 Y=.75




Example 6

From the top of a perpendicular cliff 93 m high, the angle of depression
of a boat is 26.5°. How far is the boat from the foot of the cliff? Give your
answer accurate to 3 s.f.

Solution s Kz_é.‘s:{._—" —

93m

A Aé}-\. A NECT N W T T NP WO St VI Y MY W oS (S U T i N Y

If the angle of depression of the boat from the top of the cliff is 26.5°, the
angle of elevation of the top of the cliff from the boat is also 26.5°. Thus,

we can use the right triangle below to solve for d.

93m
26.5°
d
o 93 _ ,__ 93 93
tan26.5° = 7= d = 5es= d~ §gg5g ~ 18053

The boat is approximately 187 m from the foot of the cliff.

Example 7

A man who is 183 cm tall casts a 72 cm long shadow on the horizontal
ground. What is the angle of elevation of the sun to the nearest tenth of a
degree?

Solution

In the diagram, the angle of

elevation of the sun is labelled 6.

183cm

—
72cm
_ 183 tan-1(183/72)
tan = =5 68.52320902
= -1 m
6 = tan (72 )
6 = 68.5°
GDC computation

The angle of elevation of the sun is approximately 68.5°.
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Exercise 7.1

In questions 1-6, find the exact value of the trigonometric function for the specified
acute angle in triangle ABC.

B
5
A 3 C
1 sinA 2 COSA 3 tanA
4 sinB 5 cosB 6 tanB
7 Using your GDC, find (accurate to 3 sf) the degree measure of BAC and ABC in

right triangle ABC above.

In questions 813, sketch a right triangle corresponding to the given trigonometric
function of the acute angle 6. Use Pythagoras'theorem to determine the third side,
and then find the value of the other two trigonometric functions of 6.

8 sino =3 9 cosf=2 10 tang =2
_7 _1 _V7

11 c:osbl—10 12 tam&l—3 13 cosf = Z

In questions 14-19, find the exact value of the trigonometric function.

14 sin45° 15 cos 16 tan45°

17 sin%r 18 tang 19 cos60°

In questions 20-25, find the exact value of §in degree measure (0 < # < 90°) and in
radian measure (O <6< 777) without using your GDC.

V2

20 cos =% 21 sinf == 22 tanf =3
23 sin@zg 24 tanf=1 25 Coggzg

In questions 26-31, find the approximate value (to 3 sf.) of 8 in degree measure
(0 < A< 90°) and in radian measure (O <6< g) by using the inverse key on your

GDC.
26 sin 6= 0.7258 27 cos = 0.7258 28 tan 6§ = 1.2953
29 cos=0.1638 30 sin = 04721 31 tan 6 = 0.6507
In questions 32-37, solve for x. Give your answer to 3 sf.
32 33 34

@ - . 32

15 = A

X
35 36 37 100
X g 225 Qg ‘.
X
] & X

30°




In questions 38 and 39, solve for all of the unknown sides and angles.

38 p 39 C
q
r 15 =
15°
R
Q 20 B 39 A

40 The tallest tree in the world is reputed to be a giant redwood named Hyperion
located in Redwood National Park in California, USA. At a point 41.5 m from the
centre of its base and on the same elevation, the angle of elevation of the top of
the tree is 70°. How tall is the tree? Give your answer to 3 sf.

41 The top of the Eiffel Tower in Paris (not including the antenna) is 300 m high.
What will be the angle of elevation of the top of the tower from a point on the
ground (assumed level) that is 125 m from the centre of the tower’s base?

42 A woman, 1.62 m tall, standing 3 m A==
from a street light casts a 2 m long
shadow (see diagram). What is the E
height of the street light?

43 A 6 m ladder leaning against the side of a building makes
a 72° angle with the ground (see diagram). How far up the
side of the house does the ladder reach?

44 An isosceles triangle has sides of length 8 cm,
8cm and 6 cm (see diagram). Find the angle
between the two equal sides. 8cm B

6cm
45 From a 50 m observation tower on the shoreline, a coastguard sights a boat in

difficulty. The angle of depression of the boat is 5° (see diagram). How far is the
boat from the shoreline?
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@ Trigonometric functions of any angle

In this section, we will extend the trigonometric ratios to all angles
allowing us to solve problems involving any size angle.

Functions of an angle related to functions of a
real number
It is useful to pause for a moment in our consideration of the

trigonometric functions as functions of an acute angle in a right triangle,
and take a look at how this approach relates to the one taken in Chapter 6,

B
where the trigonometric functions were functions of a real number.
e(\&?’ ‘ Figure 7.6 shows a right triangle, AABC, where the angle at vertex A is
\(\\;Qoy\ ODE) O;'te labelled 6. Side BC is opposite to angle 6§ and side AC is adjacent to angle 6.
Place AABC in the coordinate plane so that angle 6 is in standard position
0 (A is the centre of the unit circle) as shown in Figure 7.7. The point
A adjacentto ¢ ¢ labelled B’, with coordinates (x, ¥) on the unit circle, is the point where the
A arc of length f terminates. Note that AABC is similar to the smaller right
Figure 7.6 triangle, AAB'C’, and the two legs of AAB'C’ are x and y (Figure 7.8).
Figure 7.7 The radian measure of P B
angle fis t. %
0,1)
B'(x,y)
t
0 =
Figure 7.8 | 4 B
BI
Aﬂ‘ly
A e (e A 0 [ C

From the definitions of the trigonometric functions of an acute angle in
Section 7.1 and properties of similar triangles, we can write the following:

Ging — _opposite _ BC _ BC' _ Y _
hypotenuse AB AB'" 1 Y

adjacent  AC  AC _ x _




From the definitions of the trigonometric functions for the real number
tin Section 6.2, we know that sin t = y and cos t = x. Furthermore, if

0 is given in radian measure, then 6 = t. Therefore, the trigonometric
functions of the angle with radian measure 6 are precisely the same as the
trigonometric functions of the real number ¢. One of the reasons why
trigonometric functions are so useful in a range of applications is because
they can be applied in these two different ways.

Now let’s consider angles other than acute angles.

Defining trigonometric functions for any angle
in standard position
Consider the point P(x, ) on the terminal side of an angle 6 in standard

position (Figure 7.9) such that ris the distance from the origin O to P.
If 6 is an acute angle then we can construct a right triangle POQ (Figure

7.10) by dropping a perpendicular from P to a point Q on the x-axis, and it

follows that:
sinf = lr/,cos.BZ %andtanOZ %(xi 0).

YA
P(x, y)
r

9 =
o) Ly
YA

P(x, y)
r
y

0 | =

0 X Q x

Extending this to angles other than acute angles allows us to define the

trigonometric functions for any angle — positive or negative. It is important

to note that the values of the trigonometric ratios do not depend on the
choice of the point P(x, y). If P'(x’, y") is any other point on the terminal

side of angle 6, as in Figure 7.11, then triangles POQ and P'OQ’ are similar

and the trigonometric ratios for corresponding angles are equal.

YA
P(x, y)

< Figure 7.9

4 Figure 7.10

< Figure 7.11




Triangle Trigonometry

Definition of basic trigonometric functions

Let 8 be any angle (in degree or radian measure) in standard position, with (x, y) any
point on the terminal side of §,and r = /x2 + y?, the distance from the origin to the
point (x, y), as shown below.

X
iy

(0]

YA

k

<Y

Then the trigonometric functions are defined as follows:

N X )
S|n0—7 cosO—T tan@—;(x#O)

Example 8

Find the sine, cosine and tangent of an angle « that contains the point (—3, 4)
on its terminal side when in standard position.

VA
(—3,4)

N2

|

0 =%
Solution
r=\/x2+y2=\/(—3)2+42=\@=5
Then, sina=1r/=%
r 5 5
x -3 3

Note that for the angle « in Example 8, we can form a right triangle by
constructing a line segment from the point (—3, 4) perpendicular to the
x-axis, as shown in Figure 7.12. Clearly, # = 180° — a. Furthermore, the
values of the sine, cosine and tangent of the angle 6 are the same as that for
the angle «, except that the sign may be different.

Figure 7.12 | 2 VA
(=3,4)

0 .




YA
1I I
(x y)
sine + sine +
cosine — cosine +
tangent — h tangent +
. [0} . »

sine — sine —
cosine — cosine +
tangent + tangent —

11T v

Whether the trigonometric functions are defined in terms of the length of
an arc or in terms of an angle, the signs of trigonometric function values
are determined by the quadrant in which the arc or angle lies, when in
standard position (Figure 7.13).

Example 9

Find the sine, cosine and tangent of the obtuse angle that measures 150°.

Solution

The terminal side of the angle forms a 30° angle with the x-axis. The sine
values for 150° and 30° will be exactly the same, and the cosine and tangent
values will be the same but of opposite sign. We know that

sin30° = %, cos30° = ? and tan30° = ?

Therefore, sin 150° = %, cos 150° = —? and tan 150° = —?.
Example 10

Given that sin § = % and 90° < 0 < 180°, find the exact values of cos 8
and tan 6.

Solution

6 is an angle in the second quadrant. It follows from the definition sin § = lr/
that with 6 in standard position there must be a point on the terminal side
of the angle that is 13 units from the origin (i.e. r = 13) and which has a
y-coordinate of 5, as shown in the diagram.

y
(x, 5)
13
5
fm
==

X 0 ‘

Using Pythagoras’ theorem, |x| = v 13% — 52 = V144 = 12. Because 0 is in
the second quadrant, the x-coordinate of the point must be negative, thus
x= —12.

Therefore, cos § = —12_ 12 %

_ .5 _ _
B = E,andtan@——_12

< Figure 7.13 Sign of trigonometric
function values depends on the
quadrant in which the terminal side
of the angle lies.

YA
(=% y] 0 Yy
K 1507\ ¥ are
3oNUT0 \30 =
—X o) X X

Example 9 illustrates three
trigonometric identities for
angles whose sum is 180° (i.e. a
pair of supplementary angles).
The following are true for any
acute angle 6:

sin(180° — 0) = sin
cos(180° — 6) = —cos 0
tan(180° — ) = —tan 6




Triangle Trigonometry

Example11

a) Find the acute angle with the same sine ratio as (i) 135°, and (ii) 117°.
b) Find the acute angle with the same cosine ratio as (i) 300°, and (ii) 342°.

Solution

a) (i) Angles in the first and second quadrants have the same sine ratio.
Hence, the identity sin(180° — 6) = sin 6. Since 180° — 135° = 45°,
then sin 135° = sin 45°.

(i1) Since 180° — 117° = 63°, then sin117° = sin 63°

YA

(=x X1 xy)
1177°\63°
0 X

b) (i) Angles in the first and fourth quadrants have the same cosine ratio.
Hence, the identity cos(360° — ) = cos 6. Since 360° — 300° = 60°,
then cos300° = cos60° .

(ii) Since 360° — 342° = 18°, then cos342° = cos 18°.

YA
)

(xy
e

x

(x =)

Areas of triangles

You are familiar with the standard formula for the area of a triangle,

area = % X base X height (or area = %bh), where the base, b, is a side of the
triangle and the height, h, (or altitude) is a line segment perpendicular to
the base (or the line containing it) and drawn to the vertex opposite to the
base, as shown in Figure 7.14.

Figure 7.14 | 4

E
< b

Y

If the lengths of two sides of a triangle and the measure of the angle
between these sides (often called the included angle) are known, then
the triangle is unique and has a fixed area. Hence, we should be able to
calculate the area from just these measurements, i.e. from knowing two




sides and the included angle. This calculation is quite straightforward if the
triangle is a right triangle (Figure 7.15) and we know the lengths of the two h
legs on either side of the right angle.

Let’s develop a general area formula that will apply to any triangle — right, b
acute or obtuse. For triangle ABC shown in Figure 7.16, suppose we know A

the lengths of the two sides a and b and the included angle C. If the length Figure7.13

of the height from B is h, the area of the triangle is %bh. From right triangle

trigonometry, we know that sin C = %, or h = asin C. Substituting asin C
for h, area = %hh = %b(asin C) = %absin C.

4 Figure 7.16

If the angle Cis obtuse, then from Figure 7.17 we see that sin(180° — C) = %.
So, the height is h = asin(180° — C). However, sin(180° — C) = sinC.
Thus, h = asin C and, again, area = %ab sin C.

4 Figure 7.17

e Hint: Note that the procedure for
finding the area of a triangle from a
pair of sides and the included angle
can be performed three different
For a triangle with sides of lengths a and b and included angle C, ways. For any triangle labelled in the

Area of A = %absin C manner of the triangles in Figures
7.16 and 7.17, its area is expressed
by any of the following three
expressions.

Area of a triangle

Example 12 Areaof A = %absin C
Find the area of each triangle. Express the area exactly, or, if not possible, =ZlacsinB
express it accurate to 3 s.f. = 1bcsinA
a) b) @ c) These three equivalent expressions
13cm 8cm .
14cm 15¢cm will prove to be helpful for
developing an important formula
30°\ 5 i i i i
55 for solving non-right triangles in the
12cm ;
17¢cm next section.

Solution

a) Area = 3(12)(14)sin30° = 84(0.5) = 42 cm?
b) Area = 2(8)(13)sin 110° =~ 52(0.939 69) ~ 48.9 cm?
c) Area = %(15)(17)sin55° ~ 127.5(0.819 152) =~ 104 cm?
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Example 13

The circle shown has a radius of 1 cm and the

central angle 0 subtends an arc of length of 2777 cm.
Find the area of the shaded region.

Solution

The formula for the area of a sector is A = %rzﬁ
(Section 6.1), where 6 is the central angle in radian
measure. Since the radius of the circle is one, the
length of the arc subtended by 6 is the same as the

radian measure of 6. Thus, area of sector
= %(1)2 (2%7 ) = %T cm?. The area of the triangle / \
formed by the two radii and the chord is equal to

ki) -] - F o

[sinz—ﬂ- = sin (77 - 277) sing = £ \®/
3 3 3 2

The area of the shaded region is found by subtracting the area of the triangle
m_ V3 _4m—3V3
T

from the area of the sector. Area = 3~ B
0.614 cm? (3 s.f.).

Wy

or approximately

Example 14

Show that it is possible to construct two different triangles with an area of
35 cm? that have sides measuring 8 cm and 13 cm. For each triangle, find
the measure of the (included) angle between the sides of 8 cm and 13 cm to
the nearest tenth of a degree.

Solution
We can visualize the two different triangles with equal areas — one with an
acute included angle («) and the other with an obtuse included angle ().

Area = —(51de)(51de)(51ne of included angle) = 35 cm?

13 = 5(8)(13)(sm a) = 35
52sina = 35
sing = 22
5 52
a =sin! (%) recall that the GDC will only give the acute angle
with sine ratio of 5
o = 42.3° rounded to the nearest tenth

Knowing that sin(180° — a) = sin «, the obtuse angle 8 is equal to
8 180° — 42.3° = 137.7°.




Check this answer by computing on your GDC:

1(8)(13)(sin 137.7°) =~ 34.997 =~ 35 cm?.

Therefore, there are two different triangles with sides 8 cm and 13 cm and
area of 35 cm? — one with an included angle of 42.3° and the other with an
included angle of 137.7°.

In questions 1-6, find the exact value of the sine, cosine and tangent functions of the

angle 6.
1 YA 2 YA
(4,3) (—12,5)
A, [
0 =2 0 X
3 YA 4 YA
fol N\ fol N |
Q X 9 X
=1 (=v3,-1)
5 YA 6 A
(1,3)
N, 1N,
0 s & 0 X
(=3,-3)

7 By using the symmetry of the unit circle, or otherwise, determine the exact sine,
cosine and tangent function values for the following common obtuse angles.

a) 120° b) 135° c) 150°
8 Evaluate the sine, cosine and tangent of each angle without using your GDC.
a) 225° b) 330° 0 Z
d) —60° e) 270° f 2
g) —120° h) —g o
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9 Given that cos 8 = %and —90° < 6 < 0°, find the exact values of sin @ and tan 6.

|0

10 Giventhatsin@ =
tan 6.

i and 90° < A < 180° find the exact values of cos 6 and

~

11 Giventhattan 6 = —% and sin 6 < 0°, find the exact values of sin @ and cos 6.
12 Given that sin @ = 0 and cos 8 < 0°, find the exact values of cos 8 and tan 6.

13 a) Find the acute angle with the same sine ratio as (i) 150°, and (ii) 95°.
b) Find the acute angle with the same cosine ratio as (i) 315°,and (i) 353°.
c) Find the acute angle with the same tangent ratio as (i) 240°, and (i) 200°.

14 Find the area of each triangle. Express the area exactly, or, if not possible, express
it accurate to 3 sf.

a) b) Q) 30
6

15 A chord AB subtends an angle of 120° at O, the centre of a circle with radius
15 cm. Find the area of a) the sector AOB, and b) the triangle AOB.

16 Find the area of the shaded region (called a segment) in each circle.

17 Find the area of a parallelogram with two
sides of length 15 cm and 10 cm, if the angle
between these sides has a measure of 54°
(see diagram). 54°

15cm
@ The law of sines

In Section 7.1 we used techniques from right triangle trigonometry to
solve right triangles when an acute angle and one side are known, or
when two sides are known. In this section and the next, we will study
methods for finding unknown lengths and angles in triangles that are not
right triangles. These general methods are effective for solving problems
involving any kind of triangle — right, acute or obtuse.

10cm

Possible triangles constructed from
three given parts

As mentioned in the previous paragraph, we’ve solved right triangles by
either knowing an acute angle and one side, or knowing two sides. Since
the triangles also have a right angle, each of those two cases actually




involved knowing three different parts of the triangle — either two angles
and a side, or two sides and an angle. We need to know at least three

parts of a triangle in order to solve for other unknown parts. Different
arrangements of the three known parts can be given. Before solving for
unknown parts, it is helpful to know whether the three known parts
determine a unique triangle, or possibly more than one triangle. The table
below summarizes the five different arrangements of three parts and the
number of possible triangles for each. You are encouraged to confirm these
results on your own with manual or computer generated sketches.

Possible triangles formed with three known parts

Known parts Number of possible triangles
Three angles (AAA) Infinite triangles (not possible to
solve)
Three sides (SSS) One unique triangle
(sum of any two must be greater than the

third)

Two sides and their included angle (SAS) | One unique triangle

Two angles and any side (ASA or AAS) One unique triangle

Two sides and a non-included angle (SSA) | No triangle, one triangle or two
triangles (ambiguous case).

ASA, AAS and SSA can be solved using the law of sines, whereas SSS and
SAS can be solved using the law of cosines (next section).

The law of sines (or sine rule)

In the previous section, we showed that we can write three equivalent
expressions for the area of any triangle for which we know two sides and B
the included angle.

Areaof A = %absinC = %acsinB = %bcsinA

If each of these expressions is divided by %abc, b

%absin C %acsinB %bcsinA

1 1 1
sabc 5 abc 5 abc

we obtain three equivalent ratios — each containing the sine of an angle
divided by the length of the side opposite the angle.

The law of sines

If A, Band C are the angle measures of any triangle and @, b and c are, respectively, the
lengths of the sides opposite these angles, then

sinA _ sinB _ sinC
a  p @ C

Alternatively, the law of sines can also be written as T &
sinA sinB  sinC
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e Hint: When using your GDC to
find angles and lengths with the
law of sines (or the law of cosines),
remember to store intermediate
answers on the GDC for greater
accuracy. By not rounding until
the final answer, you reduce the
amount of round-off error.

Solving triangles given two angles and any side
(ASA or AAS)

If we know two angles and any side of a triangle, we can use the law of
sines to find any of the other angles or sides of the triangle.

Example 15

Find all of the unknown angles and sides of E
triangle DEF shown in the diagram. Approximate
all measurements to 1 decimal place.

Solution
The third angle of the triangle is
D =180°— E— F=180° — 103.4° — 22.3° = 54.3°
Using the law of sines, we can write the following proportion to solve for
the length e:
sin22.3° _ sin103.4°

11.9 e
_ 11.9sin103.4°
sin 22.3°
We can write another proportion from the law of sines to solve for d:
sin22.3° _ sin54.3°

11.9 d

_ 11.9sin54.3°
sin22.3°

Therefore, the other parts of the triangle are D = 54.3° e = 30.5 cm and
d=25.5cm.

== 30.507 cm

=~ 25.467 cm

Example 16

A tree on a sloping hill casts a shadow 45 m along the side of the hill. The
gradient of the hill is + (or 20%) and the angle of elevation of the sun is
35°. How tall is the tree to the nearest tenth of a metre?

Solution

a is the angle that the hill makes with the horizontal. Its measure A\ Iy,
. . N2

can be found by computing the inverse tangent of é = =

a=tan”'(1) = 113099°




The height of the tree is labelled h. The angle of elevation of the sun is the
angle between the sun’s rays and the horizontal. In the diagram, this angle
of elevation is the sum of @ and B. Thus, 8 = 35° — 11.3099° = 23.6901°.
For the larger right triangle with o + 8 = 35° as one of its acute angles, the
other acute angle — and the angle in the obtuse triangle opposite the side
of 45 m — must be 55°. Now we can apply the law of sines for the obtuse
triangle to solve for h.

sin23.7° _ sin55°

_ _ 45sin23.7°
h 45 sin 55°

=h = 22.0809

Therefore, the tree is approximately 22.1 m tall.

Two sides and a non-included angle (SSA) - the
ambiguous case

The arrangement where we are given the lengths of two sides of a triangle
and the measure of an angle not between those two sides can produce three
different results: no triangle, one unique triangle or two different triangles.
Let’s explore these possibilities with the following example.

Example17

Find all of the unknown angles and sides of triangle ABC where a = 35cm,
b =50cm and A = 30°. Approximate all measurements to 1 decimal place.

Solution
Figure 7.18 shows the three parts we have from which to try and construct
a triangle.

B a=35cm C 4 Figure7.18

A b =50cm C " 30°\

We attempt to construct the triangle, as shown in Figure 7.19. We first draw
angle A with its initial side (or base line of the triangle) extended. We then
measure off the known side b = AC = 50. To construct side a (opposite
angle A), we take point C as the centre and with radius a = 35 we draw an
arc of a circle. The points on this arc are all possible positions for vertex B
— one of the endpoints of side a, or BC. Point B must be on the base line,

so B can be located at any point of intersection of the circular arc and the
base line. In this instance, with these particular measurements for the two
sides and non-included angle, there are two points of intersection, which
we label B, and B,.
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Figure 7.19 | 4
B, B;  base Iin;
«— G —>
- C; >
Therefore, we can construct two different triangles, triangle AB, C (Figure
7.20) and triangle AB,C (Figure 7.21). Angle B, will be acute and angle B,
will be obtuse. To complete the solution of this problem, we need to solve
each of these triangles.
« Solve triangle AB,C:
Figure 7.20 | g ¢
a=35cm
30°|
A - . B,
We can solve for acute angle B, using the law of sines:
sin30° _ sinB,
35 50
sin B, — 50sin30° _ 50(0.5)
! 35 35
B, = sin*l(%) ~ 45.5847°
Then, C = 180° — 30° — 45.5847° =~ 104.4153°.
With another application of the law of sines, we can solve for side ¢;:
sin30° _ sin104.4153°
35 a
_ 35sin104.4153° _ 35(0.96852)
G = 5in 30° ~= 05 =~ 67.7964 cm
Therefore, for triangle AB,C, B, = 45.6°, C =~ 104.4° and ¢; = 67.8 cm.
« Solve triangle AB,C:
Figure 7.21 | 4 C

a=35cm

A 2 8,

Solving for obtuse angle B, using the law of sines gives the same
result as above, except we know that 90° << B, < 180°.

We also know that sin (180° — 6) = sin 6.

Thus, B, = 180° — B; = 180° — 45.5847° =~ 134.4153°.

Then, C = 180° — 30° — 134.4153° = 15.5847°.




With another application of the law of sines, we can solve for side ¢,

sin30° _ sin15.5847°

35 &
__ 35sin15.5847° _ 35(0.26866) _
6= Sin 3(0° -~ 0.5 =~ 18.8062 cm

Therefore, for triangle AB,C, B, = 134.4°, C = 15.6° and
6 =~ 18.8cm.

Now that we have solved this specific example, let’s take a more general
look and examine all the possible conditions and outcomes for the SSA
arrangement. In general, we are given the lengths of two sides — call

them a and b — and a non-included angle — for example, angle A that is
opposite side a. From these measurements, we can determine the number
of different triangles. Figure 7.22 shows the four different possibilities

(or cases) when angle A is acute. The number of triangles depends on the
length of side a.

C four different cases 4 Figure 7.22

B baseline

In case 2, side a is perpendicular to the base line resulting in a single C
right triangle, shown in Figure 7.23. In this case, clearly sin A = % and

a = bsin A. In case 1, the length of a is shorter than it is in case 2, i.e bsin A.
In case 3, which occurred in Example 17, the length of a is longer than

bsin A, but less than b. And, in case 4, the length of a is greater than b.
These results are summarized in the table below. Because the number of 2 2
triangles may be none, one or two, depending on the length of a (the side A

opposite the given angle), the SSA arrangement is called the ambiguous Figure7.23

case.

The ambiguous case (SSA)

Given the lengths of sides a and b and the fact that the non-included angle A is acute,
the following four cases and resulting triangles can occur.

Length of a Number of triangles
a<bsinA No triangle
a = bsinA One right triangle
bsinA<a<b Two triangles
a=b One triangle
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Figure 7.24 Angle A is obtuse.

e Hint: Itisimportant to be familiar
with the notation for line segments
and angles commonly used in

IB exam questions. For example,

the line segment labelled b in the
diagram (below) is denoted as [AC]
in IB notation. Angle A, the angle
between [BA] and [AC], is denoted
as BAC. Also, the line containing
points A and B is denoted as (AB).

C

| g

The situation is considerably simpler if angle A is obtuse rather than acute.
Figure 7.24 shows that if a > b then there is only one possible triangle, and
if a < b then no triangle that contains angle A is possible.

C

a> b —one triangle a<b —snotriangle

Example 18

For triangle ABC, if side b = 50 cm and angle A = 30°, find the values for
the length of side a that will produce: (i) no triangle, (ii) one triangle, (iii)
two triangles. This is the same SSA information given in Example 17 with
the exception that side a is not fixed at 35 cm, but is allowed to vary.

Solution

Because this is a SSA arrangement and given A is an acute angle, then the
number of different triangles that can be constructed is dependent on
the length of a. First calculate the value of bsin A:

bsinA = 50sin30° = 50(0.5) = 25cm

Thus, if a is exactly 25 cm then triangle ABC is a right triangle, as shown in
the figure. c

50cm 25cm

A 30°| IB

(i) If a <25cm, there is no triangle.
(ii) If a = 25cm, or a > 50 cm, there is one unique triangle.
(iii) If 25cm < a < 50 cm, there are two different possible triangles.

Example 19

The diagrams below show two different triangles both satisfying the
conditions: HK = 18 cm, JK = 15 ¢cm, JHK = 53°.
Triangle 1 Triangle 2
K K

H J H J

a) Calculate the size of HJK in Triangle 2.
b) Calculate the area of Triangle 1.



Solution

. in(HJ in 53° . N
a) From the law of sines, sm(l 8]K) = 5111123 = sin(HJK) =

~ 0.958 36 = sin~1(0.95836) =~ 73.408°
However, H/K > 90° = HJK =~ 180° — 73.408° =~ 106.592°.
Therefore, in Triangle 2 HJK = 107° (3 s.f.).

18sin 53°
15

b) In Triangle 1, HJK < 90° = HJK ~ 73.408°
= HKJ ~ 180° — (73.408° + 53°) =~ 53.592°
Area = 5(18)(15)sin(53.592°) ~ 108.649 cm?.
Therefore, the area of Triangle 1 is approximately 109 cm? (3 s.f.).

@ The law of cosines

Two cases remain in our list of different ways to arrange three known parts
of a triangle. If three sides of a triangle are known (SSS arrangement),

or two sides of a triangle and the angle between them are known (SAS
arrangement), then a unique triangle is determined. However, in both of
these cases, the law of sines cannot solve the triangle.

Q < Figure 7.25

6m

4m

5m

13¢cm

For example, it is not possible to set up an equation using the law of sines
to solve triangle PQR or triangle STU in Figure 7.25.

sinP _ sinR

e Trying to solve APQR: ) 3

angle P or angle R

= two unknowns; cannot solve for

e Trying to solve ASTU: &foo = Slil 3U

for angle U or side R

= two unknowns; cannot solve

The law of cosines (or cosine rule)

We will need the law of cosines to solve triangles with these kinds of
arrangements of sides and angles. To derive this law, we need to place a
general triangle ABC in the coordinate plane so that one of the vertices is at
the origin and one of the sides is on the positive x-axis. Figure 7.26 shows
both an acute triangle ABC and an obtuse triangle ABC. In either case, the
coordinates of vertex Care x = bcos Cand y = bsin C. Because cis the
distance from A to B, then we can use the distance formula to write
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Figure 7.26

¢ =/(bcosC — a)? + (bsinC — 0)? distance between (bcos C, bsin C)
and (4, 0)

c?2 = (bcosC — a)? + (bsinC — 0)? squaring both sides
c? = b%cos? C — 2abcos C +a? + b%sin? C expand

c? = b3(cos? C + sin?C) — 2abcos C + a? factor out b? from two terms

¢ = b%—2abcosC + a? apply trigonometric identity
cos® O + sin? 0 =1
¢ =a’+ b?— 2abcosC rearrange terms

This equation gives one form of the law of cosines. Two other forms are
obtained in a similar manner by having either vertex A or vertex B, rather
than C, located at the origin.

Ya Ya
A(b cos C, bsinC) A(bcos C, bsinC)
b C i b ¢
3] " T "
C|(0,0) a B(a,0) X C|(0,0) a B(a,0) X

The law of cosines

In any triangle ABC with corresponding sides g, b and c:
c? =a’+ b2 —2abcosC
b? =a?+ c?— 2accosB
a’? =b?+ c? — 2bccosA

It is helpful to understand the underlying pattern of the law of cosines
when applying it to solve for parts of triangles. The pattern relies on
choosing one particular angle of the triangle and then identifying the two
sides that are adjacent to the angle and the one side that is opposite to it.
The law of cosines can be used to solve for the chosen angle or the side
opposite the chosen angle.

side opposite the
chosen angle chosen angle

c2=a*+ b>—2abcos C

one side other side
adjacent to the adjacent to the
chosenangle  chosen angle

Solving triangles given two sides and the
included angle (SAS)

If we know two sides and the included angle, we can use the law of cosines
to solve for the side opposite the given angle. Then it is best to solve for one
of the two remaining angles using the law of sines.



Example 20

Find all of the unknown angles and sides of triangle ¥
STU, one of the triangles shown earlier in Figure 7.25.
Approximate all measurements to 1 decimal place. 7em ¢
80°
13cm s

Solution
We first solve for side #, opposite the known angle STU, using the law of
cosines:

t2 =132 4+ 172 — 2(13)(17) cos 80°

t =132 + 172 — 2(13)(17) cos 80°
t =~ 19.5256

Now use the law of sines to solve for one of the other angles, say TSU:
sinTSU _ sin80°

17~ 19.5256
. arr_ 17sin 80°
sin TSU = 975756
SU = sin~! M)
ISU = sin (19.5256

TSU = 59.0288°
Then, SUT =~ 180° — (80° + 59.0288°) ~ 40.9712°.

Therefore, the other parts of the triangle are t = 19.5 cm, TSU =~ 59.0° and
SUT =~ 41.0°.

e Hint: As previously mentioned, remember to store intermediate answers on the GDC for
greater accuracy. By not rounding until the final answer, you reduce the amount of round-
off error. The GDC screen images below show the calculations in the solution for Example 20
above.

17)cos (80))
19.52556031

Ans-»T
19.52556031

V(132+17-2(13) ( Ans

>T
19.52556031
sin-1(17sin(80) /T

59.028840098
Ans=S
59.02884098

sin-1(17sin(80) /T
59.02884098

S=S
59.02884098
180-(80+S)
40.97115902

Example 21

A ship travels 50 km due west, then changes its
course 18° northward, as shown in the diagram.
After travelling 75 km in that direction, how

far is the ship from its point of departure? Give
your answer to the nearest tenth of a kilometre.

-

You may have noticed that the

 formula for the law of cosines

looks similar to the formula for
Pythagoras'theorem. In fact,
Pythagoras'theorem can be
considered a special case of the
law of cosines. When the chosen
angle in the law of cosines is 90°,
and since cos90° = 0, the law
of cosines becomes Pythagoras'
theorem.

If angle C = 90°, then
c?=a’+ b?— 2abcosC
=c?=ag’+ b’ — 2abcos90°
=c2=qg?+ b%— 2ab(0)
=c2=qg?+b2org?+ b2=c?

B
e a
A b [] C
N
$
S Seng departure
50km point
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Solution
Let d be the distance from the departure point to the position of the ship.
A large obtuse triangle is formed by the three distances of 50 km, 75 km
and dkm. The angle opposite side d is 180° — 18° = 162°. Using the law of
cosines, we can write the following equation to solve for d:
d? = 50? + 75% — 2(50)(75) cos 162°

d = /502 + 752 — 2(50)(75) cos 162° ~ 123.523

Therefore, the ship is approximately 123.5 km from its departure point.

Solving triangles given three sides (SSS)

Given three line segments such that the sum of the lengths of any two is
greater than the length of the third, then they will form a unique triangle.
Therefore, if we know three sides of a triangle we can solve for the three
angle measures. To use the law of cosines to solve for an unknown angle, it
is best to first rearrange the formula so that the chosen angle is the subject
of the formula.

Solve for angle Cin:
c2=a%+ b*—2abcosC=2abcosC=a?+ b2 — 2= cosC=

a’+ b2 — cz)
2ab ’

a’+ b2 — ¢
2ab
Then, C = cos_l(

Example 22

Find all of the unknown angles of triangle PQR, the second triangle shown
earlier in Figure 7.25. Approximate all measurements to 1 decimal place.

Q

6m

4m

5m

Solution

Note that the smallest angle will be opposite the shortest side. Let’s first
solve for the smallest angle — thus, writing the law of cosines with chosen
angle P:

52 + 67 — 42
2(5)(6)
Now that we know the measure of angle P, we have two sides and a non-
included angle (SSA), and the law of sines can be used to find the other
non-included angle. Consider the sides QR = 4, RP = 5 and the angle
P = 41.4096°. Substituting into the law of sines, we can solve for angle Q

that is opposite RP.

pP= cosl( ) =~ 41.4096°

sinQ _ sin41.4096°
5 4




. _ 5s5in41.4096°
sinQ = =

Q = Sin71 w

Then, R = 180° — (41.4096° + 55.7711°) = 82.8192°.

Therefore, the three angles of triangle PQR are P = 41.4°, Q = 55.8° and
R == 82.8°.

) =~ 55.7711°

Example 23

A ladder that is 8 m long is leaning against a non-vertical wall that slopes
away from the ladder. The foot of the ladder is 3.5 m from the base of
the wall, and the distance from the top of the ladder down the wall to the
ground is 5.75 m. To the nearest tenth of a degree, what is the acute angle
at which the wall is inclined to the horizontal?

Solution

Let’s start by drawing a diagram that accurately represents the given
information. # marks the acute angle of inclination of the wall. Its
supplement is FBT. From the law of cosines:

3.5% + 5.75% — 82

cos FBT = =5 3535.75)
(3.5 4 5.75% — 82 _ .
FBT = cos ( 2(3.5)(5.75) 117.664

0 = 180° — 117.664° =~ 62.336°

Therefore, the angle of inclination of the wall is approximately 62.3°.

Exercise 7.3 and 7.4

In questions1-6, state the number of distinct triangles (none, one, two or infinite)
that can be constructed with the given measurements. If the answer is one or two
triangles, provide a sketch of each triangle.

1 ACB = 30°, ABC = 50° and BAC = 100°

2 ACB=30°,AC=12cmandBC = 17cm
3 ACB =30°,AB=7cmand AC = 14cm
4 ACB = 47°, BC =20cm and ABC = 55°

5 BAC = 25°,AB= 12cmand BC = 7cm
6 AB=23cm,AC=19cmandBC = 11cm

In questions 7—15, solve the triangle. In other words, find the measurements of all
unknown sides and angles. If two triangles are possible, solve for both.

7 BAC =37°,ABC = 28°and AC = 14
8 ABC =68°, ACB = 47°and AC = 23
9 BAC =18 ACB=51°and AC = 4.7
10 ACB = 112°, ABC = 25°and BC = 240
11 BC = 68,ACB = 71°and AC = 59
12 BC=16,AC= 14and AB = 12
13 BC = 42,AC=37and AB = 26
14 BC = 34, ABC = 43°and AC = 28
15 AC = 0.55,BAC = 62°and BC = 0.51
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16 Find the lengths of the diagonals of a parallelogram whose sides measure 14 cm
and 18 cm and which has one angle of 37°.

17 Find the measures of the angles of an isosceles triangle whose sides are 10 cm,
8cmand 8cm.

18 A boat is sailing directly towards a cliff. The angle of elevation of a point on the
top of the cliff and straight ahead of the boat increases from 10° to 15° as the
ship sails a distance of 50 m (see diagram). Find the height of the cliff.

|

19 Given that for triangle DEF, EDF = 43° DF = 24 and FE = 18, find the two
possible measures of DFE.

20 A tractor drove from a point A directly north for 500 m, and then drove north-
east (i.e. bearing of 45°) for 300 m, stopping at point B. What is the distance
between points A and B?

21 Find the measure of the smallest angle in the triangle shown.

6
4
9
22 Find the area of triangle PQR.
P
78°
R
15cm g

In questions 23 and 24, find a value for the length of BC so that the number of
possible triangles is: a) one, b) two and ¢) none.

23 BAC=36°AB=5 24 BAC = 60°, AB = 10
25 A 50m vertical pole is to be erected on the side of a sloping hill that makes a
8° angle with the horizontal (see diagram). Find the length of each of the two

supporting wires (x and y) that will be anchored 35 m uphill and downhill from
the base of the pole.

—3%m




@ Applications

There are some additional applications of triangle trigonometry — both right
triangles and non-right triangles — that we should take some time to examine.

Equations of lines and angles between two lines

Recall from Section 1.6, the slope m, or gradient, of a non-vertical line is
y» —yn _ vertical change

defined as m = T—=- = . .
% = %1 horizontal change

;/ y=1x—1 4 Figure 7.27

1
2,0) 0

-2 10 2 3 4 5 X
10, -1)
Ly

The equation of the line shown in Figure 7.27 has a slope m = % and a
y-intercept of (0, —1). So, the equation of the line is y = %x — 1. We can
find the measure of the acute angle 6 between the line and the x-axis by
using the tangent function (Figure 7.28).

Y
1

< Figure 7.28

-1
0= tan"(m) = tan’l(%) ~ 26.6°.
Clearly, the slope, m, of this line is equal to tan 6. If we know the angle

between the line and the x-axis, and the y-intercept (0, ¢), we can write the
equation of the line in slope-intercept form (y = mx + ¢) as y = (tan0)x + c.

Before we can generalize for any non-horizontal line, let’s look at a line
with a negative slope.

\5:‘(0 N 4 Figure 7.29

y=—3x+1 |
gl 2 | |

SEEEEEL N %

T v

The slope of the line is — L. In order for tan 6 to be equal to the slope of the
line, the angle 6 must be the angle that the line makes with the x-axis in the
positive direction, as shown in Figure 7.29. In this example,

0 =tan"Y(m) = tan_1<—%) ~ —26.6°

Remember, an angle with a negative measure indicates a clockwise rotation
from the initial side to the terminal side of the angle.
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Equations of lines intersecting the x-axis

If a line has a y-intercept of (0, ¢) and makes an angle of 6 with the positive direction of
the x-axis, such that —90° < 6 < 90°, then the slope (gradient) of the line is m = tan 6
and the equation of the line is y = (tan 6)x + c. Note: The angle this line makes with any
horizontal line will be 6.

Let’s use triangle trigonometry to find the angle between any two
intersecting lines — not just for a line intersecting the x-axis. Realize that
any pair of intersecting lines that are not perpendicular will have both an
acute angle and an obtuse angle between them. When asked for an angle
between two lines, the convention is to give the acute angle.

Example 24
Find the acute angle between the lines y = 3xand y = —x.
Solution VA J= 3x
2 -
14
-
0 a\
2 | TR 2 X
y=—x
_2 -

The angle between the line y = 3x and the positive x-axis is «, and the
angle between the line y = —x and the positive x-axis is .
a = tan"}(3) = 71.565°
B =tan"!(—1) = —45°
The obtuse angle between the two lines is
a — B=71.565° — (—45°) = 116.565°.
Therefore, the acute angle 6 between the two lines is
0 = 180° — 116.565° = 63.4°.

Example 25
Find the acute angle between the lines y = 5x — 2 and y = %x -1
Solution

Zy:“ y=5x—2

A horizontal line is drawn through the point of intersection.




The angle between y = 5x — 2 and this horizontal line is «, and the angle
between y = %x — 1 and this horizontal line is (3.

a=tan"!(5) ~78.690° and B =tan !(}) = 18.435°

The acute angle 0 between the two lines is
0=a— [B=78.690° — 18.435° = 60.3°.

We can generalize the procedure for finding the angle between two lines as
follows.

Given two non-vertical lines with equations of y; = mx + ¢; and y, = mox + ¢, the angle
between the two lines is [tan~'(m;) — tan™'(m,)|. Note: This angle may be acute or obtuse.

Example 26

a) Find the exact equation of line L, that passes through the origin and
makes an angle of —60° with the positive direction of the x-axis (or 120°).

b) The equation of line L, is 7x + y + 1 = 0. Find the acute angle between
the lines L, and L,.

Solution
a) The equation of the line is given by y = (tan 6)x
in(-607) ] _ |7
= —_ o = St — = 2_ — (—
= y = [tan(—60°)]x cos(—60°)}x T x=(—V/3)x

Therefore, the equation of L, is y = (—v3 )xor y = —x/3.

Note: tan (—60°) = tan120° = —/3. K
b) Ly7x+y+1=0=>y=—-7x—1

0 is the acute angle between the lines L, and L,.

0 = |[tan"'(m;) — tan"!(m,)| = [tan" (=3 ) — tan ' (—=7)|

= 0~ |—60° —(—81.870°)| =~ |—21.87°|

Therefore, the acute angle between the lines is approximately =~ ~----------- - Nl

21.9° (3s.f.). ' T X

Further applications involving the
solution of triangles

Many problems that involve distances and angles are represented

by diagrams with multiple triangles — right and otherwise. These diagrams
can be confusing and difficult to interpret correctly. In these situations, it
is important to carry out a careful analysis of the given information and
diagram — this will usually lead to drawing additional diagrams. Often we
can extract a triangle, or triangles, for which we have enough information
to allow us to solve the triangle(s).
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Example 27
Two boats, Jand K, are 500 m apart. A lighthouse is on top of a 470 m cliff.
The base, B, of the cliff is in line horizontally with [JK]. From the top, T, of
the lighthouse, the angles of depression of Jand K are, respectively, 25° and
40°. Find, correct to the nearest metre, the height, A, of the lighthouse from
its base on the clifftop ground to the top T.

470m

Solution
First, extract obtuse triangle JKT and apply the law of sines to solve for the
side KT, which is also the hypotenuse of the right triangle KBT.

T

4

25°
J 500 K
sin25° _ sin15° _ 500sin25° _
r = 50 = KT=> 5 ~ 816436 m

We can now use the right triangle KBT to find the side BT — which is equal
to the height of the cliff plus the height of the lighthouse.

T

816.4

40°
K i B

T o — BT — : (o] ~
sin40° = 316.436 = BT = 816.436sin40 524.795m

Then, h = 524.795 — 470 = 54.795 m.
Therefore, the height of the lighthouse is 54.8 m.




Example 28

As viewed from the surface of the Earth, the angle subtended by the full Moon

is 0.5182°. Given that the distance from the Earth’s surface to the Moon’s
surface is approximately 383 500 km, find the radius of the Moon to 3 s.f.

Solution

0.5182°

Moon

Remember that the radius of a circle drawn to a point of tangency will
be perpendicular to the tangent line. This gives us two right triangles
in the diagram — each with one acute angle having a measure

of %(0.5182°) = 0.2591°. Extract right triangle ADC from the diagram.

0.2591° D

/M—.\ 4
A 1

gr ¢
« 383500km—

31n(0259 10) = Wroﬂ

r= (383500 + r)sin(0.2591°)
r = 383500sin(0.2591°) + rsin(0.2591°)

r — rsin(0.2591°) = 383 5005sin(0.2591°) Collect terms containing r on
the left side.

r(1—sin(0.2591°)) = 383 500sin(0.2591°) Factor out r from the expression

on the left side.
_ 383500sin(0.2591°)

T —sin(02591°)  174212km

Therefore, the approximate radius of the Moon is 1740 km to 3 s.f.

Example 29

The diagram shows a point P that is 10 North
km due south of a point D. A straight

road PQ is such that the (compass) D1

bearing of Q from Pis 45°. A and B are

two points on this road which are both 8

km from D. Find the bearing of Bfrom D, 19
approximated to 3 s.f.
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Solution
The angle 6 in the diagram is the bearing of B from D. A strategy that will
lead to finding 6 is:

(1) Extract triangle PDB and use the law of sines to solve for DBP.

(2) Triangle ADB s isosceles (two sides equal), so DAB = DBP; and since
the sum of angles in triangle ADB is 180°, we can solve for ADB.

(3) We can solve for DAP because it is supplementary to DAB, and then we
can find the third angle in triangle APD.

(4) Since § + ADB + ADP = 180°, we can solve for 6.
D

8 sin DBP _ sin 45°
B 10 8
sin DRP = 10 sin45°
10 8
_ DBP = sin—l(%) ~62.11°
45°
P
117.89°
DAB = DBP =~ 62.11°
ADB =~ 180° — 2(62.11°) = 55.78°
PAD =~ 180° — 62.11° =~ 117.89°
ADP =~ 180° — (45° + 117.89°) =~ 17.11°
North
N
. o\
Compass bearings are O D
measured clockwise from i 55.789
north. 7.1 B

6~ 180° — (17.11° + 55.78°) ~ 107.11°

Therefore, the bearing of B from D is approximately 107° to an accuracy
of 3s.f.




Three-dimensional trigonometry problems

Of course, not all applications of triangle trigonometry are restricted to just
two dimensions. In many problems, it is necessary to calculate lengths and
angles in three-dimensional structures. As in the preceding section, it is very
important to carefully analyze the three-dimensional diagram and to extract
any relevant triangles in order to solve for the necessary angle or length.

Example 30

The diagram shows a vertical pole GH that is supported by two wires fixed
to the horizontal ground at Cand D. The following measurements are
indicated in the diagram: CD = 50 m, GDH = 32°, HDC = 26° and

HCD = 80°.

G

Find a) the distance between H and D, and b) the height of the pole GH.

Solution
a) In triangle HDC: DHC = 180° — (80° + 26°) = 74°.

Now apply the law of sines:

sin80° _ sin74° _, ;o _ 50sin80°

HD 50 sin 74°
Therefore, the distance from H to D is 51.2 m accurate to 3 s.f.

b) Using the right triangle GHD:

o GH _ 0 ~
tan32° = 5105 = GH = 51.225tan3 32.009m

Therefore, the height of the pole is 32.0m accurate to 3 s.f.

=~ 51.225m

Example 31

The figure shown is a pyramid with a square base. It is a right pyramid,
so the line segment (i.e. the height) drawn from the top vertex A
perpendicular to the base will intersect the square base at its centre C. If
each side of the square base has a length of 2 cm and the height of the
pyramid is also 2 cm, find:

a) the measure of AGF
b) the total surface area of the pyramid.
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Solution

a) Label the midpoint of [GF] as point M and draw two line segments,
[CM] and [AM]. Since C'is the centre of the square base then
CM = 1 cm. Extract right triangle ACM and use Pythagoras’ theorem to
find the length of [AM].

A

AM=+V12+22=5 [AM)] is perpendicular to [GF]
Extract right triangle AMG and use the tangent ratio to find AGM

(same as AGF):
A
tan(AGM) = ?
\ AGM = tan™'(V5) =~ 65.905°
G - I_M

1
Therefore, AGM = AGF =~ 65.9°.

b) The total surface area comprises the square base plus four identical
lateral faces that are all isosceles triangles. Triangle AGM is one-half the
area of one of these triangular faces.

Area of triangle AGM = %(1)(\/§) = ?

= Area of triangle AGF = 2(@) =5

Surface area = area of square base + area of four lateral faces
=224+ 4/5 =4+ 4/5 = 12.94 cm?

Example 32
For the rectangular box shown, find a) the measure of ABC, and b) the area
of triangle ABC.
B
/é\‘. |
_____________________ C
7cm

12cm




Solution
a) Each of the three sides of triangle ABC is the hypotenuse of a right
triangle. Using Pythagoras’ theorem:

AC =72+ 122 = V49 + 144 = V193 = 13.892
AB =52+ 72 = /25 + 49 = /74 = 8.602

BC =v5*+ 122 =25 + 144 = /169 = 13

Apply the law of cosines to find ABC, using exact lengths of the sides of
the triangle.

(V74) + 132 — (V193)2 - 1[74 + 169 — 193
A — 1
2(/70)(13) = ABC= cos N (3)

Therefore, the measure of ABC is approximately 77.1° to 3 s.f.

cos ABC =

} =~ 77.082°

b) Area of triangle = 2(AB)(BC)sin ABC = 3(/74)(13)sin(77.082°)
~ 54.499 96 cm?

Therefore, the area of triangle ABC is approximately 54.5 cm?.

In questions 1-4, determine:
a) the slope (gradient) of the line (approximate to 3 sf. if not exact)
b) the equation of the line.

1 YA 2 YA
24
14
70° i
) -1 1 2 X 0 —20 l X
—od
3 yA 4 YA

r\/»
1
¥
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In questions 5-7, find the acute angle that the line through the given pair of points
makes with the x-axis.

5 (1,4 and (—1,2)
6 (—3,1)and (6, —5)

7 (23)and (-4, -10)

In questions 8 and 9, find the acute angle between the two given lines.
8 y=—2xandy=x

9 y=-3x+5andy=2x

10 a) Find the exact equation of line L; that passes through the origin and makes
an angle of 30° with the positive direction of the x-axis.
b) The equation of line L, is x + 2y = 6. Find the acute angle between L, and L,.

11 Calculate AB given CD = 30 cm, and the angle measures given in the diagram.

A

40° 20°
Ce 30cm >

D

12 The circle with centre O and radius of 8 cm has two chords PR and RS, such that
PR = 5cm and RS = 10 cm. Find each of the angles PRO and SRO, and then
calculate the area of the triangle PRS.

R

Ve

13 A pilot measures the angles of depression to two ships to be 40° and 52° (see
diagram). If the pilot is flying at an elevation of 10 000 m, find the distance
between the two ships.

40° -7
,\40°
52\
Il ’
S
Z
o
,

10000m




14 A forester was conducting a survey of a tropical jungle that was mostly

15

16

17

inaccessible on foot. The points F and G indicate the location of two rare trees.
To find the distance between points F and G, a line AB of length 250 m is
measured out so that F and G are on opposite sides of AB. The angles between
the line segment AB and the line of sight from each endpoint of AB to each tree
are measured, and are shown in the diagram. Calculate the distance between
Fand G.

T :

250m

(N,

A

Calculate the distance between the tips of the hands of a large clock on a
building at 10 oclock if the minute hand is 3 m long and the hour hand is 2.25 m
long.

An airplane takes off from point A. It flies 850 km on a bearing of 030°. It then
changes direction to a bearing of 065° and flies a further 500 km and lands at
point B.

a) What is the straight line distance from A to B?
b) What is the bearing from A to B?

The traditional bicycle frame consists of tubes connected together in the shape
of a triangle and a quadrilateral (four-sided polygon). In the diagram, AB, BC,

CD and AD represent the four tubes of the quadrilateral section of the frame. A
frame maker has prepared three tubes such that AD = 53 cm, AB = 55 cm and
BC = 11cm. If DAB = 76° and ABC = 97°, what must be the length of tube CD?
Give your answer to the nearest tenth of a centimetre.
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18 The tetrahedron shown in the diagram has the following measurements.
AB=12cm, DC = 10cm, ACB = 45° and ADB = 60°

A

12cm

AB is perpendicular to the triangle BCD. Find the area of each of the four
triangular faces: ABC, ABD, BCD and ACD.

19 Find the measure of angle DEF in the rectangular box.

E

6cm

_____________

D 3cm

20 Ata point A, due south of a building, the angle of elevation from the ground to
the top of a building is 58°. At a point B (on level ground with A), 80 m due west
of A, the angle of elevation to the top of the building is 27°. Find the height of
the building.

COCO
L0 CO T
COCTIET]
COICTICT]
COECIET]
COEOIET]
III.ED

585
27°

Be 80m > A




Practice questions

1 The shortest distance from a chord [AB] to the centre O of a circle is 3 units. The radius
of the circle is 5 units. Find the exact value of sin AOB.

e

2 In aright triangle, tan 6 = % Find the exact value of sin 26 and cos 26.

3 Atriangle has sides of length 4, 5 and 7 units. Find, to the nearest tenth of a degree,
the size of the largest angle.

4 If Ais an obtuse angle in a triangle and sin A = > calculate the exact value of sin 2A.

ﬁl
5 The diagram shows a vertical pole PQ, which is supported by two wires fixed to the
horizontal ground at A and B.

BQ =40m
PBQ = 36°
BAQ = 70°
ABQ = 30°

Find: a) the height of the pole PQ

b) the distance between A and B.
© International Baccalaureate Organization, 2000

6 Town A is 48 km from town B and 32 km from town C, as shown in the diagram.

C

32km

48km B

Given that town B'is 56 km from town C, find the size of the angle CAB to the nearest

tenth of a degree.
© International Baccalaureate Organization, 2003




Triangle Trigonometry

7 The following diagram shows a triangle with sides 5cm, 7 cm and 8 cm.

7cm
5cm

8cm

Find: a) the size of the smallest angle, in degrees
b) the area of the triangle.
© International Baccalaureate Organization, 2001

8 The diagrams below show two different triangles, both satisfying the conditions:
AB = 20cm, AC = 17 cm, ABC = 50°.

Triangle 1 Triangle 2
A A

B C B C

a) Calculate the size of ACBin Triangle 2.

b) Calculate the area of Triangle 1.
© International Baccalaureate Organization, 2001

9 Two boats A and B start moving from the same point P. Boat A moves in a straight line
at 20 km/h and boat B moves in a straight line at 32 km/h. The angle between their

paths is 70°. Find the distance between the two boats after 2.5 hours.
© International Baccalaureate Organization, 2002

10 In triangle JKL, JL = 25, KL = 38 and KJL = 51°, as shown in the diagram.

K J)
Find JKL, giving your answer correct to the nearest degree.

11 The following diagram shows a triangle ABC, where BC = 5cm, ABC = 60° and

ACB = 40°. A

a) Calculate AB.

b) Find the area of the triangle.
© International Baccalaureate Organization, 2001




12 Find the measure of the acute angle between a pair of diagonals of a cube.

13 A farmer owns a triangular field ABC. One side of the triangle, [AC], is 104 m, a second
side, [AB], is 65 m and the angle between these two sides is 60°.

a) Use the cosine rule to calculate the length of the third side, [BC], of the field.

b) Given that sin60° = ﬁ, find the area of the field in the form pv/3, where piis an

, T2
integer.

Let D be a point on [BC] such that [AD] bisects the 60° angle. The farmer divides the
field into two parts, Ay and A,, by constructing a straight fence [AD] of length x m, as
shown in the diagram.

65x
T
(i) Find a similar expression for the area of A,.
(iii) Hence, find the value of x in the form gv/3, where g s an integer.

c) (i) Show that the area of A; is given by

d) (i) Explain whysin ADC = sinADB.
BD _ 5

(i) Use the result of part (i) and the sine rule to show that -8

© International Baccalaureate Organization, 2002
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Assessment statements

4.1 Vectors as displacements in the plane.

Components of a vector; column representation.
V1
v =V =wvi+vj+ vk
V3

Algebraic and geometric approaches to the following topics:
the sum and difference of two vectors; the zero vector; the vector —v;
multiplication by a scalar, kv; parallel vectors;
magnitude of a vector, |v|;
unit vectors; base vectors, i, j and k;
position vectors OA = a;
AB=0OB-OA=b-a

4.2 The scalar product of two vectors.
Perpendicular vectors; parallel vectors.
The angle between two vectors.

Introduction

Vectors are an essential tool in physics and a very significant part of
mathematics. Historically, their primary application was to represent
forces, and the operation called ‘vector addition’ corresponds to the
combining of various forces. Many other applications in physics and other
fields have been found since. In this chapter, we will discuss what vectors
are and how to add, subtract and multiply them by scalars; we will also
examine why vectors are useful in everyday life and how they are used in
real-life applications. Then we will discuss scalar products.

Control panel of a passenger jet | 4
cockpit.




Vectors as displacements in the
plane

We can represent physical quantities like temperature, distance, area, speed,

density, pressure and volume by a single number indicating magnitude

or size. These are called scalar quantities. Other physical quantities
possess the properties of magnitude and direction. We define the force
needed to pull a truck up a 10° slope by its magnitude and direction.
Force, displacement, velocity, acceleration, lift, drag, thrust and weight are
quantities that cannot be described by a single number. These are called
vector quantities. Distance and displacement, for example, have distinctly
different meanings; so do speed and velocity. Speed is a scalar quantity that
refers to ‘how fast an object is moving.

Velocity is a vector quantity that refers to ‘the rate at which an object changes
its position’. When evaluating the velocity of an object, we must keep track of
direction. It would not be enough to say that an object has a velocity of 55
km/h; we must include direction information in order to fully describe the
velocity of the object. For instance, you must describe the object’s velocity

as being 55 km/h east. This is one of the essential differences between speed
and velocity. Speed is a scalar quantity and does not keep track of direction;
velocity is a vector quantity and is direction-conscious.

Thus, an airplane moving westward with a speed of 600 km/h has a
velocity of 600 km/h west. Note that speed has no direction (it is scalar)
and velocity, at any instant, is simply the speed with a direction.

We represent vector quantities with directed line segments (Figure 8.1).

The directed line segment AB has initial point A and terminal point B. We
use the notation AB to indicate that the line segment represents a vector
quantity. We use |AB | to represent the magnitude of the directed line
segment. The terms size, length or norm are also used. The d1rect10n of AB
is from A to B. BA has the same length but the opposite direction to ABand
hence cannot be equal to it.

Two directed line segments that have the same magnitude and direction
are equivalent. For example, the directed line segments in Figure 8.2 are all
equivalent.

We call the set o of all directed line segments eq equivalent to a given directed
line segment ABa vector v, and write v = AB. We denote vectors by lower-
case, boldface letters such as a, u, and v.

We say that two vectors a and b are equal if their corresponding directed
line segments are equivalent.

b
Vectors @'and b have the Vectors @and b have equal Vectors @and b have equal
same direction but different magnitudes but different magnitudes and the same
magnitudes = a # b. directions = a'# b. direction = a'= b.

O

O The notion of vector, as
presented here, is due to the
mathematician-physicist J.
Williard Gibbs (1839-1903) of
Yale University. His book Vector
Analysis (1881) made these
ideas accessible to a wide
audience.

terminal point B

Ainitial point
A
Figure 8.1

Figure 8.2

< Figure 8.3

e Hint: Note: When we handwrite
vectors, we cannot use boldface, so
the convention is to use the arrow

notation.
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Definition 1: Two vectors u and v are equal if they have the same magnitude and the
same direction.

Definition 2: The negative of a vector u, denoted by —u, is a vector with the same
magnitude but opposite direction.

Example 1

Marco walked around the park as shown in the diagram. What is Marco’s
displacement at the end of his walk?

o

¥ 60m 4

30m 30m

+ 60m

v

Solution
Even though he walked a total distance of 180 m, his displacement is zero
since he returned to his original position. So, his displacement is 0.

This is a displacement and hence direction is also important, not only
magnitude. The 30 m south ‘cancelled’ the 30 m north, and the 60 m east is
cancelled by the 60 m west.

Vectors can also be looked at as displacement/translation in the plane.
Take, for example, the directed segments PQ and RS as representing the
vectors u and v, respectively. The points P(0, 0), Q(2, 5), R(3, 1) and S(5, 6)
are shown in Figure 8.4.

Figure 8.4 | 4 YA

(2,5)

¥

0P 1 2 3 4 5 6

We can prove that these two vectors are equal.




The directed line segments representing the vectors have the same
direction, since they both have a slope of %

They also have the same magnitude, as:
IPQ| = V5% + 2 = V29 and
IRS| =/(5—3)2+ (6 — 1) =29

Component form

The directed line segment with the origin as its initial point is the most
convenient way of representing a vector. This representation of the vector
is said to be in standard position. In Figure 8.4, u is in standard position. A
vector in standard position can be uniquely represented by the coordinates
of its terminal point (u;, u,). This is called the component form of a vector
u, written as u = (u, u,).

The coordinates #; and u, are the components of the vector u. In Figure
8.4, the components of the vector u are 2 and 5.

If the initial and terminal points of the vector are the same, the vector is a
zero vector and is denoted by 0 = (0, 0).

If uis a vector in the plane with initial point (0, 0) and terminal point (uy, u,), the
component form of uisu = (u;, u).

: : u
Note: The component form is also written as (u;)

So, a vector in the plane is also an ordered pair (u;, u,) of real numbers.
The numbers u; and u, are the components of u. The vector u = (uy, u,) is
also called the position vector of the point (u, u,).

If the vector u is not in standard position and is represented by a directed
segment AB, then it can be written in its component form, observing the
following fact:

u = (up, ) = (%, — x1, ¥, — 1), where A(x,, y,) and B(x,, y,) (Figure 8.5).

YA < Figure 8.5

V2=

<Y

0} Xy — X4

The length of vector u can be given using Pythagoras’ theorem and/or the
distance formula:

lu| = \/”% + “; = \/(xz —x)?+ (1, = n)?
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Example 2

Find the components and the length of the vector between the points
P(—2,3) and Q(4, 7).

Solution
PQ=(4—(~2),7 —3) = (6,4)
IPQ| = V36 + 16 = /52 = 2/13

Example 3

The directed segment from (—1, 2) to (3, 5) represents a vector v. Find
the length of vector v, draw the vector in standard position and find the
opposite of the vector in component form.

Solution
The length of vector v can be found using the distance formula:

v|=V@+1)2+(5-2)?2=5

Vi

h

5+ (3:3)

4‘/

34 ¥ (4:3)
v

T
4

|
N
|
o
—
N
w ~
<y

The opposite of this vector can be represented by —v = (—4, —3).

O Vector operations

Two of the most basic and important operations are scalar multiplication
and vector addition.

Scalar multiplication

In working with vectors, numbers are considered scalars.
In this discussion, scalars will be limited to real numbers
only. Geometrically, the product of a vector u and a scalar
k, v = ku, is a vector that is |k| times as long as u. If k

is positive, v has the same direction as u, and when k is
negative, v has the opposite direction to u (Figure 8.6).

4 Figure 8.6




Consequence: [t becomes clear from this discussion that for two vectors to be parallel,
it is necessary and sufficient that one of them is a scalar multiple of the other. That is, if v
and u are parallel, then v = ku; and vice versa, if v = ku, then v and u are parallel.

In terms of their components, the operation of scalar multiplication is
straightforward.

Ifu= (u, w) thenv = ku = k(u;, u,) = (kuy, ku,).

Vector addition

There are two equivalent ways of looking at the addition of vectors
geometrically. One is the triangular method and the other is the
parallelogram method.

Let u and v denote two vectors. Draw the vectors such that the terminal point of u and
initial point of v coincide. The vector joining the initial point of u to the terminal point of
v is the sum (resultant) of vectors u and v and is denoted by u + v (Figure 8.7).

Another equivalent way of looking at the sum also gives us the grounds to
say that vector addition is commutative.

Let u and v denote two vectors. Draw the vectors such that the initial point
of u and initial point of v coincide. The vector joining the common initial
point of u and v to the opposite corner of the parallelogram, formed by the
vectors as its adjacent sides, is the sum (resultant) of vectors u and v and is
denoted by u + v (Figure 8.8).

The difference of two vectors is an extremely important rule that will be
used later in the chapter.

As Figure 8.9 shows, it is an extension of the addition rule. An easy way of
looking at it is through a combination of the parallelogram rule and the
triangle rule. We draw the vectors u and v in the usual way, then we draw
—v starting at the terminal point of u and we add u + (—v) to get the
difference u — v. As it turns out, the difference of the two vectors u and v
is the diagonal of the parallelogram with its initial point the terminal of v
and its terminal point the terminal point of u.

Example 4

Consider the vectorsu = (2, —3) and w = (1, 3).

a) Write down the components of v = 2u.

b) Find |u| and |v| and compare them.

¢) Draw the vectors u, v, w, 2w, u + w, v + 2w, u — w, v — 2w.

d) Comment on the results of ¢) above.

Solution
a) v=2(2,-3) = (4, —6)
b) |u| =Vv4 +9 =13, |v| =V16 + 36 = V52 = 2/13. Clearly, |v| = 2|u].

A
Figure 8.7

A
Figure 8.8

Figure 8.9
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c) YA d) We observe that u + w = (3, 0) which turns out
71 2.6 tobe (1 + 2,3 — 3), the sum of the corresponding
61 ;ﬁ. components. We observe the same for
5 2w// \-_‘ y v + 2w = (6,0), which in turnis (2 + 4,6 — 6).
41 .3/ \ We also observe that v + 2w = 2u + 2w = 2(u + w),
3 \‘-\ voow and v — 2w is parallel to u — w and is twice its length!
24 % \ 5
1 p T ‘-.\ Can you draw more observations?
ufw"-_" u+w$ v + 2w % A
-1 0 1T\ 2 3 4 5 X
—11 X \ £ X
—24 \
] 2 -3
_4 - Y
v :
—54 \
7 (4, -6)
_7 E
YA Base vectors in the coordinate plane
As you have seen before, vectors can also be represented in a coordinate
system using their component form. This is a very useful tool that helps
0,1) make many applications of vectors simple and easy. At the heart of the
t component approach to vectors we find the ‘base’ vectors i and j.
j iis a vector of magnitude 1 with the direction of the positive x-axis and j
5 (L;O) > is a vector of magnitude 1 with the direction of the positive y-axis. These
! X vectors and any vector that has a magnitude of 1 are called unit vectors.
A Since vectors of same direction and length are equal, each vector i and j
Figure 8.10

If vector u has components
(Uy, Uy), then its component
form is u = u;i + Uyj.

U

o i uyi

A
Figure 8.11

xY

may be drawn at any point in the plane, but it is usually more convenient
to draw them at the origin, as shown in Figure 8.10.

Now, the vector ki has magnitude k and is parallel to the vector i. Similarly,
the vector mj has magnitude m and is parallel to j.

Consider the vector u = (u, u,). This vector, in standard position, has an
x-component u; and y-component u, (Figure 8.11).

Since the vector u is the diagonal of the parallelogram with adjacent sides
u;i and u,j, then it is the sum of the two vectors, i.e. u = i + w,j. It

is customary to say that ui is the horizontal component and u,j is the
vertical component of u.

The previous discussion shows that it is always possible to express any
vector in the plane as a linear combination of the unit vectors i and j.

This form of representation of vectors opens the door to a rich world of
vector applications.



Jo

Vector addition and subtraction in component
form

Consider the two vectors u = w;i + w,j and v = vji + v,j. O Tt waciors @ amdl s sersl el
iff v = ku. This also means that

. 1 Y2
in component form T K.

(i) Vectorsumu+v
u+v= (it wj) + i+ vj) = (ui+ i) + (j + nj)
= (u + )i+ (u, + 1)j
For example, to add the two vectors u = 2i + 4j and v = 5i — 3j, it is
enough to add the corresponding components:
utv=02+5i+M4—-3)j=71j
(ii) Vector difference u—v
u—v= (it ) — (vi+ vyj) = (ui— i)+ (uj — vyj)
= (u — i+ (u = 1)j
For example, to subtract the two vectors u = 2i + 4j and v = 5i — 3j,
it is enough to subtract the corresponding components:
u—-v=02-5i+@4+3)j=-31+7
This interpretation of the difference gives us another way of finding
the components of any vector in the plane, even if it is not in
standard position (Figure 8.12).
YA < Figure 8.12
Alx, 1)

: B(XZI YZ)

<Y

o

Consider the vector AB ﬂere the position vectors of its endpoints
are given by the vectors OA = x;i + y;j and OB = x,i + y»j.
As we have seen in section 8.1, AB=OB— OA= (% — x)i+ (1, —»1)
j- This result was given in Section 8.1 as a definition.

Many of the laws of ordinary algebra are also valid for vector algebra.

These laws are:
o Commutative law for addition:a+b=b + a
o Associative law for addition: (a + b) + c=a + (b + ¢)
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The verification of the associative law is shown in Figure 8.13.

Figure 8.13 | 4

If we add a and b we get a vector e. And similarly, if b is added to ¢, we
get f.

Now d = e + ¢ = a + f. Replacing e with (a + b) and f with (b + ¢),
we get(a + b) + ¢ =a + (b + ¢) and we see that the law is verified.

o Commutative law for multiplication: ma = am

« Distributive law (1): (m + n)a = ma + na, where m and n are two
different scalars.

o Distributive law (2): m(a + b) = ma + mb

These laws allow the manipulation of vector quantities in much the same
way as ordinary algebraic equations.

Exercise 8.1 and 8.2

1 Consider the vectors u and v given.
Sketch each indicated vector.

a) 2u b) —v v
gutyv d) 2u-v u
e) v—2u

For questions 2 and 3, consider the points A and B given and answer the following
questions:

a) Find |A_é|.

b) Find the components of the vector u = AB and sketch it in standard position.

c) Write the vector v = L_} u in component form.

o) Find |v]. 74
e) Sketch the vector v and compare it to u.

2 A3, 4)and B(7, —1)
3 A(—2,3)and B(5, 1)

4 Consider the vector shown.
a) Write down the component
representation of the vector.
b) Find the length of the vector.

c) Sketch the vector in standard 2 4 X
position.
d) Find a vector equal to this one with
initial point (=1, 1).
_4—
Q(2, =5)




For questions 5-7, the initial point P and terminal point Q are given. Answer the
same questions as in question 4.

5 P(3,2),0Q(7,8)
6 P(2,2),0Q(7,7)
7 P(=6,—8),Q(=2, =2

8 Find the terminal point of v = 3i — 2j if the initial pointis (=2, 1).

9 Find the initial point of v = (=3, 1) if the terminal point is (5, 0).
10 Find the terminal point of v = (6, 7) if the initial point is (=2, 1).
11 Find the initial point of v = 2i + 7j if the terminal point is (=3, 2).

12 Consider the vectorsu = 3i — jand v = —i + 3j.
a) Findu+ v,u—v,2u + 3vand 2u — 3v.
b) Find [u + v|, [u = v|, |u| + |v| and |u| — |v|.
¢) Find|2u + 3v|, [2u — 3v/|, 2|u| + 3|v| and 2|u| — 3|v|.

1

13 Letu = (1,5) and v = (3, —4). Find the vector x such that
2u — 3X + v =5x — 2v.

14 Finduandvifu—2v=2i—3jandu+3v=i+j.

15 Find the lengths of the diagonals of the parallelogram whose sides are the
vectors 2i — 3jandi + j.

16 Vectors u and v form two sides of parallelogram PQRS, as shown. Express each of
the following vectors in terms of u and v. p u Q

a) ﬁ?)
b) W where M is the midpoint of [RS] v

—

) QS

—_—

d) QN s = R

N

@)

O Unit vectors and direction angles

Consider the vector u = 3i + 4j. To find the magnitude of this vector, |u|,
we use the distance formula:

uf =32+ 42 =5

If we divide the vector u by |u| = 5, i.e. we multiply the vector u by the
reciprocal of its magnitude, we get another vector that is parallel to u, since
they are scalar multiples of each other. The new vector is

u_3. 4.
5-51173)

This vector is a unit vector in the same direction as u, because

5I7VES TG
Therefore, to find a unit vector in the same direction as a given vector, we
divide that vector by its own magnitude.
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Figure 8.14 | 4

To find a unit vector parallel to O
a vector u, we simply find the

vector

u _ u

ul - /o2
Vui+us

Uy U

JiZ+ 2 i+ 3

This is tightly connected to the concept of the direction angle of a given
vector. The direction angle of a vector (in standard position) is the angle it
makes with the positive x-axis (Figure 8.14).

VA
:
i
o
:
il i [ufsin®
u A :
A
3 'sinf >y,
: oY biots _
i 0] coso \-.\|u\cos¢9 x

So, the vector u can be expressed in terms of the unit vector parallel to it in
the following manner:

u = wi+ wj = (|Julcosh)i + (Ju|sinh)j = |u|(cosbi + sinbj), where

u; = |u|cosf and u, = |u|sin6. This fact implies two important tools that
help us:

1. find the direction of a given vector

2. find vectors of any magnitude parallel to a given vector.

Given a vector u = u;i + u,j, find the direction angle of this vector and
another vector, whose magnitude is m, that is parallel to the vector u.

1. To help determine the direction angle, we observe the following:
u; = |u|cosf and u, = |ulsin6

u,  |ulsing

= = tan 6.
U1 lu|cos 6 an

This implies that

So, tan~ 16 is the reference angle for the direction angle in question. To
know what the direction angle is, it is best to look at the numbers u; and
u, in order to determine which quadrant the vector is in. The following
example (Example 5) will clarify this point.

2. To find a vector of magnitude m parallel to u, we must first find the unit
vector in the direction of u and then we multiply it by the scalar m.

The unit vector in the direction of u is ﬁ = |_111|(u1i + 1,j), and the

vector of magnitude m in this direction will be

u = mn (uli + uzj).

mﬂ 2 2
u Vup+u;



Example 5

Find the direction angle (to the nearest degree) of each vector, and find a
vector of magnitude 7 that is parallel to each.
a) u=2i+2j

b) v=-3i+ 3j
c) w=3i—4j
Solution

a) The direction angle for u is 6, as shown in Figure 8.15.
tanHZ%Z 1= 0=45°

A vector of magnitude 7 that is parallel to u is

u 7 . . 7 . . 7 0 .
—=—"""02i+2))=—=21+2) =—=G+
Mo s AP Ty g @A = e

YA

AN

N
Nl

21 2,2)

b) The direction angle for v is 180° — 6, as shown in Figure 8.16.

tan9=73= —1 = 6 =180° — 45° = 135°

A vector of magnitude 7 that is parallel to v is
v 7 . . 7 . . 7 <
= = (—3i+3j) = Z=(—3i+3j) = =(—i+
v T AT = Es ) = (i)

VA
5_

4 Figure 8.15

< Figure 8.16




Vectors I

c) The direction angle for w is 6, as shown in Figure 8.17.
tan 0 = _74:> 0=~ —53°
A vector of magnitude 7 that is parallel to w is
UL (3i— 4j) = (i~ 4))

7__ -
o~ V7 e

Figure 8.17 | 4 YA

o
A n)
N
w
S
o
¥

Example 6

What force is required to pull a boat of 800N up a ramp inclined at 15°
from the horizontal? Friction is ignored in this case.

D
=

Solution

15°
150 it
p
800
L / C
B 1

The situation can be shown on a diagram. The weight is represented
by the vector AB. The weight of the boat has two components — one

The process o ez dg-ug e perpendicular to the ramp, which is the force responsible for keeping the

vector into its components, as boat on the ramp and preventing it from tumbling down (p). The other
we did in the example, is called force is parallel to the ramp, and is the force responsible for pulling the
resolving the vector into its

boat down the ramp (1). Therefore, the force we need, f, must counter L
components. Notice that the

process of resolving a vector In triangle ABC:

IS Wi LU, [ETEls; yow € sin £ A = |1|/800 = [1] = 800sin £ A = 800sin 15° = 207.06.
resolve a vector into several

pairs of directions. We need an upward force of 207.06 N along the ramp to move the boat.



Example 7

In many countries, it is a requirement that disabled people have access to
all places without needing the help of others. Consider an office building
whose entrance is 40 cm above ground level. Assuming, on average, that
the weight of a person including the equipment used is 1200 N, answer the

following questions:

a) At what angle should the ramp designed for disabled persons be set if,
on average, the force that a person can apply using their hands is 300 N?

b) How long should the ramp be?

Solution
a)
4 300
/ 0
0 il
P
1200
C
B L / l
As the diagram above shows, [1] = 300, and
. _ 11— 300 I o
SIHAA—m—miiA—SID 0.25 = 14.47°.
b) The length d of the ramp can be found using right triangle
trigonometry:
d
40
14.47
sin1447 =20 5= 40 40 _ 6500

d sinl14.47 0.25

Vectors can be used to help

tackle displacement situations.
For example, an object at
a position defined by the
position vector (a, b) and a
velocity vector (¢, d) has a
position vector (a, b) + t(c, d)
after time t.
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Example 8
The position vector of a ship (MB) from its starting position at a port R] is

: x\_(5 12 . s .
given by (y) = (20) + t(l 6)' Distances are in kilometres and speeds are in

km/h. tis time after 00 hour.

a) Find the position of the MB after 2 hours.
b) What is the speed of the MB?

6513) relative to the same port.
LW has stopped for some reason. Show that if LW does not start to
move, the two ships will collide. Find the time of the potential collision.

¢) Another ship (IW) is at sea in a location (4

d) To avoid collision, LW is ordered to leave its position and start moving

at a velocity of (—156) one hour after MB started. Find the position
vector of LW.

e) How far apart are the two ships after two hours since the start of MB?

Solution
a) MB is at a position with vector (;) = (250) + 2(1%) = @g)
b) Since the velocity of the ship is (}é ), the speed is ‘(%é) ‘ =122 + 162

=20km/h.
¢) The collision can happen if the position vectors of the two ships are equal:
5 12\ _ (41 _ _ —
(50) + t(12) = (6§ ) = 5+ 12=41and 20 + 161 = 68 = 12¢ = 36
and 161 = 48 = t = 3. After 3 hours, at 03:00, a collision could happen.

d) Since LW started one hour later, its position vector is
x\ _ (41 _ ( 15 )
) (es) + 1= D[ 136). =1

e) MBisat (%g) and LW is at (églg) + (2 — 1)(—13?6) = (gg) The distance

between them is /(56 — 29) + (32 — 52)2 = /1129 = 33.6 km.

Exercise 8.3

1 Find the direction angle for each vector

a) u=(2,0)
b) v=1(03)
Q) w= (=30
du+v

e) v+ w



Find the magnitude and direction angle for each vector.
a) u= 3,2
b) v= (-3 -2

Write each of the following vectors in component form. 6 is the angle that the
vector makes with the positive horizontal axis.

a) |u| =310,60=62°
b) u| =432, 6=196°

Find the unit vector in the same direction as u in each of the following cases:
a u=(34
b) u = 2i-5j

Find a vector of magnitude 7 that is parallel to u = 3i - 4j.

A plane is flying on a bearing of 170° at a speed of 840 km/h. The wind is blowing

in the direction N 120° E with a strength of 60 km/h.

a) Find the vector components of the plane’s still-air velocity and the wind's
velocity.

b) Determine the true velocity (ground) of the plane in component form.

c) Write down the true speed and direction of the plane.

A plane is flying on a compass heading of 340° at 520 km/h. The wind is blowing
with the bearing 320° at 64 km/h.

a) Find the component form of the velocities of the plane and the wind.
b) Find the actual ground speed and direction of the plane.

15°

A box is being pulled up a 15° inclined plane. The force needed is 25 N. Find the
horizontal and vertical components of the force vector and interpret each of
them.

A motor boat with the power to steer across a river at 30 km/h is moving such
that the bow is pointed in a northerly direction. The stream is moving eastward
at 6 km/h. The river is 1 km wide. Where on the opposite side will the boat meet
the land?

O Note: In navigation, the
convention is that the course
or bearing of a moving
object is the angle that its
direction makes with the
north direction measured
clockwise. So, for example, a
ship going east has a bearing
of 90°.
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10 A force of 2500 N is applied at an angle of 38° to pull a 10 000 N ship in the
direction given. What force F is needed to achieve this?

YA

2500 N

e, 38° =
i i = 10000N "~

Xy

11 A boat is observed to have a bearing of 072°. The speed of the boat relative to
still water is 40 km/h. Water is flowing directly south. The boat appears to be
heading directly east.

a) Express the velocity of the boat with respect to the water in component form.
b) Find the speed of the water stream and the true speed of the boat.

12 A 50 N weight is suspended by two strings as shown. Find the tensions T and S
in the strings.

45° )

13 Arunner runs in a westerly direction on the deck of a cruise ship at 8 km/h. The
cruise ship is moving north at a speed of 35 km/h. Find the velocity of the runner
relative to the water.

14 The boat in question 9 wants to reach a point exactly north of the starting
point. In which direction should the boat be steered in order to achieve this
objective?

Scalar product of two vectors

The multiplication of two vectors is not uniquely defined: in other words,
it is unclear whether the product will be a vector or not. For this reason
there are two types of vector multiplication:

The scalar or dot product of two vectors, which results in a scalar; and the
vector or cross product of two vectors, which results in a vector.

In this book, we shall discuss only the scalar or dot product.




The scalar product of two vectors, a and b denoted by a- b, is defined as the product
of the magnitudes of the vectors times the cosine of the angle between them:
a-b = |a||b|cos 6

This is illustrated in Figure 8.18.

Note that the result of a dot product is a scalar, not a vector. The rules for
scalar products are given in the following list:

a-b=D>b-a

0-a=a-0=0
a-(b+c)=a-b+a-c

a-a=|a]?

k(a-b) = ka-b = a- kb, with k any scalar.
The first properties follow directly from the definition:

a-b = |a||b|cos 6, and b-a = |b|[a|cos 6, and, since multiplication of real
numbers is commutative, it follows that a-b = b-a The third property will
be proved later in this section. Proofs of the rest of the properties are left as
exercises.

Using the definition, it is immediately clear that for two non-zero vectors u and v, if u
and v are perpendicular, the dot product is zero. This is so, because
u-v = |u|lv|cos 6 = |u]|v|cos90° = |u]||v| X 0 = 0.

The converse is also true: if u-v = 0, the vectors are perpendicular,
u-v=0= |ujlvjcos§=0=cosf=0= 6=90".

Using the definition, it is also clear that for two non-zero vectors u and v, if u and v are
parallel then the dot product is equal to = |u||v|. This is so, because

u-v = |ujv|cos 6 = |u||v|cos0° = |u|lv|X T = |ul|v]|, or

u-v = |u|v|cos 6 = |u||v|cos 180° = |ul|v|X (=1) = —|u]|v].

The converse is also true: if u-v = = |u||v], the vectors are parallel, since

u-v = |ujjv|cos 8= |u|[v|cos 8 = = |u||v|=cos@ = =1 = 6= 0°or §=180".

Another interpretation of the dot product
Projection

(This subsection is optional — it is beyond the scope of IB/SL syllabus, but very
helpful in clarifying the concept of dot products.)

The quantity |a|cos 0 is called the projection of the vector a on vector b
(Figure 8.19). So, the dot product b-a = |b||a|cos 8 = |b|(|a|cos §) = |b| X
(the projection of a on b).

This fact is used in proving the third property on the list above.

If we let B and C stand for the projections of b and ¢ on a, we have
a(b+c)=|a(B+C)=aB+ [a]C=a-b+a-c

See Figure 8.20 right.

/D%

A
Figure 8.18

0

|a|cos@

A
Figure 8.19

With this result, we can develop another definition for the dot product
that is more useful in the calculation of this product.

B

A
Figure 8.20

B
Ll
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Theorem

If vectors are expressed in component form, u = i + u,j and

v=wvit+ wnjthenu-v= (ui+ wj) - (vii+ nj) = un+ wun.

Proof

u-v = (wi+ wj) - (mi+ nj) = uvi2+ unij + wwji + urj?
However,i? = j? = 1 and ij = ji = 0. (Proof is left as an exercise for you.)
Therefore, u v = (i + wyj) - (vi + nj) = wyv+ ;.

For example, to find the scalar product of the two vectors u = 2i + 4j and
v = 5i — 3j, it is enough to add the products’ corresponding components:

u-v=2X5+4X(-3)=-2

Example 9
Find the dot product of u = 2i — 3j and v = 3i + 2j.
Solution

u'v=2X3-3X2=0

What does this tell us about the two vectors?

The angle between two vectors

The basic definition of the scalar product offers us a method for finding
the angle between two vectors.

Since a- b = |a||b|cos 6, then cos 6 = 2l
|al[b]

Example10
Find the angle between the following two vectors:

v=-3i+3jandw = 2i — 4j

Solution
. —3X2+3X—4 —18
cosf =YW — = = 0 =161.57°
vilwl (=32 + 32 x V22 + 42 V18V20
Example11

The instrument panel in a plane indicates that its airspeed (the speed of
the plane relative to the surrounding air) is 200 km/h and that its compass
heading (the direction in which the plane’s nose is pointing) is due at

N 45° E. There is a steady wind blowing from the west at 50 km/h. Because
of the wind, the plane’s true velocity is different from the panel reading.
Find the true velocity of the plane. Also, find its true speed and direction.



Solution

A diagram can help clarify the situation.

N A

w ' E

The plane velocity p can be expressed in its component form:
x = |p|cos45° = 200 cos45° = 100v'2,
y = |p|sin45° = 200sin45° = 100v2,
so p can be written as p =(100v2, 100v/2).
The wind velocity w can also be expressed in component form:
w = (50,0)
So, the true velocity, v = (100v2 + 50, 100v/2).
To find the true speed, we find the magnitude of the resultant found above:
lv| =/(100v2 + 50)% + (100v2)? ~ 238 km/h

To find the true direction, we find 6 and calculate the heading of the plane:
100v2
100v2 + 50
so the true direction is N 53.5° E.

tan @ = =~ (.739 = 0 = 36.5°,

Example 12

Consider the segment [AB] with A(—2, —3) and B(3, 1). Use dot products
to find the equation of the circle whose diameter is AB.

Solution

B(3,1)

Consider any point C(x, y) on the graph. Find the vectors ACand BC.
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For the point C to be on the circle, the angle at C must be a right angle.
Hence, the vectors AC and BC are perpendicular.

For perpendicular vectors, the dot product must be zero.
C=(x+2,y+3),BC=(x—3,y—1)
AC-BC=0= (x+2)(x=3)+ (y+3)(y—1)=0
= x2—x+y?+2y=9

1 Find (i) u- v and (i) the angle between u and v to the nearest degree.
A u=i+V3jv=V3i—j
b) u=(25),v=(41)
Q) u=2i—3jv=4i—j
d) u=2jv=—i+3j
2 Using the vectors u = 3i — 2j, v =i + 3j and w = 4i + 5j, find each of the
indicated results.
a) u-(v+w
b)u-v+u-w
Q) u(v-w)
d) (u-vw
e) (u-v)(u-w)
f) W+v):(u—v)
g) Looking at a)-d) write one paragraph to summarize what you learned!

e Hint: The work done by any 3 Find the work done by the force F in moving an object between points M and N.
force is defined as the product of a) F =400i — 50§, M(2, 3), N(12,43)
the force multiplied by the distance b) F = 30i + 150j, M(0, 30), N(15, 70)

it moves a certain object. In other
words, it is the product of the force
multiplied by the displacement of

4 Find the interior angles of the triangle ABC.
a) A(1,2),BG3,4),C2,5)

the object. As such, work is the dot b) AB,4),B(=1,=7), (=8, =2)

product between the force and c A@3,—5),B(1,=9),C(—=7,—9)

displacement W = F - D 5 Find a vector perpendicular to u in each case below. (Answers are not uniquel)
a) u=(3,5)
b) u=1i-2j

6 Use the dot product to find the equation of a circle whose diameter is [AB].
a) A(1,2),B@3,4).
b) AB3,4),B(—1, =7).

7 Decide whether the triangle ABC is right angled using vector algebra:
A1, =3), B2, 0), C(6, =2)

8 Find tsuch thata = ti — 3jis perpendicular to b = 5i + 7j.
9 For what value(s) are the vectors (—6, b) and (b, b?) perpendicular?
10 Find a unit vector that makes an angle of 60° with u = (3, 4).
11 Find tsuch thata = ti — jand b =i + j make an angle of%wradians.

12 Use the dot product to prove that the diagonals of a rhombus are
perpendicular to each other.




Practice questions

1 ABCD'is a rectangle with M the midpoint of [AB]. u and v represent the vectors joining
Mto Dand C respectively. Express each of the following vectors in terms of u and v.

a)EC) A M B
b) AM

) BC

d)A_)C u v

D C

Consider the vectorsu =i — 2j and v = 4i + 3j.
a) Find the component form of the vector w = 2u + v.
b) Find the vector z which has a magnitude of 6 units and same direction as w.

M and A are the ends of the diameter of a circle with centre at the origin. The radius

of the circle is 15 cm andﬁ=( 10 ) A
5/5
a) Verify that Rliesg)n the circle. €
b) Find the vector AR. R

¢) Find the cosine of Z OAR.
d) Find the area of AMAR.

4 Quadrilateral MARC has vertices with coordinates M(0, 0), A(6, 2), R(11, 4) and C(3, 8).

a) Find the vectors MR and AC.

b) Find the angle between the diagonals of quadrilateral MARC.

) Let the vector u be the vector joining the midpoints of [MA] and [AR], and v be the
vector joining the midpoints of [RC] and [CM]. Compare u and v to W? and hence
show that the quadrilateral connecting the midpoints of the sides of MARC form a
parallelogram.

5 Vectors u = 5i + 3jand v = i — 4j are given. Find the scalars m and n such that
m(u + v) — 5i + 7j = n(u — v).

6 Vector (8) represents a displacement in the eastern direction while vector (?)

represents a displacement north. Distances are in kilometres.

Two crews of workers are laying gas pipes in a north-south direction across the North
Sea. Consider the base port where the crews leave to start work as the origin (0, 0).

At 07:00 the crews left the base port with their motor boats to two different locations.

9

The crew called ‘Marco’ travel at a velocity of (1 5

18

) and the crew called ‘Tony" travel
8)' Speeds are in km/h.

at a velocity of (_
a) Find the speed of each boat.

b) Find the position vectors of each crew at 07:30.
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c) Hence, or otherwise, find the distance between the vehicles at 07:30.

d) At 07:30 ‘Tony’ stops and the crew begins laying pipes towards the north. ‘Marco’
continues travelling in the same direction at the same speed until it is exactly north
of “Tony". At this point, ‘Marco’ stops and the crew then begins laying pipes towards
the south. At what time does ‘Marco” start work?

e) Each crew lays an average of 400 m of pipe in an hour. If they work non-stop until
their lunch break at 12:30, what is the distance between them at this time?

f) How long would ‘Marco’ take to return to base port from its lunchtime position,
assuming it travelled in a straight line and with the same average speed as on the
morning journey? (Give your answer to the nearest minute.)

Triangle TR/ is defined as follows:

or = (31 )Tf? = (2) TR-1R = 0, and Tl = kj where kis a scalar and j is the
unit vector in the y-direction.
a) Draw an accurate diagram of A TR,

b) Write the vector R

The position vector of a plane for AUA airlines from its starting position in Vienna is

; X)_ (25 360 o I .
given by (y) = (40) I t(480)' Distances are in kilometres and speeds are in km/h.

tis time after 00 hour.

a) Find the position of the AUA plane after 2 hours.

b) What is the speed of the plane?

c) A plane for LH airline started at the same time from a location (T310505)

480 :
360 ) flying at the

same height as the AUA plane. Show that if the LH plane does not change route, the
two planes will collide. Find the time of the potential collision.

d) To avoid collision, the LH plane is ordered to leave its position and start moving at

a velocity of (_450

plane at that time.

relative to Vienna and moving with a velocity vector (

) one hour after it started. Find the position vector of the LH

e) How far apart are the two planes after two hours?

3n

For what value(s) of n are the vectors (Zn V3

) and (ézln—_227) perpendicular.

Otherwise, show that it is not possible.
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Assessment statements

5.1 Concepts of population, sample, random sample, discrete and continuous
data.
Presentation of data: frequency distributions (tables); frequency
histograms with equal class intervals; box-and-whisker plots; outliers.
Grouped data; use of mid-interval values for calculations; interval width;
upper and lower interval boundaries; modal class.

5.2 Statistical measures and their interpretations.
Central tendency; mean, median, mode.
Quartiles, percentiles.
Dispersion: range, interquartile range, variance, standard deviation.
Effect of constant changes to the original data.

5.3 Cumulative frequency; cumulative frequency graphs; use to find median,
quartiles, percentiles.

5.4 Linear correlation of bivariate data.
Pearson'’s product-moment correlation coefficient r.
Scatter diagrams; lines of best fit.
Equation of the regression line of y on x; use of the equation for
prediction purposes; mathematical and contextual interpretation.

. Introduction -

More information on HALE can

You will almost inevitably encounter statistics in one form or another on a be found by visiting

daily basis. Here is an example: www.pearsonhotlinks.com,
L enter the ISBN or title of this

The World Health Organization (WHO) collects and book and select weblink 2.

reports data pertaining to worldwide population

health on all 192 UN member countries. Among

the indicators reported is the health-adjusted 20 El
life expectancy (HALE), which is based on life

expectancy at birth, but includes an adjustment 407

for time spent in poor health. It is most easily > 1=
understood as the equivalent number of years in full g 397

health that a newborn can expect to live, based on g

current rates of ill-health and mortality. According 207

to WHO rankings, lost years due to disability are

substantially higher in poorer countries. Several 101

factors contribute to this trend including injury,

blindness, paralysis, and the debilitating effects of 0 0 30 20 50 60 70 30
tropical disease. HALE 2002
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Of the 192 countries ranked by WHO, Japan has the highest life expectancy
(75 years) and the lowest ranking country is Sierra Leone (29 years).

Reports similar to this one are commonplace in publications of several
organizations, newspapers and magazines, and on the internet.

Questions that come to mind as we read such a report include: How did
the researchers collect the data? How can we be sure that these results
are reliable? What conclusions should be drawn from this report? The
increased frequency with which statistical techniques are used in all
fields, from business to agriculture to social and natural sciences, leads to
the need for statistical literacy — familiarity with the goals and methods
of these techniques — to be a part of any well-rounded educational
programme.

Since statistical methods for summary and analysis provide us with
powerful tools for making sense out of the data we collect, in this chapter
we will first start by introducing two basic components of most statistical
problems — population and sample — and then delve into the methods of
presenting and making sense of data.

In the language of statistics, one of the most basic concepts is sampling. In
most statistical problems, we draw a specified number of measurements
or data — a sample — from a much larger body of measurements, called the
population. On the basis of our observation of the data in the well-chosen
sample, we try to describe or predict the behaviour of the population.

A population is any entire collection of people, animals, plants or things
from which we may collect data. It is the entire group we are interested

in, which we wish to describe or draw conclusions about.
In order to make any generalizations about a population,
a sample, that is meant to be representative of the
population, is often studied. For each population there
are many possible samples.

For example, a report on the effect the economic status
(ES) has on healthy children’s postures stated that:

‘...ES, independent of overt malnutrition, affects
height, weight, ... with some gender differences in
healthy children. Influence of income on height

and weight show sexual dimorphism, a slight but
significant effect is observed only in boys. MPH
(mid-parental height) is the most prominent variable
effecting height in healthy children. Higher height

... observed in higher income groups suggest that

Population secular trend in growth still exists, at least in boys, in a

country of favorable economic development.

Source: European Journal of Clinical Nutrition (2007)
61,752-758
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The population is the 3-tuple measurement (economic status, height,
weight) of all children of age 3—18 in Turkey. The sample is the set of
measurements of the 428 boys and 386 girls that took part in the study.
Notice that the population and sample are the measurements and not the
people! The boys and girls are ‘experimental units’ or subjects in this study.

In this chapter we will present some basic techniques in descriptive
statistics — the branch of statistics concerned with describing sets of
measurements, both samples and populations.

@ Graphical tools

Once you have collected a set of measurements, how can you display this
set in a clear, understandable and readable form? First, you must be able
to define what is meant by measurement or ‘data’ and to categorize the
types of data you are likely to encounter. We begin by introducing some
definitions of the new terms in the statistical language that you need to
know.

A variable is a characteristic that changes or varies over time and/or for different objects
under consideration.

For example, if you are measuring the height of adults in a certain area,
the height is a variable that changes with time for an individual and
from person to person. When a variable is actually measured, a set of
measurements or data will result. So, if you gather the heights of the
students at your school, the set of measurements you get is a data set.

As the process of data collection begins, it becomes clear that often the
number of data collected is so large that it is difficult for the statistician
to see the findings of the data. The statistician’s objective is to summarize
succinctly, bringing out the important characteristics of the numbers and
values in such a way that a clear and accurate picture emerges.

There are several ways of summarizing and describing data. Among them
are tables and graphs and numerical measures.

l |

Categorical/ Numerical/
qualitative quantitative

[ Discrete J [ Continuous J




Table 9.1
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Classification of variables
Numerical or categorical

When classifying data, there are two major classifications: numerical or
categorical data.

NUMERICAL (QUANTITATIVE) DATA — Quantitative variables measure
a numerical quantity or amount on each experimental unit. Quantitative
data yields a numerical response.

Examples: Yearly income of company presidents, the heights of students at
school, the length of time it takes students to finish their lunch at school,
and the total score you receive on exams are all numerical.

Moreover, there are two types of numerical data:

DISCRETE - responses which arise from counting.

Example: Number of courses students take in a day.

CONTINUOUS - responses which arise from measuring.

Example: Time it takes a student to travel from home to school.

CATEGORICAL (QUALITATIVE) DATA — Qualitative variables measure a
quality or characteristic of the experimental unit. Categorical data yields a
qualitative response, i.e. data is kind or type rather than quantity.

Examples: Categorizing students into first year IB or second year IB; into
Maths Studies SL, Maths SL, Further Maths SL, or Maths HL; or political
affiliation will result in qualitative variables and data.

When data is first collected, there are some simple ways of beginning to
organize the data. These include an ordered array and the stem-and-leaf
display — not required.
e Data in raw form (as collected):
24, 26, 24,21, 27,27, 30, 41, 32, 38
e Data in ordered array from smallest to largest (an ordered array is an
arrangement of data in either ascending or descending order):
21, 24, 24, 26, 27,27, 30, 32, 38, 41

Suppose a consumer organization was interested in studying weekly food
and living expenses of college students. A survey of 80 students yielded the
following expenses to the nearest euro:

38150 |55|60 (46|51 58|64 |50 (49|48 |65|58]|61]|65]53
395156 (6148|5359 |65|54|54|54|59|65|66|47 |49
40 [ 51156 (62|47 |55]60 63|60 59|59 |50|46|45|54 |47
41152|57|64|50|53|58|67|67|66|65|58|54|52]|55]|52
44 152 |57 |64 |51 55|61 68|67 |54|55|48|57|57|66| 66

The first step in the analysis is a summary of the data, which should show
the following information:

e What values of the variable have been measured?

e How often has each value occurred?



Such summaries can be done in many ways. The most useful are the
frequency distribution and the histogram. There are other methods of
presenting data, some of which we will discuss later. The rest are not within
the scope of this book.

Frequency distribution (table)

A frequency distribution is a table used to organize data. The left column
(called classes or groups) includes numerical intervals on a variable

being studied. The right column is a list of the frequencies, or number of
observations, for each class. Intervals normally are of equal size, must cover
the range of the sample observations, and are non-overlapping (Table 2).

There are some general rules for preparing frequency distributions that
make it easier to summarize data and to communicate results.

Construction of a frequency distribution (table)

Rule 1: Intervals (classes) must be inclusive and non-overlapping; each
observation must belong to one and only one class interval.
Consider a frequency distribution for the living expenses of the
80 college students. If the frequency distribution contains the
intervals ‘35—-40" and ‘40—45’, to which of these two classes would a
person spending €40 belong?

The boundaries, or endpoints, of each class must be clearly
defined. For our example, appropriate intervals would be 35 but
less than 40 and ‘40 but less than 45

Rule 2: Determine k, the number of classes. Practice and experience
are the best guidelines for deciding on the number of classes. In
general, the number of classes could be between 5 and 10. But this
is not an absolute rule. Practitioners use their judgement in these
issues. If the number of classes is too few, some characteristics
of the distribution will be hidden, and if too many, some
characteristics will be lost with the detail.

Rule 3: Intervals should be the same width, w. The width is determined by
the following:

largest number — smallest number

interval width = -
number of intervals

Both the number of intervals and the interval width should be
rounded upward, possibly to the next largest integer. The above
formula can be used when there are no natural ways of grouping
the data. If this formula is used, the interval width is generally
rounded to a convenient whole number to provide for easy
interpretation.

In the example of the weekly living expenses of students, a
reasonable grouping with nice round numbers was that of ‘35 but
less than 40’ and ‘40 but less than 45, etc.
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Table 9.2 Frequency and
percentage frequency distributions
of the weekly expenses of 80
students.

>

Living expenses (€) | Number of students | Percentage of students
35 but <40 2 2.50
40 but < 45 3 3.75
45 but < 50 11 13.75
50 but < 55 21 26.25
55 but < 60 19 23.75
60 but < 65 11 13.75
65 but <70 13 16.25
Total 80 100.00

Grouping the data in a table like this one enables us to see some of its
characteristics. For example, we can observe that there are few students
who spend as little as 35 to 45 euros, while the majority of the students
spend more than €45. Grouping the data will also cause some loss of detail,
as we do not see from the table what the real values in each class are.

In the table above, the impression we get is that the class midpoint, also
known as the mid-interval value, will represent the data in that interval.
For example, 37.5 will represent the data in the first class, while 62.5 will
represent the data in the 60 to 65 class. 35 and 40 are known as the interval
boundaries.

Graphically, we have a tool that helps visualize the distribution. This tool is
the histogram.

Histogram

A histogram is a graph that consists of vertical bars constructed on a
horizontal line that is marked off with intervals for the variable being
displayed. The intervals correspond to those in a frequency distribution
table. The height of each bar is proportional to the number of observations
in that interval. The number of observations can also be displayed above
the bars.

25 4
20
15+
10+
5-
o =T

375 425 475 525 575 625 675
Midpoints

Frequency

By looking at the histogram, it becomes visually clear that our observations
above are true. From the histogram we can also see that the distribution is
not symmetric.



To get a histogram on your GDC:
e Enter your data into a list
e Go to StatPlot and change it as shown below

e Graph

L1l L2 L3 1 Plot2 Plot3 :Pl:Ll
_______________ Off H

33 Type: L L2 T

i e

41 Xlist:Ia

4 Freqg:1 cadl

min=38
11(1)=38 max<42.285714 n=4

Cumulative and relative cumulative frequency distributions

A cumulative frequency distribution contains the total number of
observations whose values are less than the upper limit for each interval.
It is constructed by adding the frequencies of all frequency distribution
intervals up to and including the present interval. A relative cumulative
frequency distribution converts all cumulative frequencies to cumulative
percentages.

In our example above, the following is a cumulative distribution and a
relative (percentage) cumulative distribution.

- Cumulative Cumulative
Living Number Percentage of
expenses (€) of students i3] students IR
of students students
< . .
35 but <40 2 2 2.50 (’/ 2.50
40 but < 45 3 Fispe———. 5 3.75 e—t— .5
45 but < 50 11 16 13.75 20.00
50 but < 55 21 = /37 26.25 /46.25
55 but < 60 19 ——T—»56 2375 —1—*70.00
60 but < 65 11 67 13.75 83.75
65 but <70 13 80 16.25 100.00
80 100.00

Notice how every cumulative frequency is added to the frequency in the
next interval to give you the next cumulative frequency. The same is true
for the relative frequencies.

As we will see later, cumulative frequencies and their graphs help in

analyzing data that are given in group form.

Cumulative line graph/cumulative frequency graph

Sometimes called an ogive, this is a line that connects points that are the

cumulative percentage of observations below the upper limit of each class

in a cumulative frequency distribution.

<« Table 9.3 Cumulative frequency
and cumulative relative frequency
distributions of the weekly
expenses of 80 students.
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Notice how the height of each line at the upper boundary represents the
cumulative frequency for that interval. For example, at 50 the height is 16
and at 60 it is 56.

Example 1
Here is the WHO data in raw form.

29 |36 |40 | 44 |48 [ 52|54 [56 59|60 |61 |61 |62|63|64|66|68|71|72|73]|63)|64]|66|68

31 36 |41 |44 149 [ 52|54 (57 [59]60 |61 |62|62|64|64|66|68|71|72|75]|63|64]|66|68

33136 (41144149 |52|55]57(159]|60|61|62|62|64|65|66|69 717235384347 |71

34137 |41 |45 149 |53 |55 (|58 |59 ]60 |61 6263 |64 |65|66|69 |71 |73 |36]40 |44 |48 |71

34 137 |42 45|50 |53 |55(58 (59|60 |61 62|63 |64 65|67 70|71 |73[50 (54 |56]59]|72

35137 |42 45|50 |53 |55(58 (59|60 |61 62|63 |64 65|67 7071|7351 545615972

35137 |43 |46 |50 |54 5558|5960 |61 |62|63|64(65|67 (70|71 ]73]|60]601|61]|62]73

35138 |43 |46 |50 |54 5558|5960 |61 62|63 |64 65|67 |70 |72]73]|60]61 |61 ]|62]|73

Prepare a frequency table starting with 25 and with a class interval of 5.
Then draw a histogram of the data and a cumulative frequency graph.

Solution

We first sort the data and then make sure we count every number in one

class only.

Life Number Life Number
expectancy (years)' | of countries | expectancy (years) | of countries

25-30 1 55-60 26
30-35 4 60-65 54
35-40 14 65-70 22
40-45 14 70-75 27
45-50 11 75-80 1
50-55 18

125-30 contains all observations larger than or equal to 25 but less than 30.

The histogram created by Excel is shown on the next page. Since we have
classes of equal width, the height and the area give the same impression




about the frequency of the class interval. For example, the class of 60—-65
contains almost twice as much as the class of 55-60, and the height of the
histogram is also twice as high. So is the area. Similarly, the height of the
65-70 class is double that of the 45-50 class.
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1 Identify the experimental units, sensible population and sample on which each
of the following variables is measured. Then indicate whether the variable is
quantitative or qualitative.
a) Gender of a student
b) Number of errors on a final exam for 10th-grade students
c) Height of a newborn child
d) Eye colour for children aged less than 14
e) Amount of time it takes to travel to work
f) Rating of a country’s leader: excellent, good, fair, poor
g) Country of origin of students at international schools
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2 State what you expect the shapes of the distributions of the following variables
to be: uniform, unimodal, bimodal, symmetric, etc. Explain why.
a) Number of goals shot by football players during last season.
b) Weights of newborn babies in a major hospital during the course of 10 years.
c) Number of countries visited by a student at an international school.
d) Number of emails received by a high school student at your school per week.

3 Identify each variable as quantitative or qualitative:
a) Amount of time to finish your extended essay.
b) Number of students in each section of IB Maths SL.
c) Rating of your textbook as excellent, good, satisfactory, terrible.
d) Country of origin of each student on Maths SL courses.

4 |dentify each variable as discrete or continuous:
a) Population of each country represented by SL students in your session of the
exam.
b) Weight of IB Maths SL exams printed every May since 1976.
c) Time it takes to mark an exam paper by an examiner.
d) Number of customers served at a bank counter.
e) Time it takes to finish a transaction at a bank counter.
f) Amount of sugar used in preparing your favourite cake.

5 Grade point averages (GPA) in several colleges are on a scale of 0-4. Here are the
GPAs of 45 students at a certain college.

1811919120121 |21 (21(22[22(23(23|24]24|24]|25
25125125 |125|25(26|26|26|26|26|27|27|27|27|27
28(28|128(29129]129(30|30(30|3.1(31]31(32|32]|34

Prepare a frequency histogram, a relative frequency histogram and a cumulative
frequency graph. Describe the data in two to three sentences.

6 The following are the grades of an IB course with 40 students (two sections) on
a 100-point test. Use the graphical methods you have learned so far to describe
the grades.

61 6293|9491 |92|86|87|55](56
63|64 |86 |87|82|83|76|77|57|58
94 195 (89|90 |67 |68 |62|63|72]|73
87 |88 |68 |69 |65|66|75|76|84|85

7 The length of time (months) between repeated speeding violations of 50 young
drivers are given in the table below:

21113 99| 03323 | 83| 27| 02| 44| 74
9 |18 16| 24| 39| 24| 66| 1 2 141
147 | 58| 82| 82| 74| 14167 |24 96| 87
192 1267 12|18 33| 114 43| 35| 69| 16
41| 04135 56| 61231 | 02|126]184| 3.7

a) Construct a histogram for the data.

b) Would you describe the shape as symmetric?

c) The law in this country requires that the driving licence be taken away if the
driver repeats the violation within a period of 10 months. Use a cumulative
frequency graph to estimate the fraction of drivers who may lose their licence.



8 To decide on the number of counters needed to be open during rush hours in a
supermarket, the management collected data from 60 customers for the time they
spent waiting to be served. The times, in minutes, are given in the following table.

36(07(52(06]13[03|18(22|1.1|04

1T 112107]13]07]|16(25(03|1.7]08

03(12[02]09]|19(12|08|21[23]|1.1

08(1.7[18]04]|06]02|09]|18|28]1.8

04105(11]111]08|45[16[05|13]19

060631 (31|11 (1111|141 1.4

a) Construct a relative frequency histogram for the times.
b) Construct a cumulative frequency graph and estimate the number of
customers who have to wait 2 minutes or more.

9 The histogram below shows the number of days spent by heart patients in
Austrian hospitals in the 2003-2005 period.
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a) Describe the data in a few sentences.
b) Draw a cumulative frequency graph for the data.
c) What percentage of the patients stayed less than 6 days?

10 One of the authors exercises on almost a daily basis. He records the length of
time he exercises on most of the days. Here is what he recorded for 2006.

45
40
354
30
254
20
15+
10

5-

04

Frequency

Number of minutes

a) What is the longest time he has spent doing his exercises?
b) What percentage of the time did he exercise more than 30 minutes?
c) Draw a cumulative frequency graph for his exercise time.
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@ Measures of central tendency

Summarizing data can help us understand them, especially when the
number of data is large. This section presents several ways to summarize
quantitative data by a typical value (a measure of location, such as the
mean, median or mode) and a measure of how well the typical value
represents the list (a measure of spread, such as the range, interquartile
range or standard deviation). When looking at raw data, rather than
looking at tables and graphs, it may be of interest to use summary
measures to describe the data. The farthest we can reduce a set of data,
and still retain any information at all, is to summarize the data with a
single value. Measures of location do just that — they try to capture with
a single number what is typical of the data. What single number is most
representative of an entire list of numbers? We cannot say without defining
‘representative’ more precisely. We will study three common measures of
location: the mean, the median and the mode. The mean, median and
mode are all ‘most representative’, but for different, related notions of
representativeness.

e The median is the number that divides the (ordered) data in half. At
least half the data is equal to or smaller than the median, and at least
half the data is equal to or greater than the median. (In a histogram, the
median is that middle value that divides the histogram into two equal
areas.)

e Hint: Itis rare that several data e The mode of a set of data is the most common value among the data.

coincide exactly, unless the variable

is discrete, or the measurements are . o
reported with low precision. average. It is the sum of the data, divided by the number of data:

e The mean (more precisely, the arithmetic mean) is commonly called the

sum of data  _ total
number of data  number of data

mean =

When these measures are computed for a population, they are called
parameters. When they are computed for a sample, they are called
statistics.

Statistic and parameter

A statistic is a descriptive measure computed from a sample of data. A parameter is a
descriptive measure computed from an entire population of data.

Measures of central tendency provide information about a ‘typical’
observation in the data, or locate the data set.

The mean and the median

The most common measure of central tendency is the arithmetic mean, usually referred
to simply as the ‘mean’or the ‘average!

288




Example 2

The following are the five closing prices of the NASDAQ Index for the first
business week in November 2007. This is a sample of size n = 5 for the
closing prices from the entire 2007 population: 2794.83, 2810.38, 2795.18,
2825.18, 2748.76.

What is the average closing price?

Solution

Average = 2794.83 + 2810.38 + 27955.18 + 2825.18 + 2748.76 _ 2794.87.

This is called the sample mean. A second measure of central tendency is the
median, which is the value in the middle position when the measurements

are ordered from smallest to largest. The median of this data can only be
calculated if we first sort them in ascending order:

2748.76 2794.83 2795.18 2810.38 2825.18

t

The arithmetic mean or average of a set of n measurements (data set) is equal to the
sum of the measurements divided by n.

Notation

— X : ;
The sample mean: x = = , where n is the sample size.

N
i X1t X X3+ ..+ X . .
The population mean: u = /\1/ =2 2 > N where Nis the population

N
size. This is a parameter.

This is a statistic.

It is important to observe that you normally do not know the mean of the population w
and that you usually estimate it with the sample mean X.

The median of a set of n measurements is the value of x that falls in the
middle position when the data is sorted in ascending order.

In the previous example, we calculated the sample median by finding the
third measurement to be in the middle position. However, in a different
situation, where the number of measurements is even, the process is
slightly different.

Let us assume that you took six tests last term and your marks were, in
ascending order, 52, 63, 74, 78, 80, 89.

52 63 74 78 80 89

]

There are two ‘middle’ observations here. To find the median, choose a

value halfway between the two middle observations:

_74+78 _
m_—_

> 76
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Note: The position of the median can be given by % If this number

ends with a decimal, you need to average the adjacent values.

In the NASDAQ Index case, we have five observations, the position of

the median is then at 2 42— L 3, which we found. In the grades example,
the position of the median score is at 6+1_ 3.5, and hence we average

2
the numbers at positions three and four.

Although both the mean and median are good measures for the centre of

a distribution, the median is less sensitive to extreme values or outliers. For
example, the value 52 in the previous example is lower than all your test
scores and is the only failing score you have. The median, 76, is not affected
by this outlier even if it were much lower than 52. Assume, for example,
that your lowest score is 12 rather than 52. The median calculation

12 63 74 78 80 89
still gives the same median of 76. If we were to calculate the mean of the
original set, we would get

__>x 436 _ .. =
=% ~ 6 /%6
While the new mean, with 12 as the lowest score, is
__>x_ 396 _
X=% =76 6

Clearly, the low outlier ‘pulled’ the mean towards it while leaving the
median untouched. However, because the mean depends on every
observation and uses all the information in the data, it is generally,
wherever possible, the preferred measure of central tendency.

A third way to locate the centre of a distribution is to look for the value
of x that occurs with the highest frequency. This measure of the centre is
called the mode.

Example 3

Here is a table listing the frequency distribution of 25 families in Lower
Austria that were polled in a marketing survey to list the number of litres
of milk consumed during a particular week.

Number of litres Frequency Relative frequency
0 2 0.08
1 5 0.20
2 9 0.36
3 5 0.20
4 3 0.12
5 1 0.04

Find the frequency histogram.




Solution

Frequency

‘| . _|

0 T

0 1 2 3 4 5
Number of litres

The histogram (Example 3) shows a relatively symmetric shape with a
modal class at x = 2. Apparently, the mean and median are not far from
each other. The median is the 13th observation, which is 2, and the mean is
calculated to be 2.2.

For lists, the mode is the most common (frequent) value. A list can have more than one
mode. For histograms, the mode is a relative maximum.

Shape of the distribution

An examination of the shape of a
distribution will illustrate how the Mead Median
distribution is centred around the mean.

Distributions are either symmetric or

they are not symmetric, in which case the

shape of the distribution is described as

asymmetric or skewed. Symmetric distribution

Symmetry

The shape of a distribution is said to be symmetric if the observations
are balanced, or evenly distributed, about the mean. In a symmetric
distribution, the mean and the median are equal.

Skewness
A distribution is skewed if the observations are not symmetrically
distributed above and below the mean.

>/Median Median <

Mean Mean

‘Positively skewed' distribution ‘Negatively skewed' distribution
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A positively skewed (or skewed to the right) distribution has a tail that
extends to the right in the direction of positive values. A negatively skewed
(or skewed to the left) distribution has a tail that extends to the left in the
direction of negative values.

Looking back at the WHO data, we can clearly see that the data is skewed
to the left. Few countries have low life expectancies. The bulk of the
countries have life expectancies between approximately 50 and 65 years.

The average HALE is u= Z—nx = % = 57.44. Looking at the raw data,

it does not appear sensible to search for the mode, as there are very few of
them (61, 59, 60 or 62). However, after grouping the data into classes, we
can see that the modal class is 60—65.

As there are 192 observations, which means that the median is at

n —; 1_ 1922+ 1_ 96.5, we take the average of the 96th and 97th

observations, which are Palau and Moldova with 60 each. So, the median is 60!

Knowing the median, we could say that a typical life expectancy is 60 years.
How much does this really tell us? How well does this median describe the
real situation? After all, not all countries have the same 60 years HALE.
Whenever we find the centre of data, the next step is always to ask how well
it actually summarizes the data.

When we describe a distribution numerically, we always report a measure
of its spread along with its centre.

@ Measures of variability

Measures of location summarize what is typical of elements of a list, but
not every element is typical. Are all the elements close to each other? Are
most of the elements close to each other? What is the biggest difference
between elements? On average, how far are the elements from each other?
The answer lies in the measures of spread or variability.

It is possible that two data sets have the same mean, but the individual
observations in one set could vary more from the mean than do the
observations in the second set. It takes more than the mean alone to describe
data. Measures of variability (also called measures of dispersion or spread),
which include the range, the variance, the standard deviation, interquartile
range and the coefficient of variation, will help to summarize the data.

Range

The range in a set of data is the difference between the largest and smallest
observations.

Consider the expense data given at the beginning of this chapter. Also
consider the same data when the largest value of 68 is replaced by 120.
What is the range for these two sets of data?




Expense data | Expense data with outlier 4 Table 9.4
Minimum 38 38
Maximum 68 120
Range 30 82

Notice that the range is a single number, not an interval of values as you
might think from its use in common speech. The maximum of the HALE
data is 79 and the minimum is 29, so the range is 50.

Range doesn’t take into account how the data is distributed and is, of
course, affected by extreme values (outliers) as you see above.

Variance and standard deviation

The most comprehensive measures of dispersion are those in terms of the
average deviation from some location parameter.

Variance

The sample variance, s, is the sum of the squared differences between each
observation and the sample mean divided by the sample size minus 1.

nz (x; — %)?

2 _i=1

b=

n—1

Discussing the reason we define the sample variance in this manner is beyond the scope
of this book. The use of n — 1 in the denominator has to deal with the use of the sample
variance as an estimate of the population variance. Such an estimate has to be unbiased,
and this sample variance is the most unbiased estimate of the population variance.
However, since the IB syllabus uses a different definition of this variance, we will use the
IB's definition in our calculations. You should also be careful with use of your calculator,
as the listed s, in TI GDC's is this one and not the IB’s definition. So, when you use your
GDC, make sure you use what is called a,.

The IB variance is listed as 52 and is evaluated as follows:
n

> - %2

2 _ li=]
Sp= n

From this point on, we will use this statistic to denote the sample variance!

The population variance, 0%, is the sum of the squared differences between
each observation and the population mean divided by the population size, N.

N
D - w?
2 _i=1
g

N
The variance is a measure of the variation about the mean squared. In

order to bring the measure down to the data measurements, the square
root is taken and the measure looked at is the standard deviation.

The standard deviation measures the standard amount of deviation or
spread around the mean.
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Standard deviation

The sample standard deviation, s,, is the (positive) square root of the
variance, and is defined as:

When is s = 0? Answer: When
all the data takes on the same
value and there is no variability
about the mean.

When is s large? Answer: When
there is a large amount of

variability about the mean. Consider the following example:

In business, investors invest their money in stocks whose prices fluctuate
with market conditions. Stocks are considered risky if they have high
fluctuations. Here are the closing prices of two stocks traded on Vienna’s
stock market for the first seven business days in September 2007:

These are measures of variation about the mean.

Stock A Stock B
4 1
425 3
5 25
475 5
5.75 7
525 6.5
6 10
X4 =5 Xg=5
Median (A) =5 | Median (B) =5

Even though the two stocks have similar central values, they do behave
differently. It is obvious that stock B is more variable and it becomes more
obvious when we calculate the standard deviations.

We will calculate the standard deviation manually in this example to

27: demonstrate the process. You do not have to do this manually all the time!
(x;—5)*
, o1 _ (4—5)2+ (425 —5)2+ (5—5)>+ (4.75 — 5)2 + (5.57 — 5)2 + (5.25 — 5)2 + (6 — 5)* _
2= - = . = 0.464
7
Z(xi —5)2
NS _(1=524+B3-5"+025-5°+(5-5°+(7—-5°+(65-57+(10—-5)°

s, = 8.21

B 7 7

This means that the standard deviations are s, = 0.681 and sz = 2.866.
Stock B is four times as variable as stock A.



Note: When computing the sample variance manually, you may find the
following shortcut of some use:

Z(xi—a_c)z Z(xZ—Zxx+x) Zv —2th+zx

2:1—1 :1—1 _ i=1 1—1 i=1

n

n

sz ZxZ Z Z ; o2

%2 )

_1 _1 _1 _1 _ X; =1 —

=1 : ’ = —x) A4+ -m R
i=1

However, remember that once you have a good understanding of the standard
deviation, you will rely on a GDC or software to do most of the calculation for
you.

Here is how you can use your TI GDC:

CALC TESTS Ll L2 L3 1
Edit.. | ||| ...
2:SOrtA( e 2
3:SortD( 4.75 3:
4:ClrList 5.75 4: L1nReg(ax+b)
5:SetUpEditor 5.25 5:QuadReg
6 6 :CubicReg
L1(1)=4 7lQuartReg
1-Var Stats L1 1-Var Stats 1-Var Stats
X=5 T="7
2x=35 minX=
>x2=178.25 Ql=4. 25
Sx=.7359800722 Med=5
ox=.6813851439 Q3=5.75
in=7 .maxx=6

Notice that the standard deviation you read from this output is called o, rather
than s,.

The S, used by your GDC gives

which is officially used on exam papers.

The screenshots also show you that the GDC gives you > x2, which can be used
if you want to find the variance by hand.

n

Exz.
1

=it =182 5 — 465, = 0681

The interquartile range and measures of non-
central tendency

To understand another measure of spread known as the interquartile
range, it is first necessary to define percentiles and quartiles.
Percentiles and quartiles

Data must first be in ascending order.

Percentiles separate large ordered data sets into hundredths. The pth
percentile is a number such that p per cent of the observations are at or
below that number.
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e Hint: The first quartile is also

called the lower quartile. The third

quartile is also called the upper
quartile.

A practical method to calculate O

the quartiles is to split the data
into two halves at the median.
(When nis odd, include the
median in both halves!) The
first quartile is the median

of the first half and the third
quartile is the median of the
second half. For example, with
the stocks data, {4, 4.25, 4.75, 5,
5.25,5.75,6}, n = 7, the median
is the fourth observation, 5. The
first quartile is then the median
of {4, 4.25, 4.75, 5}, which is

4.5, and the third quartile is

the median of {5, 5.25, 5.75, 6},
which is 5.5.

Quatrtiles are descriptive measures that separate large ordered data sets into
four quarters.

To score in the 90th percentile indicates 90% of the tests scores were less
than or equal to your score. An excellent performance! You scored in the
upper 10% of all persons taking the test.

o First quartile, Q,
The first quartile, Q,, is another name for the 25th percentile. The first
quartile divides the ordered data such that 25% of the observations are
at or below this value. Q, is located in the 0.25(n + 1)st position when
the data is in ascending order. That is,

Q==2 1_ 1 ordered observation

e Third quartile, Q;
The third quartile, Qs, is another name for the 75th percentile. The third
quartile divides the ordered data such that 75% of the observations are
at or below this value. Q3 is located in the 0.75(#n + 1)st position when
the data is in ascending order. That is,

Q, = S(n;- 1)

ordered observation

e The median
The median is the 50th percentile, or the second quartile, Q,.

A measure which helps to measure variability and is not affected by extreme
values is the interquartile range. It avoids the problem of extreme values by
just looking at the range of the middle 50% of the data.

Interquartile range

The interquartile range (IQR) measures the spread in the middle 50% of
the data; it is the difference between the observations at the 25th and the
75th percentiles:

IQR=Q; - Q
If we consider the student expense data in Table 1 and once again look at
that same data with the outlier 120 replacing the largest value 68, we have
the following results:

Expense data | Expense data with outlier
Minimum 38 38
Q 50 50
Median 55 55
Qs 61 61
Maximum 68 120
Range 30 82
IQR 11 11




Range doesn’t take into account how the data is distributed and is, of
course, affected by extreme values. We clearly saw that in Table 4. However,
the IQR evidently does not have that problem.

Five-number summary

Five-number summary refers to the five descriptive measures: minimum,
first quartile, median, third quartile, maximum.
Clearly) Xminimum < Ql < Median < Q3 < Xmaxirnum'

Box-and-whisker plot

Whenever we have a five-number summary, we can put the information
together in one graphical display called a box plot, also known as a box-
and-whisker plot. In the student expenditure data, the IQR is €11. This is
evident in the box plot below, where the IQR is the difference between 50
and 61.

Let us make a box plot with the student expense data.

e Draw an axis spanning the range of the data. Mark the numbers
corresponding to the median, minimum, maximum, and the lower and
upper quartiles.

e Draw a rectangle with lower end at Q1 and upper end at Q3, as shown
below.

e To help us consider outliers, mark the points corresponding to lower
and upper fences. Mark them with a dotted line since they are not part
of the box. The fences are constructed at the following positions:

o Lower fence: Q; — 1.5 X IQR (Here itis 50 — 1.5(11) = 33.5.)
o Upper fence: Q; + 1.5 X IQR (Here itis 61 + 1.5(11) = 77.5.)

Any point beyond the lower or upper fence is considered an outlier.

e Mark any outlier with an asterisk (*) on the graph. (Shown below).

e Extend horizontal lines called ‘whiskers’ from the ends of the box to the
smallest and largest observations that are not outliers. In the first case
these are 38 and 68, while in the second they are 38 and 67.

IQR=61—-50=11
N e,

335 38 50 55 61 68 77.5
Lower fence Upper fence
Minimum Q1 Median Q3  Maximum

IQR =61 —50 =11
——P—,

335 38 50 55 61 67 77.5 120
Lower fence Upper fence
Minimum Q1 Median Q3 Maximum

An outlier is an unusual
observation. It lies at an
abnormal distance from the
rest of the data. There is no
unique way of describing
what an outlier is. A common
practice is to consider any
observation that is further than
1.5 IQR from the first or third
quartile as an outlier. Outliers
are important in statistical
analysis. Outliers may contain
important information not
shared with the rest of the
data. Statisticians look very
carefully at outliers because of
their influence on the shapes
of distributions and their effect
on the values of the other
statistics, such as the mean and
standard deviation.
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Here is a box plot of the data done by a software package.

Box plot of student expense data

o =

r T T T T T T 1

35 40 45 50 55 60 65 70
Expenses (€)

As you can see, the box contains the middle 50% of the data. The width of
the box is nothing but the IQR! Now we know that the middle 50% of the
students’ expenditure is €11. This seems, at times, as a reasonable summary
of the spread of the distribution, as you can see in the histogram below.

25 4
204
15 4
10 A

Frequency

o

375 425 475 525 575 625 675
Midpoints

If you locate the IQR on the histogram, you can also get another visual
indication of the spread of the data.

How to use your GDC for histograms and box plots:

L1 L2 L3 2 Plot2  Plot3 3 s E[:II

38 | ........ Off :

39 1 Type: L= k2 din :

© |1 s ||

44 1 Xlist:Ia :

45 1 Freqg:L2 i

e 2 Mark: B + - i

12(1)=1 :

For grouped data:

1-Var Stats Li1,L| |1-Var Stats 1-Var Stats

2 X=55.475 T™n=80
2x=4438 minX=38
2x2=250400 01=50.5
Sx=7.2930954 Med=55
0x=7.247370213 Q3=61
In=80 maxX=68
i

An ogive can also be produced:

cumSum (Lz2) E:?tz Plot3

(1234568 .. Off

Ans-L3 Type: L= =& Jjm

(1234568 .. g
Xlist:L1
Ylist:Ls
Mark: = + H




Cumulative distribution for expense data

100 4

Percentage
[e))
o
L

N
o
L

N
o
L

0 ¥ L I U U U U U
40 45 50 55 60 65 70 75

Expenses (€)

This is a realistic ogive.
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Notice how we locate the first quartile. Since there are 80 observations,
n+1_8

the first quartile is approximately at the i Tl =~ 20th position,
which appears to be around 50.
- n+1_ 81 _ ce .
The median is at the =5 = 40th—41st position, i.e. approximately
at 55.
3(nt1) _ 243

== = 61st, which happens

Similarly, the third quartile is at 7 1

here at approximately 61!

The calculation of the mean and variance for grouped data is essentially
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the same as for raw data. The difference lies in the use of frequencies to
save typing (writing) all numbers. Here is a comparison:

Statistic Raw data Grouped data Grouped data with intervals
> x D xefx) D xefx) S omefm) Y m-fim)
% %= a//% % _allx - _ allx %= all x _ allx

> ) " > tm)

> - %2

_allx
n

N
N

> b — %2 flx) > m =72+ f(m)

2 _allx 2 _allx
n

2 s = 37+t > (m = %2+ f(m)

_allx

> ) > fmy

where x; = data point
f(x;) = frequency of x;
m; = interval midpoint (mid mark or mid value)
f(m;) = frequency of interval i

Z f(x)), Z f(m;) = total number of data points

For the grouped data reproduced here, this is how we estimate the mean
and variance:

35 but <40 375 2 75 344.5 688.9
40 but <45 42.5 3 127.5 183.9 551.6
45 but <50 47.5 11 522.5 733 806.0
50 but <55 525 21 1102.5 12.7 266.1
55 but <60 57.5 19 1092.5 2.1 394
60 but <65 62.5 11 687.5 41.5 456.2
65 but <70 67.5 13 8775 1309 17014
Totals 3 fim) = 0 D mifm)=4485 | D (m,—X)? f(m) = 45096
allx allx
Mean % = 56.06 Variance % = 56.37
devistion | °]

The numbers here are estimates of the mean and the variance and
eventually the standard deviation. As you will notice, they are not equal to
the values we calculated earlier, but are close. The reason for this is that,




with grouping, we lost the detail in each interval. For example, the interval
between 45 and 50 is represented by the midpoint 47.5. In essence, we are
assuming that every number in the interval is equal to 47.5.

Shape, centre and spread

Statistics is about variation, so spread is an important fundamental
concept. Measures of spread help us to precisely analyze what we do not
know! If the values we are looking at are scattered very far from the centre,
the IQR and the standard deviation will be large. If these are large, our
central values will not represent the data well. That is why we always report
spread with any central value.

A practical way of seeing the significance of the standard deviation can be
demonstrated with the following (optional) observations:

Empirical rule:

If the data is close to being symmetrical, as in the figure right, the following
Is true:

e The interval u * o contains approximately 68% of the measurements.

e The interval u = 20 contains approximately 95% of the measurements.
e Theinterval u * 30 contains approximately 99.7% of the measurements.
The empirical rule usually indicates if an observation is very far from the
expected or not. Take the following example:

I have recorded my car’s fuel efficiency over the last 98 times that I have
filled the tank with gasoline. Here is the data expressing how many
kilometeres per litre the car travelled:

km/litre Frequency km/litre Frequency

6.0 1 10.0 14
7.0 1 10.5 7
7.5 4 11.0 9
8.0 8 115 5
85 14 120 1
9.0 21 12.5 2
9.5 11

The summary measures are:

Mean 9454
o 1.223
Median | 9.25
Q 85

Q; 10.125
IOR 1.625

Symmetric distribution
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The histogram shows that the distribution is almost symmetric. The
possible outlier has little effect on the mean and standard deviation. That
is why the mean and median are almost the same. Looking at the box plot,
you can see that there is one outlier. The confirmation is below:

9.25 — 1.5 X 1.625 = 6.8, which is why 6 is considered as an outlier.
10.125 + 1.5 X 1.625 = 12.6, and hence no outliers on this side.

Fuel efficiency If we use the empirical rule, we can expect about

204 | 99.7% of the data to lie within three standard
deviations of the mean, i.e. 9.454 — 3 X 1.223 = 5.8
154 and 9.454 + 3 X 1.223 = 13.1. In fact, you see all
g (L] [ the data is within the specified interval, including the
% 104 I potential outlier!
= i == Question: What should you be able to tell about a
54 —] == quantitative variable?
e e LSl Answer: Beport the shape of its distribution, and
6 7 3 9 10 A 9 include a centre and a spread.
km/litre

Question: Which central measure and which measure
Fuel efficiency of spread?

Answer: The rules are:

. I | e If the shape is skewed, report the median and IQR.

You may want to include the mean and standard

deviation, but you should point out that the mean

6 7 8 9 0 1 12 13 and median differ as this difference is a sign that
km/litre

the data is skewed. A histogram can help.

e If the shape is symmetrical, report the mean and
standard deviation. You may report the median
and IQR as well.

o If there are clear outliers, report the data with
and without the outliers. The differences may be

revealing.
Example 4
The records of a large high school show the heights of their students for
the year 2006.
200+ =

S 1501

5

=

g 100+

50

0 T T T T T T T T T T T T 'T' '|_|
169 171 173 175 177 179 181 183 185 187 189 191 193 195
Height (cm)




a) Which statistics would best represent the data here? Why?
b) Calculate the mean and standard deviation.

¢) Develop a cumulative frequency graph of the data.
d) Use your result of ¢) above to estimate the median, Q,, Q; and IQR.

e) Are there any outliers in the data? Why?

f) Write a few sentences describing the distribution.

Solution

a) The data appears to have outliers and is slightly skewed to the right. The
most appropriate measure is the median, since the mean is influenced
by the extreme values.

b) To calculate the mean and standard deviation, we will set up a table that
will facilitate the calculation.

deviation

He'gt‘; (cm) S::J‘;’::tirf‘(’i) 1 X Flax) =P | =% X fx)
170 15 2550 51.84 7776
171 60 10260 3844 2306.4
172 90 15480 27.04 24336
173 70 12110 17.64 12348
174 50 8700 1024 512
175 200 35000 484 968
176 180 31680 144 2592
177 70 12390 0.04 28
178 120 21360 0.64 76.8
179 50 8950 3.24 162
180 110 19800 7.84 8624
181 80 14480 14.44 1155.2
182 90 16 380 23.04 20736
183 40 7320 3364 13456
184 20 3680 46.24 9248
185 40 7400 60.84 24336
186 10 1860 7744 7744
194 2 388 28224 564.5
196 3 588 35344 1060.3

Totals Zf(xf) %:xf f(xi) %; (xj - 5()2 . f(Xi)
= 1300 = 230376 =199276
Mean % = 1772 | Variance % = 1533
Standard 392
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Note: Using the alternative formula for the variance will also give the same

result. (Due to rounding, answers will differ slightly.)

szi X f(x)
2 =i=1 _ =2 _ 40845390

—_— _— 2 = =
" 5 x 1300 177.2123 15.3315 =5, = 3.92

c) To develop the cumulative frequency graph, we first need to develop
the cumulative frequency table. This is done by accumulating the
frequencies as shown below.

X f(x) Cum f(x) X f(x) Cum f(x)
170 15 | owts 184 20 1245
171 60 &1 _».75 185 40 %1 51285
172 90 | 165 186 10 1295
173 70 %] 5235 187 0 1295
174 50 285 188 0 1295
175 200 485 189 0 1295
176 180 665 190 0 1295
177 70 735 191 0 1295
178 120 855 192 0 1295
179 50 905 193 0 1295
180 110 1015 194 2% 51297
181 80 1095 195 0 1297
182 90 1185 196 3 1300
183 40 1225

The cumulative frequency table is constructed such that the cumulative
frequency corresponding to any measurement is the number of
observations that are less than or equal to its value. So, for example,
the cumulative frequency corresponding to a height of 174 cm is 285,
which consists of the 50 observations with height 174 cm and the 235
observations for heights less than 174 cm.

The cumulative frequency graph plots the observations on the
horizontal axis against their cumulative frequencies on the vertical axis,
as shown below.

1400
1200 4 1285
1000
800 A
600
400
200 1

Cumulative frequency

1285
' 174
O T T T T T T T T T T T T T T

169'1717173'175 177179 1811183 185 187 189191 193 195
Height (cm)




d) The median is the observation between @ = 650th and 651st

observations, since the number is even. From the cumulative table, we
can see that the median is in the 176 interval. So the median is 176.

Q, is at 13401 = 325th observation. From the table, as 174 has a

cumulative frequency of 285, and 175 has a cumulative frequency of
485, then Q1 has to be 175.

Also, Q; is at w = 976th observation. So, similarly, it is 180.

IQR =180 — 175 = 5.
e) To check for outliers, we can calculate the lengths of the whiskers.

Lower fence: 175 — 1.5 X 5 = 167.5, which is lower than the minimum
value, so there are no outliers on the left.

Upper fence: 180 + 1.5 X 5 = 187.5. So we have five outliers, two at
194 cm and three at 196 cm.

f) The distribution appears to be bimodal with two modes at 175 and
176. It is slightly skewed to the right with a few extreme values at 194
and 196. This is further confirmed by the fact that the mean of 177.2 is
higher than the median of 176.

Note: Here are the calculations using a GDC:

L1 L2 L3 3 1-Var Stats 1-Var Stats
170 15 [———] X=177.2123077 tTn=1300
171 60 2>x=230376 minX=170
- >x2=40845390 Q1=175
174 50 Sx=3.916704232 Med=176
175 200 0x=3.915197517 Q3=180
176 180 In=1300 maxX=196
L3(1)= [ |
plot2 Plot3 plotl plot3 [lj
il 1 ol LA -
e L dh e |
P Type: by i
Xlist:L1 Xlist:L1
Freq:L2 Freq:L2
Mark +

Exercise 9.2 and 9.3

1 You are given eight measurements: 5,4, 7,8, 6, 6,5, 7.
a) Find x. b) Find the median.
€) Based on the previous results, is the data symmetric or skewed? Explain and
support your conclusion with an appropriate graph.
2 You are given ten measurements: 5,7, 8,6,12,7,8,11,4, 10.
a) FindXx. b) Find the median. ¢) Find the mode.

3 The following table gives the number of DVD players owned by a sample of 50
typical families in a large city in Germany.

Number of DVD players 0 1 2 3

Number of households 12 | 24 8 6

Find the average and the median number of DVD players. Which measure is
more appropriate here? Explain.
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4 Ten of the Fortune 500 large businesses that lost money in 2006 are listed below:

Company Loss ($ million) Company Loss ($ million)
Vodafone 39093 General Motors 10567
Kodak 1362 Japan Airlines 417
UAL 21167 Japan Post 3
Mitsubishi Motors 814 AMR 861
Visteon 270 Karstadt Quelle 393

Calculate the mean and median of the losses. Which measure is more
appropriate in this case? Explain.

5 Even on a crucial examination, students tend to lose focus while writing their
tests. In a psychology experiment, 20 students were given a 10-minute quiz and
the number of seconds they spent‘on task’were recorded. Here are the results:

350 | 380 | 500 | 460 | 480 | 400 | 370 | 380 | 450 | 530

520 | 460 | 390 | 360 | 410 | 470 | 470 | 490 | 390 | 340

Find the mean and median of the time spent on task. If you were writing a report
to describe these times, which measure of central tendency would you use and
why?

6 At 5:30 p.m. during the holiday season, a toy shop counted the number of items
sold and the revenue collected for that day. The result was n = 90 toys with a
total revenue of > _x = €4460.

a) Find the average amount spent on each toy that day.

Shortly before the shop closed at 6 p.m., two new purchases of €74 and €60
were made.
b) Calculate the new mean of the sales per toy that day.

7 Catsis a famous musical. In a large theatre in Vienna (1744 capacity), during a
period of 10 years, it played 1000 performances. The manager of the group kept
a record of the empty seats on the days it played. Here is the table.

Number
of empty | 1-10 | 11-20| 21-30 | 31-40 | 41-50| 51-60 | 61-70 | 71-80 | 81-90 [ 91-100
seats

Days 15 50 100 170 | 260 | 220 90 45 30 20

a) Copy and complete the following cumulative frequency table for the above
information.

Number
ofempty | x<10|x<20|x<30|x<40|x<50|x<60|x<70|x<80|x=<090|x=<100
seats

Days 15 165 815 1000

b) Draw a cumulative frequency graph of this distribution. Use 1 unit on the
vertical axis to represent the number of 100 days and 1 unit on the horizontal
axis to represent every 10 seats.

C) Use the graph from b) to answer the following questions:




(i) Find an estimate of the median number of empty seats.

(i) Find an estimate for the first quartile, third quartile and the IQR.

(iii) The days the number of empty seats was less than 35 seats were
considered bumper days (lots of profit). How many days were considered
bumper days?

(iv) The highest 15% of the days with empty seats were categorized as loss
days. What is the number of empty seats above which a day is claimed as
a loss?

8 Afarmer has 144 bags of new potatoes weighing 2.15 kg each. He also has 56
bags of potatoes from last year with an average weight of 1.80 kg. Find the mean

weight of a bag of potatoes available from this farmer.

9 The heights of football players at a given school are given in the table below:

> > > > > >
9] ) ) ) ) )
= = = (= (= =
gl s/ s|2|S|=2|S|e|s5| 2|58
2 o k)l o 2 o =) o =) o =)} o
] o ] o ] g ] g ] g ] g
I (i I (i I (i I (i, I (i I (i
152 | 2 160 7 168 | 18 | 175 5 1183 9 191 4
155 6 163 51170 7 1178 1 11 [ 185 | 4 193 1
157 | 9 1651 20 (173 | 12 [ 180 8 [ 188 | 2

a) Find the five-number summary for this data.

b) Display the data with a box plot and a histogram.

¢) Find the mean and standard deviation of the data.

d) Describe the data with a few sentences.

e) Draw a cumulative frequency graph and estimate the height of the player
that is in the 90th percentile.

f) 10 players'data was missing when we collected the data. The average height
of the 10 players is 182. Find the average height of all the players, including
the last 10.

@ Linear regression
Scatter plot

The total time you devote getting ready for an exam impacts on the
score you obtain in that exam.

In general, the foot size of an adult is related to the height of that
adult.

Smoking increases the chances of a heart attack.

Such statements as those above concern the relationship between two
variables. So far you have considered how to describe the characteristics
of one variable. In this section, you will look at relationships between two
variables. This is why we call this study bivariate statistics.
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Statistics

To study the relationship between two variables, we measure both variables
on the same subjects. For example, if we are interested in the relationship
between height and foot size, then for a group of individuals we record
each person’s height and foot size. This way we know which foot size goes
with which height. Similarly, we record the grades of each individual in

the study along with his/her time preparing for the exam. So, our data are
sets of ordered pairs. These data allow us to study the link (association)
between height and foot size or time and grade. In fact, taller people tend
to have larger foot sizes. And the more you prepare for an exam the higher
your grade is. We say that pairs of variables like these are associated.

Here are the grades of 10 students in an IB Mathematics SL class. The table
gives the time they spent preparing for their math test and the score they
achieved.

Student | Tim | Joon [S-youn| Kevin | Steve | Niki |Henry|Anton | Cindy | Lukas

Hours 4 45 6 35 3 5 55 6.5 7 6.5
Grade 65 80 83 61 55 79 85 89 92 95

Here is a graph (scatter plot) of the data given in the
r table.

. The horizontal axis shows the number of hours spent
studying and on the vertical axis shows the scores
received. As you will notice, it appears that the more
hours spent studying the higher the grade. We say that
the grades on tests and the time preparing for them are
associated. We call the time the explanatory variable
(independent) and the grade the response variable

Hours

6 7 (dependent). The students whose time and grades are
recorded are the subjects of the experiment/study.

Definition
Two variables measured on the same subjects are associated, if specific values of one
variable tend to occur in connection with particular values of the other variable.

For instance, larger values for the foot size of an individual tend to occur
in connection with taller individuals. Or, a higher rate of serious road
accidents happens in connection with drivers that have a high level of
alcohol concentration in their blood. We claim that height and foot size
are positively associated as well as alcohol level and involvement in serious
road accidents. We can also claim that there is a negative association
between time spent watching TV and scores on weekly tests for teenagers.

In our effort to study the nature of the relationship between two variables
we try to look into how changes in the values of one variable help explain
the variation in the other variable. For instance, we look at how the
increase in a person’s height can explain the increase in his/her foot size.
As discussed above, we call the first variable explanatory and the second




the response variable. These are traditionally called independent and
dependent variables.

Definition

A response variable measures an outcome of a study. An explanatory variable
explains the changes in the response variable. If the study is to determine the
relationship between weight and blood pressure, then weight is the explanatory variable
and blood pressure is the response variable. If the study is to investigate the relationship
between the level of fertilizer and the crop volume during an agricultural season, then
the level of fertilizer is explanatory, the crop is the response.

The principles that guide our work on data are:
e Start with graphical display, and then explore numerical summaries.
e Look for overall patterns and deviations from those patterns.

e When the overall pattern is quite regular, use a mathematical model to
describe it.

Graphical displays associated with one variable include histograms, box
plots and others. In bivariate statistics the graphical tool we use is the
scatter plot, or scatter diagram. In a scatter plot, each observation is
represented by a point on a grid. The horizontal component represents the
explanatory variable and the vertical component represents the response

80

variable.
Example 5
The data presented below is for 80 adults in

.. . 18007 .
a dieting program. The researchers believe 5

. . 1700+ L] P S
that the metabolic rate (calories burnt per 24 IS 2 .
. 1600+ . 2, .
hours) is influenced by the lean body mass A s
) . £ 1500 . 2% %
(in kg without fat). © PR W .
é 1400 - : £ ™ ® Y L]
Does the scatter plot show that there is an 2 13004 ¥ T e s
o e . - L ]
association between the metabolic rate and < 1200 - ... LE
lean mass? 11004 o* (54,1291.6)
L
You will observe that there is a positive 10004 &%
1 1 1 900 T T T T T 1

éssoaatlon between tbese two V.arlabl.es, B i 5 2 %
i.e. the greater the weight, the higher is the Lean Mass

metabolic rate.

What to look for in a scatter plot

As a rule of thumb, when we examine a scatter plot, we may look at the
following characteristics:

e Overall pattern (form, direction and strength)

e Striking deviations from pattern (outliers)
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In this example, the form is roughly linear. That is, the points appear to

cluster around a straight line. The direction, as mentioned earlier appears
An outlier is an observation O to be a positive association. The strength is determined by how closely the
whose values fall outside points follow the form (will be revisited later), even though some points
the overall patter of the stray away from the line. In this case it does not appear that there are any

relationship. ¢
outliers.

Example 6

The table below lists the fuel consumption of 34 small cars in km/litre
during city driving and highway driving. Make a scatter plot of the data
and comment on any patterns you observe.

City Highway
73 10.2
85 119
85 11.9
7.3 10.7
7.7 10.7
o] S5
47 6.8
43 6.8
73 9.8
38 6.4
338 55
64 94
5.1 7.3
94 11.9
6.8 9.8
55 8.1
85 111
85 124
64 9.8

11.1 13.7
5.1 8.1
9.0 124
8.1 11.5
8.1 11.9
6.8 9.8
7.7 1.1
6.8 9.8
7.7 9.8

10.7 13.7
9.8 132
85 124
7.7 111
6.0 94

256 28.2




Solution 254 ;
]
Here is a scatter plot of the data. A
204 outlier
The data indicate that the fuel consumption
in highway driving and city driving, as 5 154
expected, are positively associated. The
relationship appears to be strong as 104
the data are tightly clustered around a - ':.; g
positively sloped line. However, we can .
. . . 51 '] L
see that there is one observation that is oo
positioned quite far from the rest of the
data. This observation is an outlier. Outliers 0 5 10 15 20 25 30

in statistics are important. Sometimes

they indicate a problem in the data being

observed and sometimes they may have a special significance. In our case,
the data corresponds to a ‘hybrid’ car, which uses battery power in addition
to fuel and hence the high performance. In that sense, this observation

is not typical of the study and must be removed in order to get a clear
indication of the nature of the relationship between the two variables. Here
is an adjusted scatter plot without the hybrid car.

124
114

L

10 .
o=
8- ®
74
6 .
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LN N

0 11 12 13 14
Highway
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o)}
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You can use either Excel or your GDC to produce scatter plot.
Here are the instructions for a T1-84:

e First enter the data into two lists L1 and L2 in this case.
Then go to STAT PLOT
Choose Plotl.

Then choose the scatter plot and the correct lists as shown.

e Graph.
Plot2 Plot3 L1 L2 3 .
Off Zg 2.2 _______ o
Type: g E & 22 gi & @ﬁ
Xlist:L2 5.1 7.3 DE“E’
Ylist:La N 9.4 11.9 o
Mark: B + - Lg‘s 9.8

Highway
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For a CASIO fx-CG20, you do the following:

e Go to Menu and choose Statistics.

e Press EXE and then fill in the lists as shown.
e Choose GRAPHI1 (or 2).

B (o] 7] [Fr] B @
Tist 1 [List 2 [ List 3 [ List 4 Y
&y SUB o
i 31 8.5 12.4 gh
2| 7.7 111 go Ho

S 33 6 8.4 ==
5 2 — |

a < 4 5 [ T 8 9

ConicGraghs  Equation (GRAPHI]|GRAPH?] CRAPHA) [Skgen m W

Correlation

A scatter plot is a good device that reveals the form, trend and strength

of the association between two quantitative variables. At this level, we are
only interested in linear relations. As mentioned earlier, we say that a linear
relationship is strong if the data are tightly packed around the line, and
weak if they are widely dispersed around the line. Our judgment using our
eyes only may be misleading though. Look at the two scatter plots.

124 The graph at the top is a copy of
114 4 the second graph in Example 6.
10+ . The graph gives the impression
91 =5 o2 - that the association is stronger
> 87 8 Gt than it is in the other graph.
Y 7 x E nR This is due to the change in scale
6 . # on the vertical axis. However,
51 g both scatter plots represent the
41 o e same situation. We will need a
3 5 6 7 3 9 10 11 12 13 14 more robust measure to support
Highway our first graphical impressions.
1s0- This measure is the correlation
' coefficient.
12,5
210,01 ¥
9 .
75 s l®
5-0_ a L : -
25 50 75 100 125 150 175 200

Highway




Let us consider height and weight data collected from 7449
130 19-year-olds. The measurements were made in 74.34
metric units. Here is the scatter plot. 74.2
Not surprisingly, the association between the two 274N
variables is strong. To measure the strength of this £, 740+
association, we use the correlation coefficient given by 2 73
the following formula. 738
- . \
Definition 7371 " *
The correlation coefficient measures the strength and direction 736 !

. .
. L]
< .'.. o..‘ ™
L] ...‘3..
%2 b2’
e
L]
i 1
5

of the linear relationship between two quantitative variables
when it exists. We use r to represent it.

For a set of data (x; y;) of size n, the correlation coefficient is

p= 1 E Xi—X\(Vi—Yy
n—1 Sy Sy
where X and y are the means of the variables and S, and S, are
the standard deviations.

This formula is somewhat complex to calculate. However, it helps us see
what correlation is instead. In practice, you will read the result from your
calculator or computer output.

X — X

If we look at the formula, we see that the first component is nothing
x T
but the standardized value for x;. Similarly, the second component Vi 3 Y
y
is the standardized value for y;. So, the correlation coefficient can be

22,2,

written as r = . That is, the correlation coefficient is an average of

the products of the standardized values of the two variables.

Note: Whether we use the definition of r or p, it can be shown that they are equivalent.
Hence, using your GDC will give you the correct value. If you are interested in seeing
how to show their equivalence, here is one method.

Starting with p:
1 x —u [y —u 1 x — M, Vil
pz_z(_ﬂ)[_yjz_z | u - y 2
n o, o, Sy N )
\ n \ n

=lz X/v_ux { y/_llly ]: (x/_#x)(y/_uy>
4 % 6=y W NN BRI TS

2oy~
Starting with r:

1 x—x\[y =V 1 x —X Y, =y
rZ—Z i i :_Z : i | i
n—1 ( Sx )[ Sy ) n—1 Illz(x,' _})2 |IZ(y/ _)7)2
V' -1 V' n—i
L 5= [ v, =7 ]=Z (x =3y, =)
n—1 %\;"Z(xl — %) V2ly, —y ) V(% = 2N, — V)
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O ris also called the Pearson
product-moment correlation
coefficient. In fact, ris an
unbiased estimate of the
population coefficient, which is

given by:

_ 1 Xi — My Yi — My
P=n oy gy
The GDCs use r.

In exams, you will not be asked
to calculate the coefficient

by hand but to interpret the
GDC result. There are several
equivalent forms for the
equation but it is not necessary
at this stage to calculate any of
them!
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Let us take the weight—height data and express it in pounds and inches
instead. Here is what we get:

165.5+
L ]
L] L]
165.0 v S
o L
) * 18"
= 0,0 pe *
£ 16451 Pt
) b
= oy v 08
» : ~r. LY
P
164.0- i
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= %
163.5 T T T T T T 1
72.5 73.0 735 74.0 74.5 75.0 75.5 76.0
Height (in)

As you notice, other than the scale on the axes being inches and pounds,
the plot has the same form and direction and strength as the original

one. Similarly, when you standardize the variables, you are subtracting a
constant from each value and dividing by another constant. If you plot the
standardized variables, here is what you get:

3
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-‘ .
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As you will notice, other than the centre of the data being at the origin, the
form, direction and strength appear to be the same.

This fact is verified by calculating the correlation coefficient for all three
forms of the data. The result is always the same, 0.95 (software use).

For Example 6, the correlation can be read from TI-84’s regression output
below. You first need to enable the Diagnostics on your GDC, then run
LinReg from the Stats menu.

EDIT (erwM@ TESTS LinReg(ax+b)L1,| [LinReg

1l:1-Var Stats L2 y=ax+b

2:2-Var Stats a=1.108163254
: Med-Med b=2.141125622
LinReg (ax+b) r?=.8793206242

5:QuadReg r=.9377209735

6 :CubicReg

7lQuartReg




On CASIO fx-CG20, from the list, choose CALC, REG, X, ax + b (or a + bx).

B e EErE B [ @ereE
[ List 1 [List 2 [ List 3 [ List 4 LinearReg (ax+b)
) a =1.10816325
B 10.2 b =2.14112562
2 8.5 -9 r =0.93772097
3 8.5 11.9 r? =0.87932062
4 7.3]  10.7 MSe=0.60072376
7.3 y=ax+b
D D S S | > |

You may have observed in the technology output that 2 is also reported. This measure
is not required for your exam. However, it is an extremely useful and powerful tool. r? is
known as the coefficient of determination. It reports the portion of variation in the
response variable that can be explained by the variation in the explanatory variable. As
such, r? can be expressed as a percentage. Using the data from Example 6,

r? = 0.879, which can be interpreted as ‘if all else is equal, then 88% of the variation

in city consumption can be explained by variation in the highway consumption; i.e.

on average, for cars with the same characteristics, if there is a 1 km/L change in City
consumption, we expect that 88% of this change can be explained by changes in the
Highway consumption. Using the data from Example 5, r = 0.84 and r? = 0.7056, which
means that approximately 70.6% of the changes in the metabolic rate can be explained
by changes in the lean mass. Finally, using the data from Example 7 below, r? = 0.9025
which means that, all else equal, approximately 90% of the variation in weight could be
explained by variation in the height of those teenagers.

Properties of the correlation coefficient

The correlation coefficient is a measure of the strength of the linear
association between two quantitative variables.

« Do not apply correlation to non-quantitative data!

o The coefficient makes sense only if there is a linear relationship. It
does not prove a linear relationship. If there is a linear association, the
coefficient will describe its strength.

The outliers can distort the correlation. Special attention must be paid to
such outliers.

The correlation is always a number between —1 and +1. Values of r near
0 indicate a weak relationship. Values close to +1 or —1 indicate strong
association.

r does not change as we change the units of measurement.

rhas no units and is not a percentage! Don’t express a correlation of 0.85
as 85% for example.

Correlation between two variables means that there is some association
between them. It does NOT mean that one of them causes the other.
So, correlation does not mean causation, i.e. two variables can have a
strong correlation without one of them being the cause of the changes
in the other. For example, there may be a strong correlation between
the amount of crude oil imported by country X and the rate of birth

in country Y. That does not necessarily mean that the increase of

oil imports causes an increase in birth rate. However, in some cases,
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there may be a causal relationship. For example, the increase in level
of income in a certain country and the decrease of unemployment
can have a strong negative correlation. This association is also causal.
However, the task of proving the causal relationship comes with
economics.

Example 7

The table below gives you the data for a lab experiment involving the
length (mm) of a metal alloy bar used in electronic equipment when it is
exposed to heat (°C).

Heat (°C) 40 45 50 55 60 65 70 75 80
Length (mm) | 20 | 20.12 | 20.20 | 20.21 | 20.25 | 20.25 | 20.34 | 2047 | 20.61

Draw a scatter plot. Comment on the strength of the relationship. Use both

rand r2.
Solution
20.7- Here is the scatter plot.
20.6+ ¢ It appears that we have a relatively strong
20.5- relationship where the points are tightly spread
20.4- around the trend line.
20.37 This is confirmed by calculating the correlation
20.24 coefficient. In this case, regardless of which
20.1 formula we use(r or p), the correlation is
20- approximately 0.95521. Using the 2 = 91.2%
. implies that 91.2% of the variation in the
"0 10 20 30 40 5 60 70 8 90 length can be explained by variation in the

Heat (°C) temperature.

Exercise 9.4A

1 The following table lists the values of a response variable y against an
explanatory variable x. Draw a scatter plot and comment on the strength of the

relationship.
x| 8|6 |14 1116|1311 1211 {1212]11]15[16|14]13 13| 8 |10]| 1
y | 8| 7121101141010 9 | 1511 ]10]95[ 121313 |11{11[9]9]9

2 The data below represents the outcome of an experiment on a small car,
relating fuel consumption to speed.

Speedkm/h | 60 | 65 | 70| 75|80 | 85|90 | 95 |100({105|110{120{130{ 140|150

Fuel
consumption |16.9(16.8(15.9]15.9|14.4|14.3|113.2|114.3|112.1]12.010.2[ 98 [ 9.0 | 80 | 7.1
km/L




a) Make a scatter plot.

b) Describe the relationship and justify your choice of which variable is the

explanatory and which is the response.

o) Is the relationship strong? Explain your answer.

3 The following data is from World Bank statistics relating the Gross National
Income per Capita (GNI/Cap) to Purchasing Power Parity (PPP) for a few
developed countries. (The exchange rate adjusts so that an identical product
in two different countries has the same price when expressed in the same
currency.) For example, a chocolate bar that sells for C$1.50 in a Canadian city
should cost US$1.00 in a US. city, when the exchange rate between Canada and
the US.is 1.50 USD/CDN. (Both chocolate bars cost US$1.00.)

Country GNI/Cap PPP
NOR 85380 57130.0
CH 70350 49180.0
DK 58980 40140.0
SWE 49930 39600.0
NL 49720 42590.0
FIN 47170 37180.0
USA 47140 47020.0
AUT 46710 39410.0
BEL 45420 37840.0
D 43330 38170.0
F 42390 34440.0
JPN 42150 34790.0
SGP 40920 54700.0

a) Make a scatter plot.

b) Describe the relationship and justify your choice of which variable is the
explanatory and which is the response.

c) s the relationship strong? Explain your answer.

4 |n hotel management, it is necessary to estimate the electricity consumption in
relation to number of visitors. Here is the data for a large hotel.

Visitors 232|311|321(334|352|375|412 | 447 | 456 | 472|480 | 495 | 512
Consumption | 237 [278]270| 303|298 328|387 390|376 402|431 |430|432

a) Make a scatter plot.
b) Describe the relationship and justify your choice of which variable is the

explanatory and which is the response.

c) s the relationship strong? Explain your answer.
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Least squares regression

You have seen above that correlation measures the strength and direction
of a linear relationship between two quantitative variables. So, if we
suspect from a scatter plot that the relationship is linear, then we need

to summarize this linear behaviour, i.e. we need to find an equation of a
straight line that best fits the trend in the data. In this sub-section, we will
discuss how to find a line of best fit that describes the linear relationship
between an explanatory and response variable when it exists.

Finding a line of best fit means finding a line that comes as close as
possible to the points in the data set. Obviously, there is no straight line
that contains all the points in the set.

Regression line

A regression line is a straight line that describes how a response variable
changes with changes in an explanatory variable.

Let y be the response variable and x be the explanatory variable. The linear
regression line is of the form

y=ax+b

where g, the slope of the line, reflects how does the response variable, y,
changes according to changes in the explanatory variable x. b is the value of
the response variable corresponding to a zero value in x.

In the example of height—weight, the equation is
Weight (kg) = 56.1 + 0.0966 Height (cm)
That is a = 0.0966 and b = 56.1.

This means that on average, for every increase (decrease) of 1 cm in height,
we predict an increase (decrease) of 0.0966 kg in weight. The interpretation
of bis peculiar. As you know from algebra, b stands for the value of y
(which is Weight in this case) corresponding to a zero value of x (which

is height in this case). However, for this problem the interpretation is not
ideal! It corresponds to a height of zero. The general rule in this is that if

0 is not included in the domain of the explanatory variable, then trying to
interpret the intercept is pointless.

We decided to use the familiar form y = ax + b for the equation of the regression line as
an introduction. However, in most statistics books and in software the form used is
y = a+ bx where g is the y-intercept and b is the gradient.

This issue has to do with what we call extrapolation. Extrapolation is the
use of the regression line for predicting values far off the range of values
of the explanatory variable x used to find the equation of that line. Such
predictions are often inaccurate.



Why the least-squares regression line?

Let us take a simple example. The graph below represents a few points in a
data set. The green line is the line of best fit. Take for example the point
(x1, 1) The point on the line (x;, ;) is the point whose y-coordinate j,
predicts the real y-coordinate, using the line of best fit. The distance

y1 — ¥ is the error in this prediction. Similarly is y, — 7, and all other

y; — 7 The line of best fit is the line that minimizes the sum of all these
errors. However, like the variance, some of these errors are positive and
some are negative and may eventually cancel each other out. To avoid
this, like we did with the variance, we try to minimize the squares of these
errors. That is, the line of best fit is the line that minimizes the sum

> (¥ 7;)* Hence, it has the name of the least-squares line of regression
y=bx+a.

The process of finding the slope of such a line is beyond the scope of this
book. Here is one form of the many forms of the resulting formulas for the

slope and intercept are b = rS—y, and a = y — bx. Here, ris the correlation
X

coefficient, X, 7, s, and s, are the means and standard deviations of the
explanatory and response variables.

There are other equivalent forms of the equations, but since you don't need to do the
calculations yourself, we decided to share with you one of the more intuitive formulas.
One conclusion you can draw from this formula is that along a line of regression with
slope b, a change of 1 standard deviation in the x-direction will result in a change of

r standard deviations in the y-direction.

As you will notice from the equations, every regression line should contain
the point (%, 7) with the averages of the variables as coordinates.

A

¢\ (v,-5.)

(x,y)
(X, ¥,)
202 /
(X, y,) 1 %
A4 .)/‘ (x5 ¥,) &
(y,-9) >
/ . 3,)

/

0 X

Example 8

The following scatter plot represents a random sample of IB students who
went through four years of university and a comparison of their scores on
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the IB exams they took and their Grade Point Averages in their university
studies (scale 1—4).
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There appears to be a linear relationship between them. When we run a
linear regression, the equation is:

University = —1.51 + 0.151 IB

This means that on average, for every increase of 1 point in the total IB
score, we expect an increase of 0.15 points in University Grade Point
Average (GPA). If we want to predict the GPA of a student who scored 30
on an IB diploma, the model predicts, on average, a grade of:

University = —1.51 + 0.151(30) = 3.02

The correlation coefficient of this relationship is r = 0.758, which is a
relatively strong correlation. In addition, r? = 57.5%. This means that
changes in the IB score may help us explain 57.5% of the variation in the
University GPA.

Does that mean high IB scores cause high university averages? The answer
is no. They only help predict the future university averages.

Features of the regression line

e The regression equation can be used to predict the response variable
according to values of the explanator